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ABSTRACT

Load forecasting is essential for energy management, infrastructure planning, grid operation, and bud-
geting. Large scale smart meter deployments have resulted in ability to collect massive energy data
and have created opportunities in sensor-based forecasting. Machine learning (ML) has demonstrated
great successes in sensor-based load forecasting; however, when prediction is needed on a smart me-
ter level, typically a single model is trained for each smart meter. With a large number of meters,
this becomes computationally expensive or even infeasible. On the other hand, with conventional
ML, training a single model for several smart meters requires participants to share their data with the
central server. Consequently, this paper proposes federated learning for load forecasting with smart
meter data: this strategy enables training a single model with all participating smart meters without
the need to share local data. Two alternative federated learning strategies are examined: FedSGD,
which performs one step of gradient descent on client before merging updates on the server, and Fe-
dAVG, which carries out several steps before the merging. Specifically, residential consumers are
diverse what makes training a single model challenging as load profiles vary across consumers. The
results show that the FedAVG achieves better accuracy than FedSGD while also requiring fewer com-
munication rounds. Comparing to individual models for each meter and a single central models for
all meters, FedAVG achieves comparable or better accuracy.

1. Introduction
Energy drives economies and societies, but it has also

been the biggest contributor to global warming and accounts
for about two-thirds of greenhouse gas emissions [1]. To
combat the negative environment impact, countries and in-
stitutions are setting aggressive targets; for example, Euro-
pean Union aims for 40% reduction in emissions and 27%
improvement in energy efficiency by 2030 [2]. Neverthe-
less, energy demand is continuously increasing making en-
ergy management a crucial factor in reducing environmental
impact while ensuring that the growing demand is met [3].

Load forecasting has an essential role in energy manage-
ment as it facilitates power infrastructure planning, genera-
tion scheduling, balancing demand and supply, thus alleviat-
ing the impact of renewable energy generation and assisting
in energy budgeting. Moreover, financial benefits from im-
proved load forecasting can be large: for example, reducing
forecasting error from 15.7% to 12.2% saved 2.5M$ for Xcel
Energy [4].

Advanced metering infrastructure together with massive
deployments of smart meters enables utility companies to
measure and record energy consumption in intervals of one
hour or less for individual buildings or even individual house-
holds. For example, in UK, over 15 million smart meters
are operating across homes and businesses [5]. This big
smart meter data have forged opportunities for new deeper
insights into energy usage patterns and have made possible
large-scale load forecasting on individual consumer level.
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Sensor-based load forecasting approaches use historical
load data collected by smart meters or similar technologies,
often together with meteorological information, to train ma-
chine learning (ML). Conventionally, smart meter data are
transferred to a data center or another centralized system for
storage and for training ML models. There are two main
categories of these centralized solutions: the first category
trains a single model for each smart meter and, thus, gener-
ates individual forecasts for eachmeter, while the second cat-
egory trains a machine learning model with the aggregated
data from several smart meters and, hence, provides aggre-
gated load forecasts [6]. Although both of these centralized
solutions have shown great results, they require transferring
all data to a centralized location, which results in significant
network traffic [7]. Moreover, a centralized ML not only re-
quires sharing local data with the centralized systems impos-
ing security and privacy concerns, but also makes comply-
ing with stringent data regulations such as EU General Data
Protection Regulation (GDPR) difficult [8]. As the number
of smart meters grows, training an individual ML model for
each smart meter becomes computationally expensive and
even infeasible.

Federated Learning (FL) [9] presents a possible solution
to these challenges by decoupling the ability to do train the
ML model from the need to store the data on the cloud or
another centralized system. In FL, a global ML model is
shared across many devices: each device receives a copy of
the global model and improves it by learning from local data.
Then, instead of raw data, the updated parameters of the lo-
cal models are sent to the server to be aggregated and incor-
porated into the global model. FL is a major shift from a
costly central ML system to a distributed ML approach that
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can exploit numerous distributed computational resources.
This learning technique enhances data privacy because the
data stay on the local devices and reduces network traffic
by only exchanging model updates as opposed to raw data
[10]. However, FL assumes that a single model can capture
patterns across diverse clients. In load forecasting, this ap-
proach would entail a single global model capable for gener-
ating individual load forecasts for each smart meter. As a di-
versity of patterns amongmeters is large, a single model may
encounter difficulties in capturing this diversity andmay lead
to inferior forecasts.

Consequently, this paper proposes FL for load forecast-
ing with smart meter data. Since in recent years Recurrent
Neural Networks (RNNs) have been outperforming other load
forecasting techniques [11], we employ anRNNvariant, Long
Short Term Memory (LSTM) Network, as a base learner.
To handle diverse magnitudes of smart meter readings, the
normalization is carried out individually for each smart me-
ter data and then the sliding window technique is used to
prepare data for ML. Two different FL techniques are ex-
amined: Federated Stochastic Gradient Descent (FedSGD)
and Federated Averaging (FedAVG). Moreover, we exam-
ine a dynamic environment in which some devices join the
federation after the training and only use the already trained
model for forecasting without participating in the training.
The results show that both FedSGD and FedAVG achieve
better accuracy than a central model or the individual LSTM
models for each meter. Between the two federated learning
strategies, FedAVG not only achieves higher accuracy than
FedSGD, but also needs a fewer training rounds to converge
and, therefore, generates lower network traffic.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the relatedworks, Section 3 introduces LSTM,
the proposed approach is presented in Section 4, and Sec-
tion 5 explains the experiments and corresponding results.
Finally, Section 6 concludes the paper.

2. Related Work
This section first reviews recent FL works and then dis-

cussesML for load forecasting including studies that employ
FL for load forecasting.

2.1. Federated Learning
FL is a burgeoning learning paradigm that has shown

promising prospects in various industrial and engineering
fields such as health care [12, 13], autonomous vehicle [14],
text analysis [15], and image processing [16], to name but
a few [17]. Leroy et al. [18] proposed an approach based
on federated learning for training speech-based models on
mobile devices. They used an adaptive averaging strategy in
place of weighted averaging to reduce the number of com-
munication rounds required to reach the target performance.
This method achieved competitive accuracy compared to the
centralized approaches.

