Deep Learning for Load Forecasting with Smart Meter Data: Online
Adaptive Recurrent Neural Network

Mohammad Navid Fekri“, Harsh Patel?, Katarina Grolinger “* and Vinay Sharma”

“Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada

®London Hydro, London, ON, Canada N6A 4H6

ARTICLE INFO

Keywords:

Online Learning
Recurrent Neural Network
Bayesian optimization
Adaptive Learning
Concept Drift

Online Adaptive RNN

ABSTRACT

Electricity load forecasting has been attracting research and industry attention because of its impor-
tance for energy management, infrastructure planning, and budgeting. Inrecent years, the proliferation
of smart meters and other sensors has created new opportunities for sensor-based load forecasting on
the building and even individual household level. Machine learning approaches such as Recurrent
Neural Networks (RNNs) have shown great successes in load forecasting, but these approaches em-
ploy offline learning: they are trained once and miss on the opportunity to learn from newly arriving
data. Moreover, they are not well suited for handling the concept drift; for example, their predictive
performance will degrade if the load changes due to the installation of new equipment. Consequently,
this paper proposes Online Adaptive RNN, an approach for load forecasting capable of continuously
learning from newly arriving data and adapting to new patterns. RNN is employed to capture time
dependencies while the online aspect is achieved by updating the RNN weights according to new data.
The performance is monitored; if it degrades, online tuning is activated to adapt the RNN hyperparam-
eters to changes in data. The proposed approach was evaluated with data from five individual homes:
the results show that the proposed approach achieves higher accuracy than the standalone offline long
short term memory network and five other online algorithms. Moreover, the time to learn from new
samples is only a fraction of the time needed to re-train the offline model.

1. Introduction

Energy production is the largest source of greenhouse
gas emissions and about two-thirds of global greenhouse gas
emissions are the result of burning fossil fuels for energy
production [1]. The environmental impact of energy pro-
duction is expected to become even more exacerbated as it is
estimated that world energy consumption will grow by 28%
between 2015 and 2040 [2]. Therefore, efficient energy man-
agement will play a crucial role in combating environmental
issues and reducing the side effects of energy production.
Improved energy management also leads to financial bene-
fits for the end consumers in terms of reduced energy costs
and associated operating expenses.

Load forecasting has been attracting remarkable research
and industry interest because of its role in infrastructure de-
velopment (generation and distribution), operation and man-
agement of the supply, and energy budget planning. For ex-
ample, a 1% improvement in a 6 hour ahead wind genera-
tion forecast leads to savings of 972 thousand dollars over
six months [3].

On the other hand, the expansion of smart meters and
other sensors has enabled measuring and recording energy
consumption on a large scale. Utility companies have been
extensively installing smart meters: in 2016, there were over
70 million smart meters in the USA and over 96 million in
China, and the number is continuously growing [4]. This
large smart meter data created a backbone for new deeper
insights into energy usage patterns and forged new opportu-

*Corresponding author
Email address: kgroling@uwo.ca (K. Grolinger)
ORCID(S): 0000-0001-8079-7117 (M.N. Fekri); 0000-0003-0062-8212
(K.G.)

nities in hourly load forecasting for individual buildings and
even individual homes.

In sensor-based forecasting, historical data from smart
meters or other sensors are used in combination with meteo-
rological data to infer future energy consumption. One way
of doing this is with Machine Learning (ML) techniques; ex-
amples include Auto Regressive Moving Average (ARIMA)
[5], Bayesian approaches [6], and Support Vector Regres-
sion (SVR) [7]. It has been shown that the performance of
these shallow models degrades in the presence of highly-
varying and non-smooth target signals such as those present
in load forecasting [8]. Furthermore, shallow models work
well when the training dataset is relatively small while the
proliferation of sensors is driving us into the big data era
[8].

In recent years, Deep Learning (DL), a sub-field of ML,
has been gaining popularity because it can learn feature rep-
resentations, it has strong generalization capabilities, and it
can model complex relationships commonly present in big
data. DL employs representation learning to automatically
discover relevant features needed to perform a specific task.
Although various DL algorithms such as feed forward neu-
ral networks and convolutional neural networks have been
applied for energy forecasting, these approaches are not de-
signed to capture time dependencies as they take only the
current input to calculate the output. In contrast, Recurrent
Neural Networks (RNNs), a class of DL models, are created
to model temporal behavior: the output at a time step ¢ de-
pends on the current input and all past inputs. Consequently,
RNNSs have demonstrated great surceases in load forecasting
[9, 10] [10].

DL techniques, especially RNNs, greatly advanced load

MN Fekri et al.: Preprint submitted to Elsevier

DOI:10.1016/j.apenergy.2020.116177

Page 1 of 20

mailto:kgroling@uwo.ca
kgrol
Text Box
DOI:10.1016/j.apenergy.2020.116177

Online Adaptive Recurrent Neural Network for Load Forecasting

forecasting and improved its accuracy; however, several fore-
casting challenges remain: (1) The conventional offline mod-
els are trained once by repeatedly passing all training data
through the model; one pass is referred to as epoch. Then,
the model is used to infer future loads. This approach is
missing out on the information that new data could provide.
Of course, the model can be re-trained occasionally using
all old data together with new data, but this is very com-
putationally expensive as each time, the model is re-trained
from scratch. Ideally, the model would learn from new data
as they become available, without the need to re-train or to
retain old data. (2) The data distributions in energy domain
change over time, producing what is known as concept drift
[11]: for example, installing high-efficiency equipment will
reduce energy consumption. In the presence of concept drift,
conventional machine learning models experience weak and
degrading predictive performance [12].

A different approach in terms of architecture and learn-
ing is needed in order to embrace the changes in data, enable
the model to adapt itself quickly and capture the new reveal-
ing patterns. Online learning has the potential to address
these requirements as online models learn from data streams
by updating the model as data become available. The data
can be discarded after they are consumed by the model. The
online models dynamically adapt to new patterns in the data
making them well suited for load forecasting.

Consequently, this paper proposes Online Adaptive RNN,
a load forecasting approach capable of continuously learn-
ing from new data as they arrive. The model adopts online
preprocessing techniques to prepare the data for the RNN
model, which is responsible for capturing time dependen-
cies. The performance is tracked, and if it starts to deterio-
rate, a Bayesian tuning mechanism is activated to adjust the
model hyperparameters (learning rates) and improve the ac-
curacy. The buffering mechanism is employed to handle es-
pecially difficult patterns and to improve forecasting in the
presence of concept drift. Results show that the proposed
Online Adaptive RNN outperforms other online models as
well as the offline RNN.

The proposed Online Adaptive RNN is better suited for
the real-world applications of energy forecasting than the tra-
ditional batch learning because it does not require periodi-
cal re-training and adapts to new patterns quickly. In prac-
tice, energy consumption patterns change, and the proposed
approach continuously learns from these newly arriving pat-
terns. Moreover, as the re-training on the complete data set is
not required, Online Adaptive RNN reduces computational
time in comparison to the batch learning approaches.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the related works, Section 3 discusses the
background, Section 4 describes the proposed approach, Sec-
tion 6 explains the experiments and corresponding results,
and finally Section 7 concludes the paper.

2. Related Work

This section first reviews recent conventional (offline)
ML work for load forecasting and then discusses online ML.

2.1. Conventional Load Forecasting Models
Many approaches have been introduced for energy fore-

casting problems (e.g., physics, statistics, and machine learning-

based) [13] but this section focuses on ML-based models as
our work belongs to this category.

Alobaidi et al. [14] proposed an ensemble-based frame-
work to predict day ahead average household consumption.
The framework employs Artificial Neural Networks (ANNs)
as the base learners and combines them using multiple linear
regression. Their results showed improvement in the gener-
alization ability compared to stand-alone ANN and ANN-
based bagging ensemble. Singh ef al. [5] introduced a hy-
brid ARIMA-ANN technique for wind power forecasting.
The hybrid approach achieved better accuracy than the two
models, ARIMA and ANN, working separately. Grolinger
et al. [15] introduced a new approach based on local learn-
ing with SVR for energy prediction in the big data domain.
These authors increased prediction accuracy while reducing
computational complexity and training time.

Deep learning algorithms have been popular in load fore-
casting because of their ability to capture complex patterns
in data; specifically, recurrent neural network architectures
have been frequently used as they can capture temporal de-
pendencies [16, 10] [16]. Gao et al. [17] proposed a short-
term electricity load forecasting based on an Empirical Mode
Decomposition Gated Recurrent Unit with Feature Selection
(EMD-GRU-FS). The original series is decomposed into sub-
series with empirical mode decomposition and the correla-
tion between sub-series and the original series is determined
with the Pearson correlation. Finally, the GRU network is
trained with the original series and the sub-series with a high
correlation. Bouktif et al. [18] paired standard Long-Short
Term Memory (LSTM) with a Genetic Algorithm (GA) for
short to medium term aggregate load forecasting. In their
approach, LSTM carries out the forecasting while GA is re-
sponsible for finding the optimal time lags and the number
of layers for LSTM.

Han et al. [19] proposed a prediction model that com-
bines copula function and LSTM network for the estimation
of mid-to-long term wind and photovoltaic power genera-
tion. First, the copula function is used to extract the key me-
teorological factors that affect wind and photovoltaic power
generation. Then, joint prediction models of wind and pho-
tovoltaic power generation based on LSTM performed the
forecasting. Sehovac et al. [10] proposed Sequence to Se-
quence Recurrent Neural Network (S2S RNN) with attention
for electrical load forecasting. Their approach adapts the se-
quence to sequence architecture from language translation to
improve time modeling by combining two RNNs: encoder
and decoder. The attention mechanism eases the connection
between the encoder and the decoder.

Fan et al. [9] examined various deep recurrent neural
network strategies for short-term load forecasting. Their re-

MN Fekri et al.: Preprint submitted to Elsevier

Page 2 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

sults confirmed that RNNs are well suited for short-term
forecasting and demonstrated that LSTM cells perform bet-
ter than vanilla RNNs. Somu ez al. [20] also proposed a so-
lution based on LSTM: they improved the forecasting accu-
racy by tuning LSTM hyperparameters with Improved Sine
Cosine Optimization Algorithm (ISCOA).

Although the reviewed models have shown great results
in load forecasting, they are all offline approaches: they are
trained with a static data set and, to learn from new data, they
need to be re-trained. However, the energy consumption data
are arriving continuously and new data may have different
patterns. To acquire knowledge from new data without re-
training, our study proposes an online approach where the
model adapts itself to newly arriving data.

