
Inf Retrieval J
https://doi.org/10.1007/s10791-018-9332-3

1 3

(CF)2 architecture: contextual collaborative filtering

Dennis Bachmann1 · Katarina Grolinger1 · Hany ElYamany1,2  · Wilson Higashino1 ·
Miriam Capretz1 · Majid Fekri3 · Bala Gopalakrishnan3

Received: 2 October 2017 / Accepted: 30 April 2018
© The Author(s) 2018

Abstract  Recommender systems have dramatically changed the way we consume con-
tent. Internet applications rely on these systems to help users navigate among the ever-
increasing number of choices available. However, most current systems ignore the fact that
user preferences can change according to context, resulting in recommendations that do not
fit user interests. This research addresses these issues by proposing the (CF)2 architecture,
which uses local learning techniques to embed contextual awareness into collaborative fil-
tering models. The proposed architecture is demonstrated on two large-scale case studies
involving over 130 million and over 7 million unique samples, respectively. Results show
that contextual models trained with a small fraction of the data provided similar accuracy
to collaborative filtering models trained with the complete dataset. Moreover, the impact of
taking into account context in real-world datasets has been demonstrated by higher accu-
racy of context-based models in comparison to random selection models.

 *	 Hany ElYamany
	 helyama@uwo.ca

	 Dennis Bachmann
	 dbachman@uwo.ca

	 Katarina Grolinger
	 kgroling@uwo.ca

	 Wilson Higashino
	 whigashi@uwo.ca

	 Miriam Capretz
	 mcapretz@uwo.ca

	 Majid Fekri
	 majid.fekri@mail.mcgill.ca

	 Bala Gopalakrishnan
	 balagopalakrishnan@yahoo.ca

1	 Department of Electrical and Computer Engineering, Western University, London, ON, Canada
2	 Department of Computer Science, Suez Canal University, Ismailia, Egypt
3	 Pelmorex Media, Oakville, ON, Canada

http://orcid.org/0000-0003-2309-9560
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-018-9332-3&domain=pdf

	 Inf Retrieval J

1 3

Keywords  Recommender system · Collaborative filtering · Context awareness · Local
learning

1  Introduction

In everyday life, it is not uncommon to rely on recommendations by friends or family to
decide on a restaurant for dinner. During the years, many publications around the globe
have specialized in providing people with lists of recommendations on all kinds of topics.
Nowadays, Internet applications have turned to recommender systems to help users navi-
gate among the ever-increasing number of available choices.

Recommender systems can be broadly categorized as collaborative, content-based,
or hybrid (Kotsogiannis et al. 2017). Collaborative recommendation resembles word-of-
mouth communication, in which the opinions of others are used to determine the relevance
of a recommendation. In this case, a collaborative recommender system uses the ratings
provided by its users either to recommend an interesting item or to identify like-minded
users. Likewise, content-based recommendation focusses on using the content of an item
to assert its relevancy. The hybrid category is reserved for those systems that use both tech-
niques when deliberating on a recommendation.

Extensive work has been done to develop new collaborative recommender methods (Su
2015; Shi et al. 2014; Pirasteh et al. 2014). Nevertheless, in many applications, these meth-
ods do not suffice because context is not taken into account. In fact, if only items and users
are used to provide recommendations, it would be safe to assume that a travel agency is
making a proper recommendation if it suggests a ski package to someone who is interested
in skiing. However, this probably would not be a wise idea if the recommendation were
given in the peak of summer. Therefore, it is important to incorporate contextual informa-
tion into the recommendation process.

With the proliferation of smart phones, smart watches, and other smart devices, applica-
tions have access to more and more contextual information from their users, and yet recom-
mender systems fail to use this contextual information when giving recommendations. One
way of addressing this issue is to create new models that can incorporate user context and
thereby improve the quality of their recommendations (Adomavicius and Tuzhilin 2011;
Panniello et al. 2009; Colombo-Mendoza et al. 2017).

The difficulty of incorporating user context into new models presents a challenge
because it adds new dimensions to the model. Moreover, the volume and speed at which
contextual data are generated become a challenge for training new models. More specifi-
cally, the processing power required to train a model using such large datasets is enor-
mous (Liu and Motoda 2001).

This paper leverages local learning techniques to propose the Context Filtering for Col-
laborative Filtering (CF)2 architecture. (CF)2 relies on existing collaborative filtering tech-
niques but adds contextual awareness to recommendations. Given that existing collabora-
tive models are unaware of user context when making recommendations, the architecture
uses available contextual information as filtering criteria for a local learning technique,
which attempts to adjust the capacity of the training system locally to the properties of the
training set in each area of the input space (Bottou and Vapnik 1992). By rearranging the
data in this way, each generated model represents a context, and these models are used to
generate contextual recommendations. The context could potentially just be added as a new
dimension into the recommendation problem, but this would increase computation time.