Liu et al. [19] introduced FedVision, a visual object de-
tection platform enabled by Convolutional Neural Network

(CNN) and FL for training a shared model through a collab-
oration of multiple clients. Since parameters from diverse
local models can have different contributions towards the
shared model performance, FedVision applies a compres-
sion technique to prune less useful weights while preserving
model performance. This results in reduced neural network
size and faster transmission.

To enable training personalized ML models with health
informationwithout compromising privacy, Yiqiang [20] pro-
posed FedHealth. Knowledge from data is aggregated though
federated learning and, then, the local models are personal-
ized by transfer learning. FedHealth adopts the federated
learning paradigm [21] to aggregate the local models; how-
ever, rather than just replacing the local model with the ag-
gregated one, transfer learning is used to personalize the glo-
bal model for each user.

Briggs et al. [22] combined FL with hierarchical clus-
tering (FL+HC). The FL+HC training process consists of
three steps. First, a typical FL model is trained with the
clients local data for a few training rounds. Next, a hierarchi-
cal clustering algorithm is employed to iteratively compare
and merge the clients with similar weights (grouping similar
clients). Once clusters are determined, each cluster trains its
specialized model independently.

Smith et al. introduced MOCHA [23], a federated para-
digm that combines multi-task learning [24] with FL. Each
node in FL may observe data with a distinct distribution,
so it is intuitive to fit a separate model for each local node;
however, these separate models have relationships and ex-
hibit similarities. MOCHA applies multi-task learning tech-
niques to fit separate weight vectors for each node.

In the presence of highly skewed non-IID (independent
and identically distributed) data, the accuracy of FL can re-
duce significantly. To address this problem, Zhao et al. [25]
suggested sharing a small subset of data among all nodes.
Although thismethod has shown the accuracy increase, shar-
ing data introduces security and privacy concerns. Agnostic
Federated Learning proposed by Mohri et al. [26] updates
the shared model using a weighted average of the clients’
gradients and a new optimizationmethod. Their study shows
that the proposed approach contributes to fairness and re-
duces bias.

The reviewed FL works [18, 19, 20, 22, 23, 26, 25, 21]
propose FL techniques and address challenges in diverse do-
mains; however, they have not been applied for load fore-
casting, and their capabilities for load forecasting need to be
investigated. Diversity of distributions and load patterns ob-
served by individual smart meters imposes challenges and
may degrade the accuracy of the single global model cre-
ated through FL. Our study proposes federate learning for
load forecasting and evaluates the performance of FedSGD
and FedAVG in comparison to the central approach and in-
dividual ML models.

2.2. Load Forecasting
Various load forecasting techniques have been developed

over the years [6], but here we focus on machine-learning
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techniques as they have been dominant approaches in sensor-
based forecasting [6]. Grolinger et al. [27] introduced an ap-
proach based on Support Vector Regression (SVR) and lo-
cal learning for load forecasting with big data. Their method
partitions the training set through clustering and then trains
a separate SVM model for each cluster. Local learning with
SVR improved the load forecasting accuracy while achiev-
ing order or magnitude shorter training time than the stand
alone SVR. Zainab et al. [28] proposed a framework for
training in parallel individual models on smart meter data
to reduce training time. A parallel pre-processing stage is
performed on individual smart meter data sets, and then a
single model is trained for each dataset concurrently. The
framework employed a variety of ML algorithms as the base
learners in order to examine trade-offs between model accu-
racy and execution time.

In recent years, deep learning techniques, and especially
RNNs, have been gaining popularity for energy load fore-
casting. RNNs are well suited for this task as they are ca-
pable of learning temporal patterns in energy data and, con-
sequently, they produce accurate predictions outperforming
alternative statistical and machine learning approaches [6].
Sehovac et al. [29] proposed Sequence to Sequence Recur-
rent Neural Network (S2S RNN) with attention mechanism
for load forecasting. The S2S model improves time mod-
elling by combining two RNNs, an encoder and a decoder,
to map the input sequence to the output sequence. The at-
tention mechanism helps capture longer time dependencies
present in the load data by strengthening the link between
the encoder and the decoder.

Tian et al. [30] also used S2S RNN, but they focused on
scaling load forecasting for a large number of smart meter
and proposed Similarity-based Chained Transfer Learning
(SBCTL). In SBCTL, the model for the first meter is trained
in a traditional manner while all other models employ trans-
fer learning to take advantage of the already trained models
according to similarities between energy consumption pat-
terns in smart meters data. While transfer learning aims to
improve learning in a particular domain by reusing knowl-
edge or the model obtain from another domain, federated
learning aims to train a single global ML model for a num-
ber of clients without requiring clients to share their local
data.

An RNN was also used in Online Adaptive RNN pro-
posed by Fekri et al. [11]. In contrast to conventional offline
techniques which train the model once and then use it for in-
ference, Online Adaptive RNN learns from new data as they
arrive. This technique employs Batch-Normalized LSTM
(BNLSTM) as the base learner and an online Bayesian opti-
mizer to tune the model parameters on the fly throughout the
training process. Online Adaptive RNN achieved higher ac-
curacy than conventional LSTMs and several other adaptive
learning approaches.

The reviewed works [6, 29, 30, 11] achieved good ac-
curacy in load forecasting studies; however, they all train
an individual ML model for each smart meter or a group
of meters which becomes computationally very expensive

when the number of smart meters grows. Also, these tech-
niques train the ML models on a centralized system and,
thus, require transferring all data from all smart meters to
that server, which results in increased network traffic and la-
tencies. These centralized solutions are also associated with
security and privacy vulnerabilities due to sharing and trans-
mitting data from smart meters to the central server.

To address these issues, Taïk et al. [7] examine the use
of federated averaging for short-term load forecasting. The
proposed method employs federated averaging architecture
with the weighted averaging as the aggregation technique
and LSTM as the global model. Their initial results show
that FL is a promising approach for an hour ahead forecast-
ing. Similarly, Li et al. [31] also took advantage of the FL
with the weighted averaging; however, their study focused
on the security aspect rather than the forecasting accuracy,
and, as a result, the model’s time complexity was high as it
included encryption and decryption time.