2.2. Online Machine Learning

Online machine learning approaches can be classified
into three main categories: optimization-based, model-based,
and hybrid approaches. Optimization-based approaches are
various extensions of the gradient descent algorithm to en-
able updates of the model’s parameters as new data become
available without changing the model architecture. Defazio
et al. [21] introduced SAGA, an incremental gradient-based
optimization approach with fast linear convergence rates for
non-strongly convex problems. Johnson and Zhang [22] pro-
posed stochastic variance reduced gradient (SVRG), a vari-
ance reduction method for Stochastic Gradient Descent (SGD).
At each step, SVRG keeps a version of estimated parameters
and the average gradient and then uses those values in the
update rule to reduce the variance of SGD. This approach
achieves fast convergence rates for smooth and strongly con-
vex functions. Stream SAGA (STRSAGA) [23] and Stream-
ing SVRG (SSVRG) [24] are extensions of SAGA and SVRG
with improved performance.

The model-based approaches modify the model architec-
ture and/or change the number of parameters to achieve a
gradually updated model with faster convergence. Sanchez-
Medina et al. [25] proposed adaptive incremental linear re-
gression for wind forecasting. The model learns gradually as
new observations arrive and, when concept drift is detected,
the older observations are removed from the model. As this
approach is grounded on linear regression, this approach is
not suited for non-linear problems such as load forecasting.
Vexler et al. [26] devised a real-time architecture for en-
ergy consumption forecasting by combining LSTM and on-
line density estimation with Hoeffding trees. Liang et al
[27] presented an LSTM-based approach for energy forecast-
ing in the smart grid with the model located at the network
edge. As new data arrive, the model is continually trained on
the small subsets of arriving data reducing computation and
training time. Spiral RNN [28] is an RNN architecture that
combines a trainable hidden recurrent layer with the Echo
State Neural Network (ESN) for online learning. In exper-
iments, Spiral RNN demonstrated stable performance and
fast convergence.

The hybrid models combine techniques from optimiza-
tion and model-based solutions; they benefit from continu-

ous parameter updates, a modified architecture, and various
pre- and post-processing techniques, which leads to a sim-
pler model and faster convergence. Guo et al. [29] presented
Weighted Gradient Learning (WG-Learning) for RNNs to
learn from online time series in the presence of anomalies
and change points. The local properties of the newly avail-
able time series data are exploited to weight the gradients.
Madireddy et al. [30] proposed a hybrid model combining
the two components: an online Bayesian change point de-
tection method to detect the location of the concept drift and
a moment-matching transformation technique to convert the
data collected before the concept drift to be useful for re-
training after the concept drift. Fields et al. [31] investigated
the sensitivity of various neural networks to concept drift:
flavors of RNN, LSTM, and GRU, were less sensitive than
the other types of NNs. Ceci et al. [32] combined the online
adaptive training, entropy-based error measure, and spatial
autocorrelation for wind power generation forecasting.

Our work compares the proposed Online Adaptive RNN
with five common online models: Multi-Layer perceptron
(MLP), linear regression, Passive-Aggressive (PA) algorithm,
online bagging, and K-Nearest Neighbors (KNN). (1) MLP
Regressor [33] learns by incrementally fitting the MLP on
batches of samples with SGD as the optimizer. (2) Online
linear regression [34] updates the regression weights with
SGD in each learning step. (3) Online PA algorithms [35]
are a family of online margin-based algorithms: similar to
SVR, they aim to maximize the margin. If arriving data are
from the same distribution, the algorithm will keep learning,
but if the data distribution changes, the weights will slowly
forget the previous distribution and learn the new one. (4)
The online version of bagging [36] process each data point as
it arrives without a need to store it or reprocess while main-
taining the current state of the model. (5) The online KNN
for regression is a combination of a conventional KNN re-
gression algorithm and the weighted sliding windows.

Reviewed optimization-based approaches are well suited
for smooth and convex problems. However, neural network
training is a non-convex optimization problem, and the opti-
mizer can get stuck in a spurious local optimum, especially
when dealing with complex models such as those common
in RNNs [37]. Additionally, these models are not designed
to handle concept drift [23].

Model-based approaches also do not consider concept
drift except for adaptive incremental linear regression [25]
which can handle concept drift but is suitable only for lin-
ear problems. As non-linearities are present in energy con-
sumption data, adaptive incremental linear regression is not
suitable for load forecasting. In contrast, our solution is non-
linear and can handle concept drift.

Reviewed approaches from the hybrid category deal with
concept drift, but most are in very different domains such as
application performance modeling [30] and network traffic
[29]. In contrast, our study specifically considers residential
load forecasting for individual households which is a difficult
forecasting problem due to high load variability and frequent
concept drift. Also, in research studies, concept drift is often

MN Fekri et al.: Preprint submitted to Elsevier

Page 3 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

simulated [31] while we use real-world data.

Online learning approaches proposed by Vexler et al.
[26] and Liang et al. [27] focus on load forecasting. They
handle concept drift by transforming the data before feeding
the model while our work adjusts the model by tuning the
model’s parameters as needed. Our online model tuning in-
creases accuracy and improves concept drift handling. The
work of Ceci et al. [32] is also in the energy domain: to
achieve the model updates, they fully re-train the neural net-
work at the end of each day using all historical data. In con-
trast, our work updates the model as new data arrive without
re-training and without the need to retain historical data.

3. Background

This section introduces RNNSs, recurrent batch normal-
ization, and hyperparameter optimization.

3.1. Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a type of arti-
ficial neural network designed for sequential data such as
those found in language translation or load forecasting [38].
The recurrent connection to the same neurons in the previous
time step together with their internal state (memory) make
RNNs well suited for modeling temporal behavior. RNNs
are mainly trained using backpropagation through time; how-
ever, for large sequences, this can lead to the vanishing gradi-
ent problem causing the NN to forget older information. The
Long Short Term Memory (LSTM) networks were designed
to overcome this problem, and, consequently, they are able
to maintain information for longer periods and make better
predictions.

As illustrated in Fig. 1, the LSTM cell contains a cell
state c, a hidden state A, , an update step g, and three gates:
input i, forget f, and output 0. LSTM computation at time ¢
is given as follows:

iy =o(Wyx, + by + Wyihi_y + bp,) (1)
ft :O'(foxt+bxf+thht_1 +b/’lf) (1b)
0 = (Wxaxt +by+ Whoht—l + bho) (Ic)

ht-l %

X

1

Figure 1: The LSTM cell

¢ =[Oy +i, Otanh(Wy,x, + b,
+ Whghi—1 + bpg)
h, = o, © tanh(c,_;) (le)

(1d)

Here, o is the sigmoid activation function, tanh is the hyper-
bolic tanh activation function, and © represents elementwise
multiplication. The W ’s and W),’s are the input-hidden and
hidden-hidden weights, respectively, and b,’s and b;,” are the
corresponding biases.

The LSTM cells are responsible for learning dependen-
cies among the elements in the input sequence. The gates
within the cell control how data flow through the cell and
regulate which data should be memorized and which can be
forgotten. This memory structure makes LSTMs success-
ful in energy forecasting[10]; however, traditional LSTMs
require offline training.

3.2. Recurrent Batch Normalization

Normalizing the input data for deep neural networks helps
the models converge faster. However, this only impacts the
input to the first layer while all other layers receive inputs
from the previous layers. The distribution of network activa-
tions changes during training due to the changes in network
parameters. These changes alter the distribution of inputs to
the inner layers and slow down the training. This problem
is known as internal covariate shift [39]. Batch normaliza-
tion is a mechanism in mini-batch training, which aims to
normalize the inputs to inner layers in order to fight the co-
variate shift problem [39].

Considering a mini-batch B of m samples, the batch nor-
malization is applied to each input dimension x; indepen-
dently. The batch normalizing transform starts as follows:

X;i — Hp

X, = —— 2)
\/o%+€

_ 1 m 2 _ 1 m 2
where pup = — z.f=1 x; and o = ;.Eizl(x,» — up)” are
the mean and variance for that dimension, and ¢ is a small
constant added for stability.

Next, the input is scaled and shifted as follows:

Vi=rX;+p 3)

where y and f are parameters learned during training along
with other parameters of the network.

Cooijmans et al. [40] proposed a reparameterization of
LSTM that brings the benefits of batch normalization to the
recurrent neural networks. They demonstrated that the Batch-
Normalized RNNs (BNRNNs) lead to faster convergence
and improved generalization. The batch-normalizing trans-
form BN(- ;y,p) is introduced into the LSTM as follows:

i
"|= BNW,h,_i:vn: Br) + BNW. X573, Br) (4)

MN Fekri et al.: Preprint submitted to Elsevier

Page 4 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

¢, =o0(f,)©c_; +o0(i,) ©tanh(g,) 5)
h, = o(0;) © tanh(BN(c;; 7., P.)) (6)

where BN(-) is the transformation introduced with equations
(2) and (3). The recurrent W), h,_; and the input W, x, terms
are normalized separately. To preserve LSTM dynamics, the
normalization is not applied to the cell update ¢,. During
training, the mean and the variance are calculated indepen-
dently for each batch, and at test time, the average of the
estimates over the training set is used.

3.3. Hyperparameter Optimization

Hyperparameter optimization aims to find a combination
of hyperparameters that leads to the optimal ML model per-
formance. It has been shown that tuning hyperparameters
plays a major role in the ML model accuracy [41]. In gen-
eral, the hyperparameter optimization can be represented in
an equation form as:

Xbest = argminf(X)lX e X (7)

where f(x) represents a score that should be minimized, the
X is the domain of the hyperparameter values, and x,,,; is a
combination of hyperparameters that yields the lowest value
of the score f(x).

Finding optimal hyperparameters manually is challeng-
ing and computationally expensive, especially in a case of
complex models such as neural networks. Grid search and
random search are slightly better, but they are unaware of the
model’s past evaluations, which results in long tuning time
and often leads to a sub-optimal set of hyperparameters.

In contrast to those approaches, Bayesian optimization
[42] (BO) keeps track of the past evaluations to form a prob-
abilistic model for mapping hyperparameters to a probability
P of an objective function score:

P(score|hyperparameters) ®)

This probability model is referred to as the “surrogate”
for the objective function. The surrogate is easier to optimize
than the actual objective function; thus, BO searches for hy-
perparameters using the surrogate. BO process is described
in Algorithm 1. First, the probabilistic model P,,,,,; is ini-
tialized with a Gaussian process prior on f() [42]. Then,
in each iteration, the best set x,,,, is found for the current
probabilistic model P,,,,,;, the model score for that set x;,,;

is determined, and the P,,,;,; is updated.

Algorithm 1 Bayesian Hyperparameter Optimization

: Pmodel < Surrogate(f{x))
Xpest < I/ll
while i < maxIterations do
Xpest < Pmodel(score,hyperparameters)

score < f(Xposr)
Pmodel < Update(Pmodel, score)

AN A T

Similar to the described Gaussian process-based opti-
mization, the Tree-structured Parzen Estimator (TPE) also
constructs models to approximate the performance of hy-
perparameters based on historical measurements, and then
subsequently chooses the new hyperparameters to test based
on this approximate model [42]. However, while Gaussian
approach estimates the probabilities directly, TPE estimates
them indirectly. Since TPE achieved better accuracy than
the Gaussian process-based BO, TPE is used in our study.

4. Online Adaptive RNN

This section presents Online Adaptive RNN, a load fore-
casting system that dynamically learns from continuously ar-
riving data and adapts to new patterns in the data. The ap-
proach uses batch-normalized RNN (BNRNN) as the base
learner and combines Bayesian optimization, performance
monitoring, and buffering to tune the BNRNN model on the
fly. Online Adaptive RNN is depicted in Fig. 2 and Algo-
rithm 2, while details of each component are described in
the following subsections.

4 Tuning I

Memorizing .| Bayesian

Parameters Tuning
Restoring
Parameters

Ve Buffering BNRNN ™\

error larger
than

Model
Training

Preprocessing
Online Normalization
L Sliding Window

CO OO0 C COOOO O

P

]

Data

Figure 2: Online Adaptive RNN: components and the process-
ing flow

MN Fekri et al.: Preprint submitted to Elsevier

Page 5 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

Algorithm 2 Online Adaptive RNN

I: Input : Data : D,Hyperparameter Search Space
S, Early Stopping Size : A, MaxEpochs . N
// Initialize the weights w and learning rate #
. Initialization : w = wy,n = n,
: while data are available do
B <« SlidingWindow(D, batch size, window size)
B < Get data from Buffer
/I Merge current batch and buffer data
Q< BU By
7: Oy < Incremental MinM ax N ormalization(Q)
// Make prediction with BNRNN
Predicted < BNRNN(Qpy,w, 1)
Predicted < De-normalize(Predicted)
// Calculate MAE and compare with threshold
10: if M AE(Predicted,,,,, Q) > tuningT hresh then
11: Store current batch B in the Buffer
// Calculate IMAE, b is the current batch index

IMAE, |+MAE,

12: IMAE, = -
13: if IMAE > buf feringT hresh then
14: Memorize Weights

// Tune learning rate 7
15: n < BOw;,_;,S,Optimizer, Q)
16: Restore Weights

17: fort=1,2,3,...., N do
// Train with Q 5 and new learning rate #

18: w; < Train(Qpn, w,_1,1)

19: loss, <~ TrainLoss(w,,n)

20: if exp(loss, — loss;_) > u then //Check trend
21: Break

4.1. Prepossessing Module

As over time data from smart meters or other sensors be-
come available, they are passed to the preprocessing module
that transforms them into a suitable form for RNNs. These
continuously arriving data are represented in line 3, Algo-
rithm Algorithm 2. The preprocessing consists of two com-
ponents: the sliding window and online normalization.

4.1.1. Sliding Window

The sliding window technique (Algorithm 2, line 4) is
illustrated in Fig 3. The first W readings correspond to the
first window and make the first training sample. Then, the
window slides for .S steps, and the readings from the time
step S to .S + W make the second sample and so on. Each
sample is a matrix of dimension W X F, where W is the
window length and F is the number of features. With S<W,
there is an overlap between the sliding windows, and a read-
ing from a single time step belongs to multiple windows.

Next, bn consecutive samples generated by the sliding
windows technique are placed in a group referred to as the
batch. Once the batch is created, the data move through the
remaining modules of Online Adaptive RNN one batch at
the time and the learning takes place one batch at the time.

4.1.2. Normalization

Normalization is a standard preprocessing technique for
bringing the values of all features to a common scale with the
objective of reducing large feature dominance and improving
convergence. Min-Max normalization is a strategy which
linearly transforms X to X' as follows:

, x — Min(x)
= Max(x) — Min(x)

®

where x is the original feature value, Min(x) and Max(x) are
the minimum and maximum of that feature, and x’ is the
normalized value.

In offline learning, all training data are available before
the training starts, hence, the normalization can be performed
using minimum and maximum values of the complete train-
ing set. In the online setting, data must be processed as they
arrive and the compete training set is not available as the
training starts; thus, minimum and maximum values cannot
be calculated in the same way.

To address this challenge, the proposed approach carries
out Incremental Min-Max Normalization. In the main On-
line Adaptive RNN Algorithm 2, line 7 performs this nor-
malization while the details are presented in Algorithm 3.
The maximum and minimum values of the features from the
beginning until the current batch are tracked with global M ax
and global M in. For each new batch, the procedure finds the
max and min values for that batch as shown in Algorithm
3, lines 2 and 3. If the batch max is larger than the cur-
rent global maximum global M ax (Algorithm 3, line 4), the
global M ax is updated (line 5). The same process happens
for global Min, lines 6 and 7. Finally, the values from the
current batch are normalized using the current global M ax
and global Min: Algorithm 3, line 8.

Sliding
window Sliding window
stride length

Figure 3: Sliding window technique

MN Fekri et al.: Preprint submitted to Elsevier

Page 6 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

Algorithm 3 Incremental Min-Max Normalization

1: while next batch B is available do
2 max . Maximum value for B
3 min : Minimum value for B
4 if max > global M ax then
5: global M ax = max
6 if min < global M in then
7 global Min = min
8 Normalized_B =
MinM axN ormal(B, global M ax, global M in)

4.2. Batch Normalized RNN

The RNN was selected as the core learner because of its
ability to model temporal dependencies present in the load
data. To handle internal covariate shift and reduce training
time, batch normalization described in section 3.2 is used.
Batch normalization also reduces sensitivity to changes in
the learning rate and, consequently, assists the tuning mod-
ule in dynamically adjusting the learning rate to better cap-
ture new data. The BNRNN module consists of three com-
ponents: prediction, online de-normalization, and model train-
ing.

4.2.1. Prediction

When a new batch is preprocessed and passed to the BN-
RNN, the buffer is checked for the data availability (Algo-
rithm 2, line 5). If there are batches in the buffer, those
batches are merged with the current batch (line 6) and nor-
malized (line 7). Next, BNRNN makes the predictions as
shown in Algorithm 2, line 8. For each sample (window of
length W) within a single batch, the model predicts the load
for the next p time steps. At the start of the online learning
with the first batch, the buffer is empty and the predictions
are poor as the BNRNN is just initialized and will start to
learn from this first batch.

4.2.2. Online de-normalization

As the data are normalized before being passed to the
BNRNN, the outputs of the BNRNN model, electricity load
values, are between 0 and 1. These predicted load values
must be transformed back to the original domain to obtain
the final predicted load and enable the comparison with the
actual values for error evaluation in the following steps. The
BNRNN outputs are de-normalized (Algorithm 2 line 9) as
follows:

y' =(PredictedV alue * (global M ax[load]

10
— global Min[load])) + global M in[load] (10)

where)’ is the de-normalized output, PredictedV alue is
the output of the BNRNN model, global Min[load] and
globalMin[load] are the global maximum and minimum
values for the load feature, which were determined during
the online normalization step (Section 4.1.2). These de-
normalized values are passed to the tuning module for fur-
ther processing.

4.2.3. Model Training

The model is always trained only on the current batch
and the batches from the buffer. When the batch is consumed
once for training, it is discarded unless the buffering module
determines that it should be stored in the buffer. As indicated
in Algorithm 2, line 17, the training is repeated for up to N
epochs. The model is trained with the learning rate obtained
from the tuning module (Algorithm 2, line 18): this train-
ing results in updated weights w. The training loss for the
current epoch is determined in line 19, Algorithm 2.

Next, the accuracy trend is examined (Algorithm 2, line
20) to determine if the training should continue. This pre-
vents the algorithm from overfitting and reduces the train-
ing time. As the training here happens only with the cur-
rent batch and any batches from the buffer, it is important
to stop the training before the model fits the current data
too closely and forgets the patterns previously learned from
other batches. To do this, the loss at the current epoch 7 is
compared to the loss at epoch t — A. If the exponential func-
tion of this loss difference between epochs ¢ and t — A is
greater then the small constant u, the training stops (Algo-
rithm 2, line 20).

4.3. Buffering Module

The purpose of the buffering module is to identify and
temporally store batches, where the model could not perform
well. This module helps Online Adaptive RNN in terms
of generalization and impedes it from being biased towards
more repetitive and easy to learn batches. As the system em-
ploys online learning, the model has only one pass over each
batch and, with the arrival of new batches, the model per-
formance on less repetitive patterns degrades. The buffering
module assists with this by temporally storing challenging
batches. As the buffer only stores a small number of batches
at a time, it is maintained in the memory.

This module is also important in the presence of concept
drift as it enables the model to repeatedly see the batches
with drift; consequently, the model accuracy in presence of
concept drift is improved. Note that the knowledge is re-
tained in the weights of the neural network, and the buffer
only assists the model by enabling it to see difficult patterns
more than once.

The buffering mechanism starts with determining the Mean
Absolute Error (MAE) for the current batch: the actual load
values from the current batch are compared with the predic-
tion values obtained in the previous step (Algorithm 2, line
10). If the MAE is higher than the buffering threshold, the
batch is considered challenging and thus, the batch data with
the corresponding MAE are stored in the buffer (Algorithm
2, line 11).

The buffer size is limited and with the presence of con-
cept drift in the data, the buffer is expected to fill up quickly.
If the buffer is full, the batch in the buffer with the lowest
error is replaced by the incoming batch. This ensures that
the BNRNN sees the challenging batches in several training
iterations.

Repeatedly training the model on the batches that have

MN Fekri et al.: Preprint submitted to Elsevier

Page 7 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

been in the buffer for a long time may cause performance
deterioration as an old batch may become irrelevant due to
concept drift or other changes in the data. Therefore, batches
are removed from the buffer upon expiration of the preset
lifespan.

4.4. Tuning Module

The tuning module is a crucial element of the proposed
Online Adaptive RNN as it adapts models hyperparameters
to new data. As already mentioned, well selected hyper-
parameters are essential for achieving highly accurate deep
learning models; however, offline hyperparameter tuning re-
quires several passes over a complete training dataset and,
therefore, cannot be applied in the online setting. Neverthe-
less, due to drastic changes in load data including concept
drifts, the hyperparameters still need to be tuned as new data
arrive.

For online learning, tuning structural parameters such as
the number of layers and the hidden layer size is not suitable
because such changes add new network weights and, thus,
require complete re-training. However, other parameters,
such as the learning rate and batch size, do not require re-
training since they do not change the architecture and, there-
fore, the weights representing the acquired knowledge can
be re-used after tuning.

Tuning after each sample or even after each batch is com-
putationally expensive and time consuming. Consequently,
Online Adaptive RNN uses Incremental MAE (IMAE) to de-
termine if the model needs to be tuned. The IMAE Error
is the average error over the batches since the beginning of
training and is updated as new batches arrive. It is calculated
as follows:

IMAE, |+ MAE,

IMAE, = 5 (11)
where b is the current batch index, M AE,, is the MAE error
for the batch b, and IM AE,_, is the IMEA after the batch
b — 1. This evaluation occurs after the actual load value for
batch b are available.