Yuris et al. [32] proposed a hybrid of FL and clustering
to predict electric vehicle charging station demand on the
power grid. The charging stations are first clustered based on
their location and then federated averaging approach is ap-
plied individually on each cluster. FL with clustering
achieved the forecasting accuracy very similar to standalone
FL.

Reviewed studies on FL for load forecasting [7, 32, 31]
present initial attempts to introduce FL in this domain; how-
ever, there is a need for deeper understanding of FL capabil-
ities and limitations. Yuris et al. [32] focus on charging sta-
tions demand while Taïk et al. [7] investigate FL with smart
meter, but they select only the clients with similar proper-
ties. In contrast, our study investigates FL with smart me-
ter data, but does not assume clients’ similarity, and exam-
ines FL in presence of clients with different data distribu-
tions. The work of Li et al. [31] is primarily focused on the
security aspect, while we investigate forecasting accuracy.
Moreover, our work compares two FL techniques, FedSGD
and FedAVG, and examine the behaviour of the FL system
when some clients join the federation upon the completion
of training.

3. Long Short-Term Memory
Recurrent Neural Networks (RNNs) have recently be-

come vastly popular in various domains, including natural
language processing and electric load forecasting, because
of their ability to model temporal dependencies present in
sequential data [33]. However, regular RNNs suffer from
gradient vanishing and exploding problems, which impedes
learning with long data sequences [11]. Long Short Term
Memory (LSTM) networks overcome these issues by intro-
ducing additional gates for better control of the gradient flows
with the cell. The LSTM cell is illustrated in Fig.1 while its
computation at time t is given as follows:

it = �(Wxixt + bxi +Wℎiℎt−1 + bℎi) (1a)
ft = �(Wxfxt + bxf +Wℎfℎt−1 + bℎf ) (1b)
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Figure 1: The standard LSTM cell

ot = (Wxoxt + bxo +Wℎoℎt−1 + bℎo) (1c)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wxgxt + bxg (1d)

+Wℎgℎt−1 + bℎg) (1e)
ℎt = ot ⊙ tanh(ct) (1f)

Here, i, f and o are input, forget, and output gates, c is the
cell state and, ℎ is the hidden state. Symbol ⊙ represents
the elementwise multiplication and � is the sigmoid activa-
tion function. Input-hidden and hidden-hidden weights are
Wx’s and Wℎ’s, whereas the corresponding biases are bx’s
and bℎ’s.

This memory mechanism makes LSTMs successful in
load forecasting tasks [11]; therefore, our federated learning
approach employs LSTM architecture to learn from sequen-
tial smart meter data.

4. Federated Learning for Load Forecasting
Conventional ML for load forecasting collects the read-

ings from individual smart meters in a data center or another
centralized system and then trains ML models on that cen-
tralized system. In contrast, Federated Learning (FL) trains
anMLmodel across multiple data holders such as decentral-
ized nodes and edge devices while keeping data local and
transfers only the model updates to the central server. Con-
sider K data holders F1, ...FK wishing to train a single ML
model by consolidating their respective data D1, ..., DK . A
centralized method brings all data together in the central-
ized location and uses D = D1,∪ ⋅ ⋅ ⋅ ∪, DK to train a single
model. In federated learning, data holders F1, ...FK collab-
oratively train a modelMFED without data holders Fi shar-
ing their data Di with others, under the condition that the
performance of federation PFED remains very close to the
performance of the single central model PSUM . This condi-
tion can be stated as:

|PFED − PSUM | ≤ ! (2)

where ! is a small non-negative real number [10].
For load forecasting, we train a deep neural network with

multiple smart meter data distributed over the network with-
out explicitly exchanging data sampleswith the central server.
None of the local data are ever transmitted between parties;

only model-related parameters are shared. The federated
learning process is described in the next subsection, followed
by the local preprocessing and the considered FL algorithms.

4.1. Federated Learning Process
Fig. 2 depicts FL process for load foresting: a single

model is trained collaboratively over distributed smart meter
data. As described in section 3, the LSTMmodel has shown
great successes in load forecasting; therefore, it is used here
as well. While we consider two FL strategies, FedSGD and
FedAVG, the overall FL process is the same with one round
of training consisting of the following steps:
Step 1: If this is the first training round, the server initializes
the global LSTM weights; otherwise, the server proceeds
with the weights obtained from the previous training round.
A random subset of the smart meter devices is selected for
the current training round, and the server sends a copy of
the global model to those selected devices. Only a subset of
devices participate in each training round as this improves
convergence [10].
Step 2: The devices receive a copy of the global model and
train it using only the local data. To enable training with
LSTMs, this local data is preprocessed and transformed into
a suitable form: as described in Subsection 4.2, the prepro-
cessing is the same for both algorithms FedSGD or FedAVG.
On the other hand, specifics of the local training depend on
the type of FL, FedSGD or FedAVG.
Step 3: The devices that participated in the local training
send the updated model parameters to the server. As each
device trained the model with different local data, the up-
dated parameters are different among devices.
Step 4: The server receives the local model parameters and
aggregates them to construct an improved global model. In
this study, we consider two main aggregation approaches,
FedAVG and FedSGD. The process repeats from step 1 until
convergence.
Step 5: After the model converges, the server sends the
trained global model to all participants.
Step 6: The participants replace the out-of-date local mod-
els with the updated one received from the server and are
now ready to carry our load forecasting. Note that when the
trained model is used for forecasting, local data is still pre-
pared with the same preprocessing technique as the one used
during the model training in Step 2.

Conventional ML typically assumes independent and
identically distributed (IID) variables [34, 31, 35]; however,
data collection in the FL setup violates this assumption. The
non-IID data in load forecasting are caused by the smart
meters corresponding to particular users or groups of users
with different preferences and behavioral patterns. Alterna-
tively stated, smart meters typically collect data in different
contexts, leading to significant differences in the data dis-
tributions and patterns among them. Although this imposes
challenges for ML training, the proposed FL for load fore-
casting achieves better accuracy than the conventional ML
approaches as will be shown in the evaluation.
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Figure 2: Federated Learning for Load Forecasting

4.2. Local Preprocessing
Steps 2 and 6 of the federated learning process, as men-

tioned in Subsection 4.1, both involve preprocessing. The
preprocessing is significant in conventionalML, but it is even
more important in federated setting as data at the local nodes
may contain different distribution, patterns, and data scales,
which makes the training process more difficult.