As shown in Fig. 2, if the IMAE is not over the tun-
ing threshold (Algorithm 2, line 13), the BNRNN is trained
with the current batch without the learning rate change. If
the IMAE is over the tuning threshold (Algorithm 2, line
13), the Bayesian optimizer (BO) is activated to find a new
learning rate for the model (Algorithm 2, lines 14 to 16).
Here only the learning rate is considered for the tuning, as it
has been shown that the learning rate is the most important
RNN parameter [43]; however, other non-structural param-
eters could be tuned using the same approach.

If tuning is required, as illustrated in Fig. 2, the weights
(parameters) are first preserved (Algorithm 2, line 14) so that
they can be restored after the BO process. In offline learn-
ing, this preserving is not needed as the optimizer can use all
data in all iterations: the BO initializes the model weights
with random values every time it evaluates the model hy-
perparameters causing the model to forget what it has previ-
ously learned. In offline learning, this is not a problem as the

model will re-learn in the next pass over the same data. In
online learning, the model has the access only to a small data
segments (batches) at a time, and as parameters are represen-
tations of what the model has learned, parameters cannot be
forgotten. Because weights represent what the model has
learned so far, they are memorized in the parameter preser-
vation step so that they can be restored after the BO changes
them during tuning.

Next, Bayesian learning is carried with the current batch
and batches from the buffer to find the new learning rate (Al-
gorithm 2, line 15). When the new learning rate is deter-
mined, the weights are restored to their values before BO
(Algorithm 2, line 16). Finally, the new learning rate is
passed to the BNRNN, and the training is carried out with
the new learning rate and the current batch. Note that the
old batches, except for those from the buffer, are not reused.
This is possible because the knowledge from old buffers is
contained in the restored weights. With the next batch, this
newly trained model is used for prediction.

5. Evaluation Methodology

The metrics and the design of experiments for assessing
the quality of online learning models are more challenging
than those for the offline models because (1) the data are con-
tinuously arriving, (2) models evolve over time rather than
being static, and (3) the data may be from non-stationary
distributions instead of stationary ones (concept drift) [44].
Two possible ways of evaluating online models are holdout
and prequential methodologies.

Holdout [44] for online learning is a periodic evalua-
tion method in which a static test set is created from unseen
samples throughout data stream as illustrated in Fig. 4-a.
The model is trained on bathes or samples as they arrive
and evaluated on the test set at regular intervals expressed

‘ Test Set ‘ ‘ Test Set ‘ ‘ Test Set ‘ ‘ Test Set ‘

Batch 0 Batch 1 Batch 2

Batch N
* Test then Train

Batch 0 Batch 1 Batch 2
Test then Train Test then Train Test then Train

Figure 4: Online evaluation: a) holdout evaluation b) prequen-
tial evaluation.

MN Fekri et al.: Preprint submitted to Elsevier

Page 8 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

in terms of time, batches, or samples. For example, after
every b batches, the model is evaluated on the test set. The
holdout error H, at the time step i, for the current number
of the test set samples M is calculated as:

M

M
H() = 22 Y Lo 90 = 2 3 (12)
k=1 k=1

where y, is the target value, J, is the predicted value, L is a
loss function, and e, is the error.

The main drawback of the holdout method comes from
the concept drift presence in the data [45]. If the data con-
tains time-evolving concepts, using a static test set to evalu-
ate the model will not provide a good error estimate as the
error will change if a different test set is selected.

Predictive Sequential (Prequential) [44] evaluation, as
illustrated in Fig. 4-b, is an interleaved test-then-train method
in which each sample serves two purposes: test and train pur-
poses. As a sample arrives, the model is first tested with this
new sample as the input and the error is calculated. Next,
the model is trained on this sample. The prequential error
P,, at time i, is calculated as:

i

P =2 Y L0ed =5 e (13)
k=1

k=1

where y;, y;, and L are the same as in Equation 12. Note
that this is the same as Equation 12 for holdout error; the only
difference is that here the summation is over all samples up to
sample i, and in a holdout, it only includes the sample from
the test set. By including all samples in the error evaluation,
the prequential approach avoids test set selection bias.

The prequential approach has the advantage over holdout
as it does not depend on the test set selection, and it provides
more reasonable error estimates in the presence of concept
drift; therefore, we use it in this paper for a comparison of
the proposed Online Adaptive RNN with other online ap-
proaches.

However, this approach is not suitable for comparing on-
line and offline learning algorithms. The prequential evalu-
ation involves interleaved test-then-train employing all data
points for both train and test purposes, which is not appli-
cable for offline learning when training is repeated several
times over the whole training data set. Offline learning eval-
uation requires a separation between data used for training
and testing. The holdout approach could be used for offline
approaches, but it is not well suited for online approach-
es, especially in the presence of concept drift, as already
mentioned. Consequently, to compare online and offline ap-
proaches, we propose Prequential-Holdout.

Prequential-Holdout technique combines offline hold-
out and online prequential techniques for the comparison of
online and offline models as shown in Fig. 5. The evaluation
process consists of the following steps:

e The dataset is divided into the training set and test set.
Last k samples belong to the test set and the rest make
up the training set.

e The online model is trained on the train set by one
pass over the data and is evaluated on the test set by
applying the prequential method within the test set.

e The offline model is evaluated using a traditional hold-
out in which the model is trained on the training set
and evaluated on the test set.

This way, both online and offline approaches are evalu-
ated on the same samples. As the offline approaches have
the advantage of doing several passes over the training set,
the online approaches may not be able to achieve comparable
accuracy as they only have one pass over the training data.
However, the online approaches continue to learn on the test
set and, thus, should be better if concept drift is present in
the test portion of the data.

To compare online models, we use the prequential tech-
nique and to compare between Online Adaptive RNN and
offline models, we use prequential-holdout technique. The
metrics applied with both techniques are the Mean Square
Error (MSE) and the Mean Absolute Error (MAE):

N
1 .
MSE = — ¥ (v = 3)° (14)
=1
1 N
MAE=NZ|y,—J?,| (15)

=1

where N is the number of sampled in the test set, and y,,
and y, are the same as in Equation 12.

MN Fekri et al.: Preprint submitted to Elsevier

| G mees]
Training Set Test Set
BN 4
e N a
l A \
I | | J*‘ \ | |
AL et AnA Nk IV g Al ol
O A T AV A
‘ \‘m VIVIVY L Y 1AL WA LY
[Py ‘w /ISR T
| o /L
| |
H,_) H,_J
Batch Batch Batch Batch | Batch Batch
0 1 2 N 0 (M)
C . g -)
Train Test
Offline Models
Figure 5: Prequential-Holdout evaluation.
Page 9 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

6. Evaluation

This section first introduces the data set and presents the
preliminary analysis. Next, the proposed Online Adaptive
RNN is compared with offline LSTM and with five other
online learning algorithms. Then, the impact of different
modules in Online Adaptive RNN is examined, the effect
or the buffer size is evaluated, and training time is analyzed.
Finally, findings are discussed.

6.1. Dataset and Preliminary Analysis

The proposed approach was evaluated on the real-world
data from five residential consumers provided by London
Hydro, a local electrical distribution utility involved with
this project. Data was obtained through Green Button Con-
nect My Data (CMD) environment, the first cloud-based CDM
platform London Hydro developed to provide secured data
sharing with the customer’s consent. Each household dataset
contained three years of smart meter data in one-hour inter-
vals for a total of 25,559 readings. Each reading includes en-
ergy consumption and the corresponding date and time. As
this data from smart is also used for billing, the high qual-
ity is expected. Meteorological information was added in-
cluding temperature, wind speed and direction, pressure, and
humidity. To assist with handling weekly and daily patterns,
additional features were extracted from reading date/time in-
cluding the day of the week and hour of the day. After these
additions, the data set consisted of 12 features including five

meteorological (temperature, wind speed, wind direction, pres-

sure, humidity), six temporal (month, day of the year, hour
of the day, week number, day of the week, season), and the
target feature hourly load.

To examine the temporal characteristics of the datasets,
two preliminary analyses were conducted: stationarity and
concept drift analysis.

6.1.1. Stationarity analysis

A non-stationary time series changes properties over time
and, therefore, imposes difficulties for load forecasting. To
evaluate if the series are stationary, Augmented Dickey Fuller
(ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests
were conducted.

ADF determines if the series is stationary or not by ob-
serving the presence of a unit root. The null hypothesis for
this test is: The series has a unit root - it is non-stationary. In
the ADF test, if the test statistic value is less than the critical
value (CV), the null hypothesis is rejected, which means that
the series is stationary.

KPSS determines if a time series is stationary (or not)
around a deterministic trend (trend stationery). The null hy-
pothesis is: The series is trend stationary. In the KPSS test,
if the test statistic is greater than the critical value, the null
hypothesis is rejected indicating that the series is not station-
ary.

Table 1 shows the ADF and KPSS test results for the
load from the five homes. The ADF test statistics are lower
than the critical values for all home and all significance lev-
els a, indicating that the series are stationary. The KPSS

test statistics for all home are greater than the critical val-
ues, indicating that the series are non-stationary. The ADT
test only checks for one type of non-stationarity, a unit root
non-stationarity, which is a possible reason for different re-
sults from the two tests. Nevertheless, the possible presence
of non-stationarity makes the modeling more difficult and
imposes challenges on load forecasting.

6.1.2. Concept Drift Analysis

The major advantage of the online models in load fore-
casting is their ability to adapt to changes in data patterns.
Thus, the data sets from the five houses are first examined for
the presence of concept drift. Three concept drift detection
methods have been applied Adaptive Windowing (ADWIN)
[46], Page-Hinkley (PH) [47], and Drift Detection (DDM)
[48]:

o ADWIN method uses sliding windows of variable size
according to the changes observed from the data. If
the difference between the statistics observed in the
windows surpasses the threshold, concept drift is de-
tected.

e PH method continuously monitors the difference be-
tween the time series values and the current mean.
The difference greater than the threshold indicates the
concept drift.

e DDM is based on the idea that as long as the data dis-
tribution is stationary, the learner’s error rate does not
increase. This approach monitors the online error of
the algorithm, and when this error increases, concept
drift is detected.

Figures 6 and 7 depict the results of the three aforemen-
tioned concept drift detection methods for homes one and
four. In ADWIN and PH graphs, the vertical lines indicate
the points in which concept drifts have taken place. In the
DDM graph, the colorful sections indicate the data with sim-
ilar distributions and statistics, and, therefore, different sec-
tions show different concept drifts occurrences.

It can be observed that the three algorithms detect a dif-
ferent number of concept drift occurrences at different lo-
cations in the time series. Nevertheless, all algorithms in-
dicate the extensive presence of concept drift, and changes
in load patterns are notable even from the visual observa-
tions of the loads. The existence of concept drift is espe-
cially pronounced in house four with the DDM method: a
high number of diversely colored segments indicate differ-
ent distributions thought the series. Such a high presence of
concept drift in load data hugely degrades the accuracy of
the offline models and imposes challenges for online models
as they need to continuously adapt to new patterns. Conse-
quently, for household-level load forecasting, it is critical to
use online models capable of handling such changes.