In conventional ML, data are scaled to reduce the large
features dominance and improve the convergence; however,
while conventionalML scales after aggregating all data, here
we scale data individually on each node. If smart meters ob-
serve similar patterns but with different magnitudes, this in-
dividual scaling will make these load profiles more similar
to each other and facilitate training. Specifically, Min-Max
normalization is applied at each node individually. It trans-
forms x to x′ without distorting differences in the ranges of
values as follows:

x′ =
x −Min(x)

Max(x) −Min(x)
(3)

where x is the original feature value, Min(x) and Max(x)
are the minimum and maximum of that feature on the con-
sidered node, and x′ is the normalized value in the range of
0 to 1 [11].

Next, data must be transformed into a form suitable for
modeling temporal dependencies and for use with LSTMs.
As common when RNNs are used with sensor data, the slid-
ing window technique is applied [11]: it converts time-series
data into windows of size w × f where w is the number of
time steps contained in the window and f is the number of
features. The first window contains the first w smart meters
readings. Then, the window slides for s times steps, and the
second window contains readings from s + 1 to s + w, and
so on.

Here, features include the load data reading from smart
meters and any other features generated from the reading
date/time or from meteorological information. In experi-
ments, we include features such as the day of the week, the
hour of the day, and the day of the year. Although sequential
models, such as LSTM, are able to extract temporal patterns,
these additional features assist the model with capturing the
date and time-related patterns.

4.3. Federated Learning Algorithms
In general, the federated learning objective forK devices

can be described in a form of the optimization problem:

min
w
l(w) =

K
∑

k=1

nk
n
Lk(w) (4a)

where Lk(w) =
1
nk

∑

i∈Pk

li(w) (4b)

where l(w) is the global model’s loss function, Lk(x) is the
loss of the ktℎ device, and li(w) is the loss for sample i. Pk,
k ∈ {1, ..., K} denotes a partition of data points stored on
the device k, nk = |Pk| is the size of Pk, and n =

∑K
k=1 nk

is the size of all data on all devices. The objective is to find
w which minimizes the loss l(w) over the distributed data P
with the assumption that Pi may be very different from Pj
for devices i≠j.

Here, we consider two ways of solving this optimization
problem: Federated Stochastic Gradient Descent and Feder-
ated Averaging.
Federated Stochastic Gradient Descent (FedSGD). In
FedSGD [36], a distributed stochastic gradient descent al-
gorithm is applied in the federated setting to optimize the
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Algorithm 1 Federated Stochastic Gradient Descent
(FedSGD)
1: Server Execution:
2: Initialize global model weights w0, and learning rate �
3: for each round t=1,2,... do
4: St ← random set of m clients
5: Send global model to St clients
6: for each client k ∈ St in parallel do
7: gkt+1 ← GradientStep(k,wt)
8: wt+1 ← wt − �

∑

k∈K
nk
n g

k
t

9: Send the model to all participants

10: Client Execution:
11: procedure GRADIENTSTEP(k,w)
12: g ←▽l(w) over Pk
13: return g to server

model collaboratively: Algorithm 1 depicts the steps of
FedSGD. For each communication round (Line 3), a subset
of devices St is selected randomly (Line 4) to receive a copy
of the global model (Line 5). Then, each client device k from
St (Line 6) takes one step of the gradient descent g locally
on the current modelwt using its local data (Line 7). Proce-
dureGradientStep (Line 11) is executed on clients: it calcu-
lates the gradient▽ over local data Pk and returns it to the
server. Then, the server aggregates the received gradients
by taking the weighted average of the clients gradients pro-
portional to the number of training samples and the global
model is updated using this weighted average and learning
rate �, as shown in Line 8. The process repeats from Line 3
until convergence. Finally, the trained model is broadcasted
to all participants (Line 9).
Federated Averaging (FedAVG). Like FedSGD, FedAVG
also solves the defined FL optimization problem. In contrast
to FedSGD, in which the local clients take one step of the
gradient descent and exchange the gradients without apply-
ing them to the local models, FedAVG allows the devices to
update the local model by iterating through weight updates
w ← w − �▽l(w) multiple times before sending the up-
dated model weights to the server. Algorithm 2 presents the
FedAVG process. Each round of FedAvg starts the same as
FedSGD by randomly selecting a subset of devices St and
broadcasting the model to the chosen devices (lines 4 and
5). The selected devices train in parallel their local models
with the local data for multiple epochs (Line 7). Procedure
ClientUpdate, Line 11, shows the local model update pro-
cess: the local data Pk are divided into the batches B of size
sb (Line 12) and the local device trains the received model
for multiple epochs with created batches as shown in Lines
13 to 15. Each device from St sends the new local weights
to the server (Line 16), and the server updates the global
model by calculating the weighted average of the received
local weight as shown in Line 8. As in FedSGD, the process
is repeated from Line 3 until convergence and, finally, the
trained model is broadcasted to all participants (Line 9).

Algorithm 2 Federated Averaging (FedAVG)
1: Server Execution:
2: Initialize global model weights w0
3: for each round t=1,2,... do
4: St ← random set of m clients
5: Send global model to St clients
6: for each client k ∈ St in parallel do
7: wkt+1 ← ClientUpdate(k,wt)
8: wt+1 ←

∑

k∈K
nk
n w

k
t

9: Send the model to all participants

10: Client Execution:
11: procedure CLIENTUPDATE(k,w)
12: B ← split Pk into batches of size bsB
13: for each local epoch e < E do
14: for batch b ∈ B do
15: w← w − �▽l(w)
16: return w to server

FedSGD is an efficient method that guarantees the con-
vergence in FL settings and is barely influenced by the non-
IID problem under adequate training parameters [37]; how-
ever, it requires a large number of training rounds to pro-
duce good results [36]. FedAvg is an FedSGD alternative
that shows significant improvement in communication and
time efficiency [37]. The basic idea behind FedSVG is that
if all local devices start from the same initialization param-
eters, averaging the weights is strictly equivalent to averag-
ing the gradients and, therefore, does not necessarily harm
the averaged model performance. Nevertheless, it is shown
that heterogeneity of data slows down the convergence of
FedAVG [38]. Xiang et al. [38] proved that by having an
adaptive learning rate, the model can converge on non-IID
data; consequently, we use adaptive learning rate as well.