6.2. Comparison with offline LSTM

This subsection compares the proposed Online Adaptive
RNN with conventional offline LSTM. Online and offline
approaches are intrinsically different and cannot be directly

MN Fekri et al.: Preprint submitted to Elsevier

Page 10 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

Table 1
ADF and KPSS Tests
ADF KPSS
Dataset Test cv Test cv
Statistic: ™ _ o, 4=5% a=10% PSS T 10% 4=5% a=25% a=1%

House 1 load -10.3306 -3.4306 -2.8616 -2.5668 1.1650 0.3470 0.4630 0.5740 0.7390
House 2 load -11.8989 -3.4306 -2.8616 -2.5668 3.0379 0.3470 0.4630 0.5740 0.7390
House 3 load -13.2413 -3.4306 -2.8616 -2.5668 14.9290 0.3470 0.4630 0.5740 0.7390
House 4 load -11.9328 -3.4306 -2.8616 -2.5668 11.6656 0.3470 0.4630 0.5740 0.7390
House 5 load -10.3135 -3.4306 -2.8616 -2.5668 4.6686 0.3470 0.4630 0.5740 0.7390

compared; however, it is still important to compare them as
both are used for load forecasting. The comparison is carried
out here with the Prequential-Holdout approach proposed in
Section 5: the first 70% of data was used for training and the
last 30% for testing. This remainder of this subsection first
describes experiments and then presents results.

6.2.1. Experiments

In Online Adaptive RNN, the core learner, BNRNN, can
be implemented with different recurrent cells: experiment
presented here used LSTM cells as these cells can handle
longer sequences than vanilla RNN cells. As the online model
employed LSTM cells, the comparison offline model is also
an LSTM network. Both Online Adaptive RNN and offline
LSTM were tuned with BO: while offline LSTM applies the
traditional BO tuning process, Online Adaptive RNN em-
ploys BO as described in Section 4.4. The following ranges
of hyperparameters were considered for offline LSTM:

Hidden layer sizes: 64, 128, 256, 512, 1024
Number of layers: 1, 2

Batch sizes: 5,10,25,50,100,200,250

Learning rates: continuous from 0.000001, 0.2

In Online Adaptive RNN, as described in Section 4.4, the
BO tuning happens online; therefore, only the learning rate
was tuned. The batch size was 5, and the buffer size was 10
batches for all Online Adaptive RNN experiments. Further
tuning the batch size and buffer size could potentially im-
prove the accuracy, but would incur extensive computation
cost. Moreover, a very large buffer would make the proposed
approach similar to the offline model as many samples would
be reused in each training step. Thresholds for tuning and
buffering modules were tuned for individual households.

The load forecasting accuracy is highly dependent on
the forecasting horizons: shorter horizons typically lead to
higher accuracy. Moreover, the model’s forecasting accu-
racy on one horizon does not necessarily directly translate to
its performance on another horizon. Consequently, Online
Adaptive RNN and offline LSTM were evaluated for four
load forecasting horizons: 1 hour ahead, 50 hours ahead, 100
hours ahead, and 200 hours ahead.

6.2.2. Results

The offline model has a great advantage of several passes
over the complete test set, while with online approaches, data
are discarded once processed by the model. These multiple
passes over data can lead to higher accuracy of the offline
models. However, the online models do not require stor-
ing all data, nor do they require re-training to capture new
patterns, which makes online models more desirable. Con-
sequently, we consider the online model successful when it
archives similar or higher accuracy than the offline LSTM.

Fig. 8 compares the accuracy of Online Adaptive RNN
and the traditional LSTM in terms of MAE and MSE for the
four prediction horizons. As the scale of the errors for the
LSTM and Online Adaptive RNN are different, the figure
has two vertical axes: the left one is for Online Adaptive
RNN and the right one is for the offline LSTM. Moreover,
the accuracy values are displayed with each data point. Al-
though the offline LSTM hyperparameters were tuned, the
MAE and MSE errors are relatively high. The main reason
for this is the presence of the concept drift. Data distribu-
tion and load patterns change over time, resulting in the low
predictive power of the static offline model. The accuracy
of the online approach is much higher as the model adapts
to the changes in data patterns as they arrive.

From Fig. 8, it can be observed that the accuracy varies
greatly among houses, prediction horizons, as well as be-
tween measures (MAE and MSE). For offline LSTM, house
5 consistently has the highest forecasting errors for all hori-
zons and both metrics. Similarly, houses 1 and 3 have the
lowest errors. In the case of Online Adaptive RNN, MSE
for house 3 is lower than for other houses, while in terms of
MAE, this house is among two with the lowest error. Possi-
ble reasons for this are fewer or weaker concept drifts in the
house 3 data.

6.3. Comparison with online models

This subsection compares the proposed approach with
the five standard online models: MLP, linear regression, pass-
ive-aggressive, bagging, and KNN regression. As all com-
pared models are online, prequential evaluation described in
Section 5 is used.

MN Fekri et al.: Preprint submitted to Elsevier

Page 11 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

ADWIN

. —— Load
Drift occurrence

_ Load

Time
PageHinkley

J —— Load
Drift occurrence

_ Load

J —— Load

_ Load

) EQ
Time

Figure 6: The electricity load and the concept drift occurrences
detected with ADWIN, PH, and DMM: house 1.

ADWIN
] —— Load
¢ Drift occurrence
o
®© .
3.
ED e ==
PageHinkley
] —— Load
¢ Drift occurrence
o
M,
3.
Time "
DDM
] —— Load
o
© .
3.

Time

Figure 7: The electricity load and the concept drift occurrences
detected with ADWIN, PH, and DMM: house 4.

6.3.1. Experiments

For Online Adaptive RNN, the same setup and tuning
have been applied as described in Section 6.2.1 for the com-
parison with offline models. To keep the comparison fair,
parameters for the five competition models were also tuned
with BO. The following configurations were considered for
tuning:

e Online MLP regression: SGD and Adam optimizers,
the hidden layer sizes of 50, 100, 250, 500 neurons.

e Online linear regression: SGD and Adam optimizers,
the learning rate in a range of [0.000001,0.2].

e Online KNN: the window sizes of 25, 50, and 100,

and the number of neighbors 3, 5, and 10.

e Online bagging regression: a linear regression as the
base model, and the number of the base models 5 and
10.

o Online passive-aggressive regression: Epsilon insen-
sitive loss function, aggressiveness in a range of [0.01,
10].

The same forecasting horizons were examined as in com-
parison with offline models: 1, 50, 100, and 200 hours ahead.

6.3.2. Results

Fig. 9 shows the results of the experiments in terms of
MAE and MSE for different prediction horizons. It can be
observed that for one hour ahead prediction, Fig. 9 a and b,
the lowest error was achieved with the online KNN for all
households. The KNN predicts based on the similarity of
the target to its nearest neighbors and, for one hour ahead
prediction, the training data points, and the target are adja-
cent enough for the KNN to perform well. Nevertheless, the
accuracy of Online Adaptive RNN is very close to the KNN.

When the prediction length is increased to 50 hours, the
adjacency level of the training data points becomes weaker
especially in the presence of concept drifts. For this reason,
the error rates for the MLP, Linear, and PA regression mod-
els increased significantly as shown in 9 ¢ and d. Errors for
the KNN and bagging models slightly decreased in compar-
ison to the one hour ahead prediction. For this prediction
length, Online Adaptive RNN achieved better accuracy than
the remaining five algorithms for all homes.

For 100 hours ahead, Fig. 9 e and f, the proposed Online
Adaptive RNN remains better than the other models. For
200 hours ahead Online Adaptive RNN outperforms others
for all but one household: for house 1, bagging achieves
slightly better accuracy than Online Adaptive RNN. How-
ever, bagging performs very poorly on household 4 making
Online Adaptive RNN an overall better model.

Fig. 9 compared the average error for the considered al-
gorithms, but we are also interested in the variability of the
error as a model with more consistent prediction is more de-
sirable. Consequently, Fig. 10 examines error intervals for
Online Adaptive RNN and the five online algorithms. The
error intervals have been calculated based on the error for all
households and average, minimum, maximum, first and the
third quartile are shown in the figure.

Asin Fig. 9, in Fig. 10, for 1 hour ahead KNN achieved
the best average accuracy. From Fig. 10 a and b, it can also
be observed that error ranges for KNN are among the low-
est. Again, performance of Online Adaptive RNN is close
to KNN.

For 50, 100, and 200 hours ahead, Online Adaptive RNN
achieved the best accuracy with small error intervals. In
terms of MSE, the error interval for Online Adaptive RNN
is visibly smaller than for the other approaches. The box
plot reveals the drawback of some approaches: for exam-
ple, bagging achieved a similar accuracy to Online Adaptive
RNN for 200 hours ahead forecasting, but it has a large error

MN Fekri et al.: Preprint submitted to Elsevier

Page 12 of 20

0.45
0.4
0.35
03
0.25
0.2
0.15
0.1
0.05

Error (MAE)

0.6

0.5

0.4

0.3

Error (MAE)

0.2

0.1

0.4
0.35
03
0.25
0.2
0.15

Error (MAE)

0.1
0.05

0.7

0.6

0.5

0.4

03

Error (MAE)

0.2

0.1

Online Adaptive Recurrent Neural Network for Load Forecasting

14
11.8803 12
0.3367 0.3209 I
10
8
6
4
2
0
House 1 House 2 House 3 House 4 House 5
[Online Adaptive RNN =O—conventional LSTM
(a) The MAE error for 1 hour ahead.
16

6.6016
27416 0.1298
0.1326
|
House 1 House 2 House 3 House 4 House 5

[Online Adaptive RNN =0=conventional LSTM

(c) The MAE error for 50 hours ahead.

0.0899

'0.4950

House 3

House 2

House 1

House 5

House 4

mum Online Adaptive RNN —0—conventional LSTM

(e) The MAE error for 100 hours ahead.

25
21.1326
|
20
15
0.2503 10
0.4857
I 5
[| 0

House 1 House 2 House 3 House 4 House 5

[Online Adaptive RNN —0—conventional LSTM

(g) The MAE error for 200 hours ahead.

0.5
0.45
0.4
0.35

o
o5 o
N oW

Error (MSE)

0.15
0.1
0.05

0.7

0.6

0.5

0.4

0.3

Error (MSE)

0.2

0.1

Error (MSE)
o o o o o
[) w » [0 o

o
o

0.8
0.7
0.6
o 0.5

e 9
w B

Error (MSE

e o
[N

o

|| 28.8230

0.4539
0.3401
16 9 9495
0.1624
0.3718
0.0186
House 1 House 2 House 3 House 4 House 5

mum Online Adaptive RNN —O—conventional LSTM

(b) The MSE error for 1 hour ahead.

58.4306
51.9223
9230
0.1970
0.0101
| 05731 02879
2 0.1417 7.4873
= = n
House 1 House 2 House 3 House 4 House 5

[Online Adaptive RNN —0O—conventional LSTM

(d) The MSE error for 50 hours ahead.

62.4626

59.9673

37.542

17.1807

0.5260
_—
17.1016 0.2268
L}
0.1002 0.0307
| |
House 1 House 2 House 3 House 4 House 5

mm Online Adaptive RNN =O=conventional LSTM

(f) The MSE error for 100 hours ahead.

69.4626 66.9673

0.7003
21

0.4768
03320 0.2992 l
= [
House 1 House 2 House 3 House 4 House 5

[Online Adaptive RNN —=0—conventional LSTM

(h) The MSE error for 200 hours ahead.

Figure 8: The MAE and MSE errors for offline LSTM and Online Adaptive RNN

35

30

25

20

15

10

70

60

50

40

30

20

10

70

60

50

40

30

20

10

80
70
60
50
40
30
20
10

MN Fekri et al.: Preprint submitted to Elsevier

Page 13 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

=4 o I
wn o N
0.4667

0.5579

o
~
0.3241
0.2937
0.2724
0.2894
0.3441

o
w

Error (MAE)

o
o

°
(<) [
I 0.1951

House 1 House 2 House 4

House 3

House 5

B MLP Regression M Linear Regression M PA Regression

Online Adaptive RNN

(a) The MAE errors for 1 hour ahead.

W Bagging Regression KNN Regression

14

1.2

1.0083
0.9630

Error (MAE)
o o o o
o N B o o =
I 0.2726
I 1.0479
I 02133
01578
0.0795
I 0.3553
I 0.4445
I 0.3025
0.2832
0.1966
0.1038
0.1092
0.0885
0.0740
0.0702
0.7707
o 5466
0.4505
0.4437
0.3644
I 0.5277
I 0.4203
I 0.5469
. 03637
0.3423
0.2815

~
©
=
o
©
©
i o
=
i III
House 1 House 2 House 3 House 4 House 5
B MLP Regression M Linear Regression B PA Regression

m Bagging Regression KNN Regression Online Adaptive RNN

(c) The MAE errors for 50 hours ahead.

o
3
1.2 g ~
o 3
% <
1 i ©
o
R
= o
g 0.8 g 0 "
©o
s o 2 83,0 8.n
= 5] ANNe [SRLR= s
506 S0O g Lo@ly S5%9g
2 SCUmR 0 333 oSSoSae
[olna o cos A 2
bl G N S cm°e3s
0.4 2Hle oflcmo d @
- o a cm o S
Nl ®o o
1o Paia [S]
02 ==
0
House 1 House 2 House 4 House 5
B MLP Regression M Linear Regression M PA Regression
W Bagging Regression KNN Regression Online Adaptive RNN
(e) The MAE errors for 100 hours ahead.
3
o
@
o
<
25 N
g 2
% = 0
) ~
2 - g - @
o o 5 -
§ S0 -
]
15 I3 = o
s - SE3 E @
= gals Y o D
© o I @ Sol|® S8ma
1 @ R 2 iy S S BB~
~ 8 © [00 < 3 n ©oow
n g nilfsno Lo~ 1 a cso._ 5
cwx® = ESE SWV® _© < 2
0SS] ORuR o] 3
05 o~ oo MNONS =}
- SN cocfo=
o © pa s
(| M
o | | n
House 1 House 2 House 3 House 4 House 5

= MLP Regression ® Linear Regression ~ m PA Regression

Online Adaptive RNN

(g) The MAE errors for 200 hours ahead.

W Bagging Regression KNN Regression

Figure 9:
and KNN regression.

range, which makes bagging an undesirable solution. Over-
all, Online Adaptive RNN achieves lower accuracy than the
other online models for 50 or more hours ahead prediction
and it exhibits low error variability indicating the model con-

0.7978
0.8283

oulloPo
S ERE
| RES
R R Ry e
°© amlS oS
4 X8
(=} 4
~ iy Soc°
N
RE
IR
So
n oo
falgus
ORINN N
Co2aoccoo
©c®coo
-
2 House 3 House 4 House 5

M Linear Regression

KNN Regression

M PA Regression
Online Adaptive RNN

(b) The MSE errors for 1 hour ahead.

W Linear Regression

m KNN Regression

o

%

&

° 8

2 ~ 9

< o o

S &,

23_9%0

gdoJoaz

22322

oo scox ©

Sc09ce R o

S8c852 BaB, .

22028 XLl

$u¥88 ognLow "
5 PO ®T sCeung 5,
N cwPly c° % o
] L ELax 2 S)
N S Wz S]
S §x Bz =

£ ®Z¢E
] SE3¢E6 []

House 3 House 4

W PA Regression
m Online Adaptive RNN

(d) The MSE errors for 50 hours ahead.

0.9
0.8
0.7
3
gos g
2 3 >
Sos o °
s k<l BN
504 =1 K
© Ssha
<3 (=}
* e3S3sg
02 §S°ooa
sojjococo
", NI
0
House 1 House
B MLP Regression
W Bagging Regression
3.7 ®
o
bl
3.2 —
2.7
— 22
w o~
@ ~
=3
217 s
5]
12
2 aQ
d El o
°lsss3
0.2 o
-
-0.3 House 1
MLP Regression
m Bagging Regression
6

Error (MSE)

0.9726

=
A
3
o
<

4

3

2

1

0

§ 0.1645

0
©
)
0
~

House 1

Online Adaptive RNN, 0.0296

9

=)
)

.98

oso®

Omc

€290

803

2o 80

X $2 98
3

T 09 O PE

~ TmEaIR ox L owy

Y TRoRAn S5 PEx
] 5 d @

98 Scogocs Tizdz

So CS&as

- HENEm -ZE2E0

House 2 House 3

MLP Regression i Linear Regression

W Bagging Regression

m KNN Regression

3

R w

S a8 © o
1903890 S @

5030 283RBw
[CRSR- R =] o RN QY
SO g SSoYay
II ©c oloc’o

House 5
W PA Regression

m Online Adaptive RNN

(f) The MSE errors for 100 hours ahead.

Error (MSE)

O Rk N W A GO N ® ©

3.4751

N 13515
B 1.0919

House 2
MLP Regression

W Bagging Regression

o
@
S
<9
£
o2m
2c
9o
8é,3
@
830
©
L owmes
Sxxos
2 .0¢co
§2s52
o coc
£890
“gea
Smd
L
gy
PN < W
5 £a2
S Isﬁé
| el |
House 3

W Linear Regression

m KNN Regression

| Online Adaptive RNN, 0.0459

3.7470

2.7523

©
~
=
=)
o

House

B 1.0289

N 0.9077

> I 16379
I 0.7022

House 5
M PA Regression
m Online Adaptive RNN

(h) The MSE errors for 200 hours ahead.

sistency.

Comparison of Online Adaptive RNN with five online regression algorithms: MLP, liner, passive-aggressive, bagging,

MN Fekri et al.: Preprint submitted to Elsevier

Page 14 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

0.6
0.5
o 04
s
~ 0.3
g
w02
0.1
0
B MLP Regression H Linear Regression
[PA Regression W Bagging Regression
B KNN Regression M Online Adaptive RNN
(a) The MAE error intervals for 1 hour ahead.
1.2
1
o 0.8
3
~ 0.6
g
w04
0-2 -
0
B MLP Regression B Linear Regression
[E PA Regression W Bagging Regression
B KNN Regression B Online Adaptive RNN
(c) The MAE error intervals for 50 hour ahead.
1.2
1
o 0.8
3
=~ 0.6
g
w04
0.2 -
0
B MLP Regression M Linear Regression
[PA Regression M Bagging Regression
B KNN Regression B Online Adaptive RNN
(e) The MAE error intervals for 100 hour ahead.
2.5
2
2 15
2
g 4
w
--
0

B MILP Regression B Linear Regression
[E PA Regression

B KNN Regression

M Bagging Regression
B Online Adaptive RNN

(8) The MAE error intervals for 200 hour ahead.

Errer {MSE)

Error {MSE})

Errer {MSE)

Error {MSE})

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
[MLP Regression M Linear Regression
M PA Regression M Bagging Regression
M KNN Regression M Online Adaptive RNN
(b) The MSE error intervals for 1 hour ahead.
3.50
3.00
2.50
2.00
1.50
1.00
=
0.00 —
[E MLP Regression M Linear Regression
M PA Regression M Bagging Regression
B KNN Regression B Online Adaptive RNN
(d) The MSE error intervals for 50 hour ahead.
5
4.5
4
3.5
3
2.5
2
1.5
: = =
05 -
. L

& MLP Regression
B Bagging Regression M KNN Regression

B Linear Regression B PA Regression

B Online Adaptive RNN

(f) The MSE error intervals for 100 hour ahead.

o,

[F MLP Regression M Linear Regression
M PA Regression

B KNN Regression

M Bagging Regression
B Online Adaptive RNN

(h) The MSE error intervals for 200 hour ahead.

Figure 10: Comparison of error intervals for Online Adaptive RNN and the five online
regression algorithms: LP, liner, passive-aggressive, bagging,and KNN regression

MN Fekri et al.: Preprint submitted to Elsevier

Page 15 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

1.2000
— 1.0000
w
< 0.8000
s 0.6000 /\/\
g 0.4000 M
w 0.2000
0.0000
House 1 House?2 House3 Housed4 House5
—o—Buffer 0.4022 04800 02023 0.6045 0.4034
—o—Tuner 03078 03570 0.1478 0.4926 0.3689
Bufferand Tuner 0.2403 0.2894 0.0809 04413 0.3441
—8—None 0.6079 09212 0.4367 1.0001 0.7022

—o—Buffer =—#=Tuner Buffer and Tuner ~=#=None

(a) The impact of buffering and tuning modules: 1 hour

ahead.
1.4000
. 1.2000
= 1.0000
= 0.8000
5 0.6000
.E 0.4000
0.2000
0.0000
Housel House2 House3 Housed4 House5S
—o—Buffer 0.3588 05010 0.2282 1.0622 0.7477
=="Tuner 0.1600 0.2309 0.1245 0.4498 0.3013
Buffer and Tuner 0.0795 0.1966 0.0702 0.3644 0.2815
—e—None 0.4544 0.6715 0.3405 1.1732 0.8576

—e—Buffer —e=Tuner Buffer and Tuner =—#=None

(b) The impact of buffering and tuning modules: 50 hours

ahead.
2.5000
o 2.0000
<§t 1.5000
Té 1.0000
o 05000 ‘ —
0.0000 ‘ .
Housel House2 House3 Housed House5
=o—Buffer 0.6545 05946 0.2866 1.8200 0.8777
=&=Tuner 0.1312 0.2499 0.0662 0.4414 0.3612
Buffer and Tuner 0.1173 0.2301 0.0669 0.4014 0.3074
=8=—None 0.8789 1.0184 03775 2.0043 1.4551

—o—Buffer =—#=Tuner Buffer and Tuner ~=@=None

(c) The impact of buffering and tuning modules: 100 hours

ahead.
7.0000
. 6.0000
=4 5.0000
= 4.0000
5 3.0000
I.E 2.0000
1.0000 O
0.0000 -
Housel House2 House3 Housed4 House5S
—o—Buffer 1.9963 47571 0.76%9 3.0125 3.1944
=eo—Tuner 0.2223 0.2993 0.0701 0.4850 0.4122
Buffer and Tuner 0.2188 0.2944 0.0692 0.4620 0.4101
—&=—None 25122 59698 0.9489 3.4538 4.0014

—e—Buffer —e=Tuner Buffer and Tuner =—e=None

(d) The impact of buffering and tuning modules: 200 hours
ahead.