Heterogeneity of smart meter data is high as these data
are collected in different contexts and influenced by diverse
human behaviour resulting in different load patterns and dis-
tributions. FedSGD is well suited for this context as it has
shown promising results in learning from heterogeneous data
[37]; therefore, it is examined here with respect to load fore-
casting. To reduce communication rounds and time com-
plexity, we examine FedAVG, but the standard SGD is re-
placed with an Adam optimizer which embraces adaptive
learning rate to accelerate convergence and improve the learn-
ing capability on non-IID data [38].

5. Evaluation
This section first introduces the dataset and evaluation

metrics. Next, the performance of the proposed FL meth-
ods is compared with central training and individual LSTM
models. Then, we examine a dynamic environment in which
some devices do not participate in training, but use the trained
model for local load forecasting. Finally, FedSGD and Fe-
dAVG are compared in terms of convergence, and the overall
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results are discussed.

5.1. Dataset and Evaluation Metrics
This study is performed in collaboration with London

Hydro, a local electrical distribution utility. Federated learn-
ing for load forecasting will enable London Hydro to provide
large-scale forecasting services to its residential consumers
and, consequently, increase return on investment from the
smart meter infrastructure. London Hydro provided real-
world data for the evaluation of the presented approaches
through Green Button Connect My Data (CDM), a platform
for secured sharing of energy data with the consumer’s con-
sent. The evaluation was conducted with 19 residential con-
sumers, each one containing hourly energy consumption for
three years, resulting in 25,560 readings per households, or
485,640 readings in total. As these readings are also used
for the billing purposes, they are highly reliable and have
the same reading frequency and the number of samples for
each household.

Additional features including the day of the year, the day
of the month, the week of the year, the day of the week,
and the hour of the day were devised from the load read-
ing date/time to assist with modelling daily, monthly, and
weekly patterns.

Diversity among consumers in terms of load profiles is
large: for illustration, Fig. 3 depicts the load data for the
three households. It can be observed that load patterns, as
well as loadmagnitudes, vary greatly among consumers. This
diversity makes it difficult for a single model to capture all
patterns among consumers. Therefore, many studies train a
single model per consumer [30]; however, here we examine
devising a single model for all consumers through federated
learning.

For the evaluation, each individual household dataset is
split into 70% for training and 30% for testing. This split re-
mains the same for federated learning experiments as well
as for conventional ML experiments, centralized and indi-
vidual models for each meter, conducted for the purpose of
comparison.

The model performance is compared with two metrics:
Root Mean Square Error (RMSE) and Mean Absolute Per-
centage Error (MAPE). RMSEmeasures the deviation of the
residuals (prediction errors); in other words, it measures how
far the predicted values are form the observed (actual) val-
ues. MAPE is expressed as follows:

RMSE =

√

√

√

√
1
N

N
∑

t=1
(yt − ŷt)2 (5)

where yt are the actual values, ŷt are the corresponding pre-
dicted value, and N is the number of observations.

The MAPE metric measures the average absolute error
and is calculated as follows:

MAPE = 1
N

N
∑

t=1

|

|

yt − ŷt||
yt

(6)

Note that RMSE is a scale dependent error metrics: the
same RMSE value has a different meaning for different data
magnitudes. On the other hand, MAPE expresses errors in
terms of percentages and, thus, is better suited for compari-
son among data sets.

5.2. Comparison of FedAVG and FedSGD with
Individual LSTMs and Central Model

In this subsection, the proposed FedAVG and FedSGD
for load forecasting are compared to the individual LSTMs
and the centralmodel. The individual LSTMs approach refers
to training an individual LSTM for each household. This ap-
proach does not require any exchange of data with the cen-
tral server, but the drawback is that there is a large number of
models that need to be maintained individually. As individ-
ual models are trained for a specific client, they are person-
alized models and, thus, are good at capturing intricacies of
the specific clients. A comparison of FedAVG and FedSGD
with individual LSTM will examine how good the federated
learning strategies are in training a single model to capture
diversities among clients.

In the central model, data from all households are com-
bined to form a coherent dataset used to train a single LSTM.
In this approach, all data must be transferred to thecentral lo-
cation. By comparing are FL strategies to the central model,
the ability of the proposed FL models to learn from hetero-
geneous data will be determined.

Figure 3: Electricity load examples for Home 1, Home 10, and
Home 15
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To keep the comparison fair, all models, federated, cen-
tral, and individual, use the same architecture consisting of
one layer LSTM with 32 hidden units. Tuning hyperparam-
eters individually for each of the considered models has a
potential to increase accuracy; however, this would result in
massive computational cost. Moreover, in FL, hyperparam-
eter tuning is still an open challenge [34] because of the dis-
tributed environment, FL-specific hyperparameters, and the
network traffic associated with tuning.

For the federated learning strategies, FedAVGand FedSGD,
six clients participate in each round of training. This number
was selected as it allows for diversity of clients in each round
while still including less then one third of clients per round.
In FedAVG, one round of training on the client consists of
five epoch, thus allowing clients to make reasonable learn-
ing steps before aggregation. Further tuning could improve
federated learning results, but would select the parameters
only for this specific combination of clients.

5.2.1. Forecasting one hour ahead
Table 1 shows the average test error in terms RMSE and

MAPE for FedSGD, FedAVG, individual LSTMs, and the
central model for one hour ahead forecasts. The two fed-
erated learning strategies, FedSGD and FedAVG, achieved
lower errors that individual LSTMS and the central model.
FedSGDachieved the lowest RMSE test error while FedAVG
obtained the lowestMAPE test error. As RMSE for FedAVG
is very close to RMSE for FedSGD, the overall better model
is FedAVG because of its low MAPE.