Figure 11: The impact of buffering and tuning modules on the
forecasting accuracy.

6.4. Analysis of modules impact

Experiments presented so far compare the performance
of Online Adaptive RN with other models, offline LSTM,
and five online models. This section examines the impact of
the modules within Online Adaptive RNN on the forecast-
ing accuracy; specifically, the impact of buffering and tun-
ing modules is investigated. As different variants of the pro-
posed online approach are compared, the prequential evalu-
ation described in Section 5 is used.

6.4.1. Experiments
Experiments compare four Online Adaptive RNN vari-
ants:

with buffering and tuning modules

only with buffering module

only with tuning module

Online Adaptive RNN without buffering and tuning
modules

The same setup and tuning have been applied as described
in Section 6.2.1; however, note that for the models without
the tuning module, there is no tuning. Again, the same fore-
casting horizons are considered: 1, 50, 100, and 200 hours
ahead.

6.4.2. Results

Fig. 11 shows the impact of the buffering and tuning
modules on the accuracy of Online Adaptive RNN. It can
be observed that for all the households, the model with the
buffering and tuning modules results in the lowest MAE er-
ror, and the model without the two modules leads to the high-
est errors. This figure also shows that the tuning module
has a larger impact on the accuracy than the buffering mod-
ule as error drops mode when the tuning module is added
than when the buffering module is added. This highlights
the need to tune network hyperparameters, specifically the
learning rate, as new data arrive.

6.5. Analysis of the buffer size impact

The previous section demonstrated the impact of the buffer-
ing and tuning modules on the performance of Online Adap-
tive RNN. This subsection further investigates the buffering
module and examines the impact of the buffer size on the
model accuracy and training time. Since this involves com-
paring online learning models, Online Adaptive RNNs with
different buffer sizes, the prequential evaluation described in
Section 5 is used.

6.5.1. Experiments

For these experiments, the same setup and tuning process
have been applied as described in Subsection 6.2.1: LSTM
cells are used and the same ranges of parameters are consid-
ered in the online tuning. The difference is that here experi-
ments are conducted without buffer and with buffer sizes of
5, 10, 15, 30, and 50 batches.

MN Fekri et al.: Preprint submitted to Elsevier

Page 16 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

6.5.2. Results

Fig. 12 shows the impact of the buffer size on the accu-
racy of Online Adaptive RNN for 50 hours forecasting hori-
zon. For houses with a high presence of concept dirt, such as
houses 4 and 5, a smaller buffer size (5 batches) results in a
lower error. The reason for this is that a larger buffer retains
more batches, some of which may be older, therefore causing
the model to pay attention to those older batches which may
not reflect the current situation when there is a high presence
of concept drift.

For houses with a lower presence of concept drift, such
as houses 1 and 3, the buffer sizes 10 and 15 have the best
performance, with size 15 having just slightly better perfor-
mance than size 10. As the concept drift is not as promi-
nent, having a medium-size buffer improves accuracy as the
model sees difficult patterns several times. House 2 is some-
what similar to houses 1 and 3; lower errors are achieved for
buffer sizes 5 and 10. It can be observed that for all houses,
irrelevant to the degree of concept drift, large buffer sizes,
such as 30 and 50, lead to performance degradation.

Fig. 13 examines the impact of the buffer size on the
computation time: it shows the average training time per day
for each of the considered buffer sizes. As expected, increas-
ing the buffer size results in longer training time. Overall,
buffer size 10 achieves good results for all houses (although
not the best for all houses) irrelevant of concept drift pres-
ence while requiring only slightly longer training time than
lower batch sizes.

6.6. Training time analysis

One of the common ML approaches for dealing with new
data and changing patterns is to re-train the model daily or
weekly with all data [32]. Assuming that changes between
consecutive days or weeks are small, this approach can lead
to good accuracy, but the computation burden is extensive.

This section compares the computation time needed for
daily re-training a conventional offline model with the train-
ing time of the proposed Online Adaptive RNN. Although
experiments were conducted with a relatively small number
of readings, they illustrate the advantages of the proposed
approach. Nevertheless, with an increased number of read-
ings, the training time for offline LSTM will increase with
each day, while the time for Online Adaptive RNN will re-
main quite consistent.

6.6.1. Experiments

As we are comparing the proposed approach with the
LSTM daily re-training, experiments compare the training
time per day. Two sets of experiments were conducted:

o Starting with 1000 samples. First, both offline LSTM
and Online Adaptive RNN are trained with those 1000
samples. Then, as offline LSTM training is conducted
daily will all data, the offline LSTM is trained with
1024, 1048, and 1096 on consecutive days. Online
Adaptive RNN just continues training as new data ar-
rive.

8.5000

7.5000

6.5000

5.5000

4.5000

3.5000

Error (MAE)

2.5000

1.5000

0.5000

-0.5000
House 5

0.3013
0.2477
0.2815
0.5813
1.8800
3.0491

House 4
0.4498
0.2846
0.3644
0.7662
2.1111
7.9507

House 3
0.1254
0.1189
0.0702
0.0659
0.0952
03733

House 2
0.2308
0.2113
0.1966
0.4312
1.1200
1.9855

House 1
0.1600
0.1419
Buffer size 10 0.0795
Buffer size 15 0.0707
—e—Buffer size 30 0.1516
Buffer size 50 0.6154

No Buffer
Buffer size 5

Figure 12: The impact of the buffer size on model’s accuracy.

0.04
0.0347
0.035

0.03 0.0262

0.025
0.02 0.0172

0.0149
0.015

Time (Minutes)

0.0109
001 00063
0.005

0
No buffer 5 10 15 30 50
Buffer Size

Figure 13: Average training time for different buffer sizes.

e Starting with 2000 samples. This is the same process
as the previous set of experiments but it starts with
2000 samples.

As the diversity of data among homes can result in differ-
ent training times, the experiments were repeated five times
with different homes, and the averages are reported. Two
variants of the offline LSTM training were considered: with
and without tuning. The hyperparameters considered for
tuning and the tuning approach are the same as in subsec-
tion 6.2.1.

The variant with tuning leads to higher accuracy, but
re-tuning each day is extremely computationally intensive
while it may not always be necessary. Consequently, results
without tuning are also reported. As described in Section 4,
Online Adaptive RNN is tuned as needed.

The experiments were performed on a computer with
Ubuntu OS, AMD Ryzen 4.20 GHz processor, 128 GB DIMM

MN Fekri et al.: Preprint submitted to Elsevier

Page 17 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

RAM, and four NVIDIA GeForce RTX 2080 Ti 11GB graph-
ics cards.

6.6.2. Results

Figure 14 depicts the average training time for conven-
tional LSTM with tuned hyperparameters and Figure 15 shows
the average training time for the same model but without
tuning. The horizontal axis represents the increment in the
number of samples and each data point represents the train-
ing time for a specific day. It can be observed that starting
from 2000 samples results in at least double the training time
compared to starting from 1000, which is to be expected as
the offline LSTM is re-trained each day with complete data
set. Examining consecutive days (0, 24, 48, and 96 on the
horizontal axis), the slow gradual increase can be observed
for each starting point and for training with and without tun-
ing. As expected, training times for tuned models are a mag-
nitude larger than for models without tuning.

For Online Adaptive RNN, the training time for each
batch will differ depending if the tuning was triggered for
that batch. The average training time per batch is 0.0031
minutes what with the batch size 5 equates to an average of
0.0149 minutes per day.

As the variations among days are minimal, there is no
need to show this in the plot. Comparing daily training time
of Adaptive Online RNN (0.0149 minutes) with time for the
offline LSTM presented in figures 14 and 15, it can be ob-
served that Adaptive Online RNN takes only a fraction of
time needed by the offline models. This further demonstrates
the benefits of the proposed approach.

6.7. Discussion

Overall, Online Adaptive RNN outperformed the tradi-
tional offline LSTM as well as five other online algorithms.
Although Online Adaptive RNN employs a traditional LSTM
as its base learner, the unique architecture makes it capable
of learning in an online manner and enables it to achieve
higher forecasting accuracy than the LSTM itself. Moreover,
online learning makes the proposed approach well suited for
practice because there is no need for periodical re-training
with new data, which is required for offline models.

For each of the five considered homes, Online Adaptive
RNN performed better than LSTM (Fig. 8): the conven-
tional LSTM was not able to learn well in the presence of
concept drift. This highlights the need to evaluate the ability
of load forecasting algorithms to handle concept drift. Vari-
ability of accuracy among homes demonstrates the necessity
of considering different data sets when comparing machine
learning approaches for energy forecasting.

With respect to other online algorithms, Online Adap-
tive RNN achieved better forecasting accuracy for the ma-
jority of prediction horizons. For one hour ahead, KNN ac-
curacy was slightly better because it was able to take advan-
tage of strong adjacency between the target and training data
points. However, when the forecasting horizon increases to
50, 100, and 200 hours ahead, this adjacency advantage de-
creases and Online Adaptive RNN achieves higher accuracy
than KNN.

120
92.0906 96.5146 101.0069
__ 100 87.1468 —=0
w)
£ 80 —
E
E 60 414635 43,6371 43.9991 44.9701
g 40
T 20
0
0 hours 24 hours 48 hours 96 hours
Samples
1000 samples start ~ =—#=2000 samples start

Figure 14: Average training time for conventional LSTM with
hyperparameter tuning

0.8 0.6807 0.6884 0.6983 0.7051
@ 0.6
Q
5
£ 04 0321 0.3251 0.3405 0.3523
£ ,
E
i= 0.2
0
0 hours 24 hours 48 hours 96 hours
Samples
1000 samples start 2000 samples start

Figure 15: Average training time for conventional LSTM with-
out hyperparameter tuning

In offline learning, especially with neural networks, hy-
perparameter tuning is essential for achieving high accuracy.
Our approach adds the hyperparameter tuning capability to
the online model through the addition of the tuning module.
The experiments show that this online tuning significantly
improves forecasting accuracy as illustrated in Fig. 11.

While the proposed approach outperformed other online
models, there is still space for further improvements. The
tuning module could potentially employ a more sophisticated
way of tracking accuracy trend, but that would add to com-
putational complexity. There is also a need to explore a re-
lationship between the model behavior and the concept drift
occurrence as detected through concept drift detection algo-
rithms.

7. Conclusion

Machine learning approaches, and specifically deep learn-
ing architectures, have been extensively used for sensor-based
electricity load forecasting. Most techniques involve offline
learning, meaning that the model is trained once and then
gets used to infer the future load. Hence, these offline tech-
niques do not take advantage of the new data.

Consequently, this paper proposes Online Adaptive Re-
current Neural Network, an online learning approach for load
forecasting where the model is continuously updated as new

MN Fekri et al.: Preprint submitted to Elsevier

Page 18 of 20

Online Adaptive Recurrent Neural Network for Load Forecasting

data arrive. The base learner is a recurrent neural network
in order to capture temporal dependencies, while continuous
learning is carried out with the addition of preprocessing,
buffering, and tuning modules. The preprocessing module
prepares data for online learning, the tuning module adapts
neural network hyperparameters to newly arriving patterns,
and the buffering module facilitates learning from especially
difficult patters and assists in handling concept drift. The
evaluation was carried out with five individual households.
The proposed approach achieved higher accuracy than the
traditional offline long short term memory neural network
for all five households for all forecasting lengths. Comparing
to five online algorithms, Online Adaptive RNN achieved
higher accuracy than the four algorithms for all forecasting
horizons. The fifth algorithm, online K Nearest Neighbor,
archived slightly better accuracy for one hour ahead fore-
casting, but Online Adaptive RNN outperformed KNN for
50, 100, and 200 hours ahead. Moreover, training time for
the proposed approach is an order of magnitude shorter than
that of the traditional offline LSTM.

The future work will evaluate the proposed approach with
a large number of homes and examine the impact of factors
such as the presence of distributed energy resources and the
participation in demand response programs. Moreover, em-
ploying the concept drift detection algorithms to help the
model adapt to changing data will also be examined.

Acknowledgements

This research has been supported by London Hydro and
NSERC under grant CRDPJ 530743-18. The authors would
like to thank London Hydro for supplying industry knowl-
edge and data used in this study.

References

[1] European Environment Agency, Energy and climate change,
https://www.eea.europa.eu/signals/signals-2017/articles/
energy-and-climate-change, 2017.

[2] U.S. Energy Information Administration, International energy out-
look, https://www.eia.gov/outlooks/ieo/pdf/0484(2017) .pdf, 2017.

[3] G. Notton, C. Voyant, Forecasting of intermittent solar energy re-
source, Advances in Renewable Energies and Power Technologies 1
(2018) 77-114.

[4] Y. Wang, Q. Chen, T. Hong, C. Kang, Review of smart meter data
analytics: Applications, methodologies, and challenges, IEEE Trans-
actions on Smart Grid 10 (2018) 3125-148.

[5] P.K. Singh, N. Singh, R. Negi, Wind power forecasting using hybrid
ARIMA-ANN technique, in: Ambient Communications and Com-
puter Systems, 2019, pp. 209-220.

[6] Y. Wang, H. Wang, D. Srinivasan, Q. Hu, Robust functional regres-
sion for wind speed forecasting based on sparse bayesian learning,
Renewable Energy 132 (2019) 43-60.

[7] D.-H. Tran, D.-L. Luong, J.-S. Chou, Nature-inspired metaheuris-
tic ensemble model for forecasting energy consumption in residential
buildings, Energy 191 (2020).

[8] H. Wang, Z. Lei, X. Zhang, B. Zhou, J. Peng, A review of deep
learning for renewable energy forecasting, Energy Conversion and
Management 198 (2019).

[9] C.Fan,J. Wang, W. Gang, S. Li, Assessment of deep recurrent neural
network-based strategies for short-term building energy predictions,
Applied Energy 236 (2019) 700-710.

[10] L. Sehovac, K. Grolinger, Deep learning for load forecasting: Se-
quence to sequence recurrent neural networks with attention, IEEE
Access 8 (2020) 36411-36426.

[11] L Zliobaité, M. Pechenizkiy, J. Gama, An overview of concept drift
applications, in: Big data analysis: new algorithms for a new society,
2016, pp. 91-114.

[12] A. Tsymbal, The problem of concept drift: definitions and related
work, Computer Science Department, Trinity College Dublin 106
(2004).

[13] T. Ahmad, H. Zhang, B. Yan, A review on renewable energy and
electricity requirement forecasting models for smart grid and build-
ings, Sustainable Cities and Society 55 (2020).

[14] M. H. Alobaidi, F. Chebana, M. A. Meguid, Robust ensemble learn-
ing framework for day-ahead forecasting of household based energy
consumption, Applied Energy 212 (2018) 997-1012.

[15] K. Grolinger, M. A. Capretz, L. Seewald, Energy consumption predic-
tion with big data: Balancing prediction accuracy and computational
resources, in: IEEE International Congress on Big Data, 2016, pp.
157-164.

[16] M. N. Fekri, A. M. Ghosh, K. Grolinger, Generating energy data
for machine learning with recurrent generative adversarial networks,
Energies 13 (2020).

[17] X. Gao, X. Li, B. Zhao, W. Ji, X. Jing, Y. He, Short-term electricity
load forecasting model based on EMD-GRU with feature selection,
Energies 12 (2019).

[18] S. Bouktif, A. Fiaz, A. Ouni, M. A. Serhani, Optimal deep learning
Istm model for electric load forecasting using feature selection and
genetic algorithm: Comparison with machine learning approaches,
Energies 11 (2018).

[19] S.Han, Y.-h. Qiao, J. Yan, Y.-q. Liu, L. Li, Z. Wang, Mid-to-long term
wind and photovoltaic power generation prediction based on copula
function and long short term memory network, Applied Energy 239
(2019) 181-191.

[20] N. Somu, G. R. MR, K. Ramamritham, A hybrid model for build-
ing energy consumption forecasting using long short term memory
networks, Applied Energy 261 (2020).

[21] A.Defazio, F. Bach, S. Lacoste-Julien, SAGA: A fast incremental gra-
dient method with support for non-strongly convex composite objec-
tives, in: Advances in neural information processing systems, 2014,
pp. 1646-1654.

[22] R.Johnson, T. Zhang, Accelerating stochastic gradient descent using
predictive variance reduction, in: Advances in neural information
processing systems, 2013, pp. 315-323.

[23] E. Jothimurugesan, A. Tahmasbi, P. Gibbons, S. Tirthapura,
Variance-reduced stochastic gradient descent on streaming data, in:
Advances in Neural Information Processing Systems, 2018, pp. 9906—
9915.

[24] R. Frostig, R. Ge, S. M. Kakade, A. Sidford, Competing with the
empirical risk minimizer in a single pass, in: Conference on learning
theory, 2015, pp. 728-763.

[25] J. J. Sénchez-Medina, J. A. Guerra-Montenegro, D. Séanchez-
Rodriguez, I. G. Alonso-Gonzalez, J. L. Navarro-Mesa, Data stream
mining applied to maximum wind forecasting in the Canary Islands,
Sensors 19 (2019).

[26] J. Vexler, S. Kramer, Integrating LSTMs with online density estima-
tion for the probabilistic forecast of energy consumption, in: Interna-
tional Conference on Discovery Science, 2019, pp. 533-543.

[27] F.Liang, W. G. Hatcher, G. Xu, J. Nguyen, W. Liao, W. Yu, Towards
online deep learning-based energy forecasting, in: International Con-
ference on Computer Communication and Networks, 2019, pp. 1-9.

[28] H. Gao, R. Sollacher, H.-P. Kriegel, Spiral recurrent neural network
for online learning, in: European Symposium on Artificial Neural
Networks, 2007, pp. 483-488.

[29] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, K. Funaya, Robust online
time series prediction with recurrent neural networks, in: IEEE Inter-
national Conference on Data Science and Advanced Analytics, 2016,
pp. 816-825.

[30] S.Madireddy, P. Balaprakash, P. Carns, R. Latham, G. K. Lockwood,

MN Fekri et al.: Preprint submitted to Elsevier

Page 19 of 20

https://www.eea.europa.eu/signals/signals-2017/articles/energy-and-climate-change
https://www.eea.europa.eu/signals/signals-2017/articles/energy-and-climate-change
https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf

(31]

[32]

(33]

[34]

[36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Online Adaptive Recurrent Neural Network for Load Forecasting

R. Ross, S. Snyder, S. M. Wild, Adaptive learning for concept drift in
application performance modeling, in: International Conference on
Parallel Processing, 2019, pp. 1-11.

T. Fields, G. Hsieh, J. Chenou, Mitigating drift in time series data with
noise augmentation, in: International Conference on Computational
Science and Computational Intelligence, 2019, pp. 227-230.

M. Ceci, R. Corizzo, D. Malerba, A. Rashkovska, Spatial autocorre-
lation and entropy for renewable energy forecasting, Data Mining and
Knowledge Discovery 33 (2019) 698-729.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, et al., Scikit-learn: Machine learning in Python, Journal of
Machine Learning Research 12 (2011) 2825-2830.

M. Halford, G. Bolmier, R. Sourty, R. Vaysse, A. Zouitine, creme,
a Python library for online machine learning, 2019. URL: https://
github.com/creme-ml/creme.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, Y. Singer, On-
line passive-aggressive algorithms, Journal of Machine Learning Re-
search 7 (2006) 551-585.

N. C. Oza, Online bagging and boosting, in: IEEE international con-
ference on systems, man and cybernetics, volume 3, 2005, pp. 2340-
2345.

M. Janzamin, H. Sedghi, A. Anandkumar, Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor meth-
ods, arXiv:1506.08473 (2015).

T. Senjyu, H. Takara, K. Uezato, T. Funabashi, One-hour-ahead load
forecasting using neural network, IEEE Transactions on Power Sys-
tems 17 (2002) 113-118.

S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift, arXiv:1502.03167
(2015).

T. Cooijmans, N. Ballas, C. Laurent, C. Giil¢ehre, A. Courville, Re-
current batch normalization, in: International Conference on Learn-
ing Representations, 2016.

M. Feurer, F. Hutter, Hyperparameter optimization, in: Automated
Machine Learning: Methods, Systems, Challenges, 2019, pp. 3-33.
J. S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-
parameter optimization, in: Advances in neural information process-
ing systems, 2011, pp. 2546-2554.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmid-
huber, LSTM: A search space odyssey, IEEE Transactions on Neural
Networks and Learning Systems 28 (2016) 2222-2232.

J. Gama, R. Sebastido, P. P. Rodrigues, On evaluating stream learning
algorithms, Machine learning 90 (2013) 317-346.

J. Gama, R. Sebastido, P. P. Rodrigues, Issues in evaluation of stream
learning algorithms, in: ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 329-338.

A. Bifet, R. Gavalda, Learning from time-changing data with adaptive
windowing, in: SIAM international conference on data mining, 2007,
pp. 443-448.

E. S. Page, Continuous inspection schemes, Biometrika 41 (1954)
100-115.

J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift
detection, in: Brazilian symposium on artificial intelligence, 2004,
pp. 286-295.

MN Fekri et al.: Preprint submitted to Elsevier

Page 20 of 20

https://github.com/creme-ml/creme
https://github.com/creme-ml/creme