Table 1 examines the average accuracy for all house-
holds, but we also need to investigate how models perform
for individual households. Fig. 4 depicts MAPE errors ob-
tained by the four approaches, for each house individually. It
can be observed that FedAVGoutperforms others approaches
for all but 5 households. For those 5 households, the central
model achieves only slightly better accuracy; however, the
central model performs worse in most households making
FedAVG an overall better model. It is also worth noting that
FedSGD performance is very similar to that of the central
model, with almost the same MAPE error. This confirms
the findings from Table 1 with FedSGD obtaining very close
average MAPE to the central model.

While Fig. 4 compares the accuracy of the considered
algorithms in terms of MAPE, Fig. 5 does so in terms of
RMSE. In terms of RMSE, all algorithms achieve similar
accuracy for most houses, and there is no clear winner. Nev-
ertheless, federated algorithms achieve similar accuracy to
conventional ML while not requiring data sharing.

RMSE measures the standard deviation of errors (Equa-
tion 5) and because of squaring, it imposes high penalty on
larger errors and is sensitive to outliers. In contrast, MAPE
calculates the average percentage error (Equation 6). More-
over, MAPE expresses the error as a percentagewhile RMSE
is scale dependent with the same unit as the measured value.
Becausemagnitude of the energy consumption varies among
houses, MAPE is better suitedwhen comparing among houses.
In terms of MAPE, FedSGD achieves better accuracy than

Table 1
Average RMSE and MAPE errors for all 19 houses: one hour
ahead prediction

Error FedAVG FedSGD LSTM Central
Model

MAPE 14.7522 16.7775 19.3123 16.8851
RMSE 0.6138 0.6084 0.6303 0.6200

the remaining algorithms as observed in Table 1 and Fig. 4.
An example of predicted versus actual values is shown

in Fig. 6: it depicts the forecasts obtained by each of the
four approaches for house 13. It can be observed that for the
shown segment, the predicted values better match the actual
values for FedAVG than for the other approaches. The re-
maining approaches, central model, individual LSTMs, and
FedSGD, appear to obtain reasonable load forecasts but no
distinction can be made regarding which one is better. Nev-
ertheless, for this example, the best predictions are obtained
by FedAVG, which corresponds to the observation seen with
MAPE metrics shown in Table 1 or Fig. 4.

Figure 4: MAPE errors for FedAVG, FedSGD, LSTMs, and
Central Model: one hours ahead prediction

Figure 5: RMSE errors for FedAVG, FedSGD, LSTMs, and
Central Model: one hours ahead prediction
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Figure 6: Actual versus predicted load for House 13: one hour
ahead forecast

5.2.2. Forecasting 24 hours ahead
While Table 1, and figures 4 and 5 show results for one

hour ahead prediction, Table 2 and figures 7 and 8 show re-
sults for 24 hours ahead forecasting. It can be observed from
Table 2 that FedAVG achieved the best average accuracy in
terms of MAPE while in terms of RMSE, the accuracy of
FedAVG, FedSGD, LSTMs, and the central model was sim-
ilar. Thus, FedAVG can be considered the best model for 24h
ahead forecast. Comparing accuracy of 24h ahead forecasts,
Table 2, with one hour ahead, Table 1, the average error is
lower for shorter forecasting horizon, which is expected as
it is, in general, easier to predict fewer hours ahead.

Fig. 7 shows MAPE values for each houses individually,
for each of the four approaches. It can be observed that Fe-
dAVG and individual LSTMs achieve lower accuracy than
the other two methods for most of the houses. For a few
houses, individual LSTMs achieved lower errors, but over-

Table 2
Average RMSE and MAPE errors for all 19 houses: 24 hours
ahead forecast

Error FedAVG FedSGD LSTM Central
Model

MAPE 17.3870 31.2705 20.5328 55.2167
RMSE 0.6868 0.6842 0.6439 0.6554

all, FedAVG is better as its average MAPE is lower than for
other approaches as can be seen from Table 2.

Comparing 24 hours ahead forecasting in terms of RMSE,
Fig. 8, all four algorithms show similar accuracy for all
houses. This matches the observation from Table 2, where
all four algorithms have similar average RMSE. Neverthe-
less, as MAPE is better suited for data sets with different
magnitudes, and FedAVG outperformed other approaches in
terms of MAPE, FedAVG is the preferred algorithm.

Fig. 9 shows an example for 24 hours ahead forecast.
For this house and for the shown forecasting segment, Fe-
dAVG gives predictions closer to actual values. This con-
firms the findings from MAPE comparison in Table 2: Fe-
dAVG achieves better accuracy then the other approaches for
24 hours ahead forecasts.

Figure 7: MAPE errors for FedAVG, FedSGD, LSTMs, and
Central Model: 24 hours ahead forecast

Figure 8: RMSE errors for FedAVG, FedSGD, LSTMs, and
Central Model: 24 hours ahead forecast
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Figure 9: Actual versus predicted load for House 17: 24 hours
ahead forecast

5.3. Evaluation in Dynamic Environment
This subsection examines if the model trained with fed-

erated learning can be used for the smart meters that did not
participate in training. This represents a dynamic environ-
ment where some smart meters join the federation after the
training is complete and only use an already trained model
for forecasting.

For these experiments, the houses are divided into three
groups: first 6 houses, second 6, and remaining 7 houses.
TheMLmodel is first trainedwithout the first group of houses.
Then this model is evaluated of the first group of houses
and results are compared to the accuracy achieved when all
houses participating in training. The same is repeated for
the second and the third group of houses. Figures 10 and
11 show the results in terms of MAPE and RMSE for one
hour ahead forecasts. ’Absence’ indicates that the specific
group of houses did not participate in training, while pres-

Figure 10: Dynamic environment: MAPE errors for FedAVG,
FedSGD, and Central models: one hour ahead forecast

Figure 11: Dynamic environment: RMSE errors for FedAVG,
FedSGD, and Central models: one hour ahead forecast

ence signifies that all houses participated in training. Note
that an individual LSTM cannot be considered here as it re-
quires the use of the target house data for training. Also, for
each group of houses, the evaluation is always performed
only on that group of houses, although other houses partici-
pated in training. This is somewhat similar cross-validation,
but instead of randomly selecting the validation set sampled,
a group of houses is assigned to the validation set.

In terms of MAPE, Fig. 10, all algorithms achieved bet-
ter accuracy when all data are used for training, which is to
be expected. However, even when a group of houses did not
participate in training, the model was able to achieve the ac-
curacy close to that of the model trained with all data. For
the last 7 houses, FedSGD and FedAVG achieved almost ex-
actly the same accuracy when those houses participated and
did not participate in the training.

In terms of RMSE, Fig. 11, there was hardly any dif-
ference if the group of houses participated in the training or
not. This demonstrates that for one hour ahead forecasting,
federated learning strategies are successfully even for smart
meters that did not participate in training. Figures 12 and 13
examine federated learning for 24 hours ahead forecasting
in a dynamic environment: Fig. 12 shows MAPE while 13
shows RMSE metrics. As before, federated learning strate-
gies do not exhibit overall performance degradation when
some groups of houses do not participate in training.

5.4. Convergence and Computation Cost
In this subsection, the proposed FedAVG and FedSGD

algorithms are assessed in terms of convergence. In general,
the system converges if further training does not significantly
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Figure 12: Dynamic environment: MAPE errors for FedAVG,
FedSGD, and Central models: 24 hours ahead forecast

Figure 13: Dynamic environment: RMSE errors for FedAVG,
FedSGD, and Central models: 24 hours ahead forecast

improve the model performance. For neural networks, con-
vergence is examined in respect to epochs; however, in FL
we are interested in the training rounds as they drive the com-
munication between clients and the server. In FedSGD, each
client performs only a single step of gradient descent in one
training round. In contrast, FedAVG carries out several gra-
dient descent steps on the client before communicating the
updates back to the server.

To examine convergence, the same setup has been used
as described in Subsection 5.2. The training errors for up to
150 rounds for the two algorithms, FedSGD and FedAVG,
are shown in Fig. 17. As expected, both converge to simi-
lar errors, but FedSGD takes many more rounds to converge
than FedAVG as FedAVG performsmultiple steps in a single
round. These training rounds are indicators of the commu-
nication and, therefore, it can be concluded that the network
traffic in FedAVG is much lower than in FedSGD.

Furthermore, FedAVG computation is compared to that
of the centralmodel and individual LSTMs. With five epochs
in each training round, FedAVG converged after the fifth
epoch as can be seen from Fig. 14. The centralized model
converged around the eleventh epoch, Fig. 15, while the con-
vergence of individualmodels varied among different houses,
Fig. 16, with majority converging before 15th epoch; thus,
15 epochs are considered for computation analysis. Note that
convergence for the central model and individual LSTMs
is shown in respect to epochs while for FedAVG, training
rounds are used. This is because in FL, training rounds rep-
resent the steps of the training process.

Table 3 compares the training computation of FedAVG,
the central model, and individual LSTMs. Each approach

Figure 14: MSE for each FedAVG training round

Figure 15: MSE for each epoch: central model

Figure 16: MSE for each epoch: three examples of individual
LSTMs

has the same quantity of data available and uses the same
batch size of 250. Therefore, each one processes 80 batches
per epoch. For FedAVG, five rounds are needed, each one
with six clients executing five epochs. This results in 80
batcℎes × 5 rounds × 6 clients × 5 epocℎs = 12, 000 runs
over batches. For the central model and individual LSTM
the concept of training rounds does not apply and we assume
that 15 epochs are sufficient as the central model and most
individual LSTMs converge with 15 epochs (figures 15 and
16). Each of these two approaches has to process data from
19 houses resulting in a total of 80 batcℎes × 19 ℎouses ×
15 epocℎs = 22, 800 runs over batches.

Architectures for all models have the same structure:

MN Fekri et al.: Preprint submitted to Elsevier Page 11 of 14



Distributed Load Forecasting using Smart Meter Data: Federated Learning with Recurrent Neural Networks

Table 3
Computation Comparison between FedAVG, Central Model, and Individual LSTMs

Algorithm Batches/epoch Rounds Clients Epochs Total Time(sec)

FedAVG 80 5 6 5 12000 61.98
Central Model 80 N/A 19 15 22800 117.77
Individual LSTMs 80 N/A 19 15 22800 119.99

LSTMwith the same number of layers and the same number
of parameters. Therefore, the time to process a single batch
is similar across all morels. As FedAVG needs 12,000 runs
while the other two approaches need approximately 22,800
runs, FedAVG will be significantly faster. Note that this
ignores the fact that in FedAVG, in each training rounds,
clients train in parallel reducing the computation time. With
individual LSTMs, parallelization is possible while the cen-
tral model requires sequential processing.

However, the main benefit of FL is that it achieves better
accuracy than the other approaches while not requiring the
clients to share their local data. Moreover, the clients can
join the federation after the training is complete and FedAVG
still achieves good forecasting accuracy as shown in Section
5.3.

5.5. Discussion
With increasing concerns regarding security and privacy,

it is becoming more important to developML techniques ca-
pable of training ML models without requiring participants
to share their local model. Federated learning is a step in
this direction although it is still in its early stages, and it re-
quires further improvements and examinations in different
contexts. This study investigates the abilities of the FedSGD
and FedAVG approaches in load forecasting.

Both algorithms, FedSGD and FedAVG, achieved com-
parable or better accuracy than a single central model or in-
dividual local models for one hour ahead forecasts, as shown
in Table 1. For 24 hours ahead, FedAVG outperformed other
algorithms in terms of MAPE while in terms of RMSE there
was very little difference among algorithms. Overall, Fe-
dAVGwas the best algorithm as it is able to achieve high ac-
curacy without requiring the clients to share their local data.

In addition to examining the overall error, it is impor-
tant to consider performance on individual houses. It terms
of MAPE, FedAVG performed better than FedSGD for one
hour and 24 hour ahead forecasting, as observed from figures
4 and 7. Moreover, FedAVG required fewer training rounds
than FedSGD (Fig. 17).

Our experiments from Subsection 5.3 also show that the
trained model can be used with a good success for smart me-
ters that did not participate in the training. This is important
in scenarios when new smart meters are added to the feder-
ation or when there are very little data from some meters.

RNN-based models, including LSTMs, have been out-
performing other architectures for load forecasting on indi-
vidual smart meters [6, 29] and this study demonstrated that
FedAVG achieves similar or better results than individual
LSTMs. Moreover, with individual models, there must be

Figure 17: The training loss for FedAVG and FedSGD for 50
training rounds.

sufficient data from each individual household to train the
model. In contrast, FedAVG is even successful for house-
holds that did not participate in training as shown in Subsec-
tion 5.3.

To further examine the performance of FedAVG,we com-
pare it to simple shifting and the FL approach proposed by
Taïk et al. [7] in Table 4. Simple shifting for one hour ahead
forecasting uses the consumption at the current time step t as
the forecast for the next time step t + 1. For 24 hours ahead
forecasting, values from last 24 hours serve as the forecasts
for the next 24 hours. The work of Taïk et al. [7] is the most
related work to ours, as it also employs federated learning
for load forecasting. Similar to our work, they use the Fe-
dAVG aggregating strategy, but, while we employ an adap-
tive learning rate, they use a fixed learning rate. Moreover,
their study only considers one hour ahead forecasting.

As seen from Table 4, our FedAVG technique achieved
better results than Taïk et al. [7] in terms of MAPE and
RMSE for both one hour ahead and 24 hours ahead forecast-
ing. Simple shifting archived better accuracy than FedAVG
for one hour ahead forecast; however, for 24 hours ahead,
simple shifting achieved very poor results in comparison to
our FedAVG or the work of Taïk et al. [7]. Consequently,
FedAVG is an overall better approach.

6. Conclusion
Traditional machine learning for load forecasting in-

volves the central server which carries out ML training. The
drawback of this approach is that all the data collected by
different devices must be sent to the central server, what in-
troduces privacy and security risks, puts strain on communi-
cation networks and requires large centralized computational
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Table 4
MAPE and RMSE for FedAVG, Simple Shifting, and Taïk et al. [7]: one hour ahead and
24 hours ahead prediction

MAPE(%) RMSE

Algorithm one hour ahead 24 hours ahead one hour ahead 24 hours ahead

FedAVG 14.7522 17.3870 0.6138 0.6868
Taïk et al. [7] 19.7516 21.9798 0.6569 0.7358
Simple Shifting 13.0784 42.5700 0.5555 1.6719

resources.
Consequently, this paper proposes a federated learning

(FL) approach for load forecasting with smart meters ca-
pable of training a machine learning model in a distributed
manner, without requiring the participant to share their lo-
cal data. In the proposed FL approach, a global ML model
is shared across independent devices corresponding to indi-
vidual smart meters and each device updates its local copy of
the shared model using local data. Then, these local updates
are sent to the server to be aggregated and merged into the
global model. As recurrent neural networks can capture tem-
poral dependencies and have been very successfully in load
forecasting, the proposed approach employs LSTM, a vari-
ant of RNN, as the base learner. Two strategies, FedSGD
and FedAVG, have been examined: they differ in the way
they train the local model and in the frequency of sending
the model updates to the server.

The experiments show that both, FedAVG and FedSGD
approaches achieve higher accuracy than the individual
LSTMs and central models for one hour forecasting horizon.
For this horizon, FedAVG achieved slightly better accuracy
than FedSGD. For 24 hours ahead, FedAVG outperformed
all other approaches while FedSGD experienced conversion
difficulties and exhibited higher errors than individual
LSTMS. Also, the proposed approach was evaluated in a dy-
namic environment where some smart meters join the fed-
eration after the training is complete and use the already
trained model for load forecasting. The results demonstrate
that even in this scenario, the FedAVG and FedSGD achieve
high accuracy.

The futureworkwill evaluate the proposed approachwith
a large number of homes and examine the impact of various
RNN architectures. Moreover, we will investigate customiz-
ing the global model by fine-tuning it on each client with
local data.
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V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan,
et al., Towards federated learning at scale: System design, arXiv
preprint arXiv:1902.01046 (2019).

[10] Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: Con-
cept and applications, ACM Transactions on Intelligent Systems and
Technology 10 (2019) 1–19.

[11] M. N. Fekri, H. Patel, K. Grolinger, V. Sharma, Deep learning for load
forecasting with smart meter data: Online adaptive recurrent neural
network, Applied Energy 282 (2021) 116177.

[12] X. Wu, Z. Liang, J. Wang, Fedmed: A federated learning framework
for language modeling, Sensors 20 (2020) 4048.

[13] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis,
W. Shi, Federated learning of predictive models from federated elec-
tronic health records, International journal of medical informatics 112
(2018) 59–67.

[14] S. R. Pokhrel, J. Choi, Federated learning with blockchain for au-
tonomous vehicles: Analysis and design challenges, IEEE Transac-
tions on Communications 68 (2020) 4734–4746.

[15] Y. Wang, Y. Tong, D. Shi, Federated latent dirichlet allocation: A
local differential privacy based framework, in: AAAI Conference on
Artificial Intelligence, volume 34, 2020, pp. 6283–6290.

[16] W. Liu, L. Chen, Y. Chen, W. Zhang, Accelerating federated learning
via momentum gradient descent, IEEE Transactions on Parallel and
Distributed Systems 31 (2020) 1754–1766.

[17] L. Li, Y. Fan, M. Tse, K.-Y. Lin, A review of applications in federated
learning, Computers & Industrial Engineering (2020) 106854.

[18] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, J. Dureau, Federated
learning for keyword spotting, in: IEEE International Conference on
Acoustics, Speech and Signal pages=6341–6345, year=2019, ????

[19] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng,
T. Chen, H. Yu, Q. Yang, Fedvision: An online visual object detec-
tion platform powered by federated learning, in: AAAI Conference

MN Fekri et al.: Preprint submitted to Elsevier Page 13 of 14

https://www.unep.org/explore-topics/energy
https://www.unep.org/explore-topics/energy
https://www.eea.europa.eu/signals/signals-2017/articles/energy-and-climate-change
https://www.eea.europa.eu/signals/signals-2017/articles/energy-and-climate-change


Distributed Load Forecasting using Smart Meter Data: Federated Learning with Recurrent Neural Networks

on Artificial Intelligence, volume 34, 2020, pp. 13172–13179.
[20] Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: A federated

transfer learning framework for wearable healthcare, IEEE Intelligent
Systems 35 (2020) 83–93.
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