Inf Retrieval J	

1 3

Using context as a splitting criteria, (CF)2 builds several smaller models instead of one
large one what is especially beneficial with large data sets.

The proposed approach was evaluated in the “Find good items” task (Gunawardana and
Shani 2009). The context-based filtering has been implemented using the proposed archi-
tecture and evaluated on two large real-world datasets: the first one with over 130 million
and the second one with over 7 million unique samples. The studies demonstrate the pro-
posed (CF)2 architecture and show that the context-based filtering outperforms traditional
global models in terms of accuracy. In addition, local models created using random sam-
pling were compared to contextual dataset reduction to examine the impact of context in
large datasets. The results demonstrated that use of contextual information greatly outper-
formed random selection in accuracy.

The remainder of this paper is organized as follows. Section 2 provides background con-
cepts. Section 3 presents related work. Section 4 gives an overview of (CF)2 and its compo-
nents. Section 5 presents an evaluation of (CF)2 . Section 6 presents the conclusions of this
work and suggestions for future work.

2 � Background

This section introduces and discusses the concepts of collaborative filtering, local learning,
and contextual inference, which are the foundation for understanding (CF)2.

2.1 � Collaborative filtering

Collaborative filtering (CF) was the first technique used by a recommender system and is
also considered to be the most popular and widely implemented (Ricci et al. 2015). Exam-
ples of popular Web sites that use this technique are Amazon1 (Linden et al. 2003), TiVo,2
and Netflix.3

CF provides recommendations based on the opinions of others who share the same
interests as the user (Lu et al. 2015). These opinions are often represented as the ratings
matrix R (Aggarwal 2016b). This matrix is an m × n matrix containing m users and n
items. Hence, the rating of user u for item i is given by r

ui
 . Because in any recommender

system the number of ratings obtained is usually very small compared to the number of
users × items , the matrix R is often sparse (Bindu et al. 2017).

The approach adopted by CF methods is that these missing ratings can be guessed
because the observed ratings are often highly correlated across various users and
items (Aggarwal 2016a).

This method has cold-start and sparsity problems and is also limited by the fact that
ratings can be predicted only if users have rated common items (Son 2016). Data reduc-
tion techniques appear to be a promising research direction to solve this problem (Adoma-
vicius and Tuzhilin 2005). CF also has the advantage of using an approach that enables it
to obtain meaningful relations between users or items that are not directly connected (Ricci
et al. 2015).

1  http://www.amazo​n.com.
2  http://www.tivo.com.
3  http://www.netfl​ix.com.

http://www.amazon.com
http://www.tivo.com
http://www.netflix.com

	 Inf Retrieval J

1 3

2.2 � Local learning

Local learning algorithms attempt to divide the training set into several local clusters to
capture more effectively the properties of each input space neighbourhood (Piegat and
Pietrzykowski 2016). This results in creating separate local models for each cluster (Al-
Jarrah et al. 2015; L’Heureux et al. 2017).

Local learning is based on the assumption that large training datasets are very
rarely evenly distributed in the input space (Bottou and Vapnik 1992). Moreover, cur-
rent machine learning systems are not inherently efficient or scalable enough to deal
with large data volumes, and therefore a growing fraction of data remain unexplored
or underexploited (Al-Jarrah et al. 2015). Hence, local learning is considered a suitable
approach for machine learning algorithms that use large data volumes (Al-Jarrah et al.
2015).

As defined by Bottou and Vapnik (1992), local learning can be accomplished by per-
forming a simple local algorithm for each testing pattern:

1.	 Select the training samples located in the vicinity of the test pattern. The vicinity refers
to the test pattern neighbourhood and includes other samples close to the test pattern.

2.	 Train the model using only these samples.
3.	 Apply the resulting model to the test pattern.

Recent studies have shown that local learning yields results far superior to a global
learning strategy, especially on datasets that are not evenly distributed (Ansell et al.
2017; Lughofer and Pratama 2017; Pratama et al. 2016).

In addition, for computationally intensive algorithms, it is faster to find solutions for
k problems of size m / k than for one problem of size m (Grolinger et al. 2014).

2.3 � Contextual inference

Contextual inference is a process that uses inference rules or external knowledge to
enrich existing datasets. An example of this process is illustrated in Fig. 1, which shows
the process of extending a request containing an IP address and a time to contain the
location and the weather condition at the time of the request. This is achieved by first
querying a geolocation service to obtain the approximate geographic location of the cli-
ent and then using this location and the time of the request to query a weather service to
obtain the weather conditions.

Although this example uses external data or services to extend the contextual attrib-
utes, this may not be necessary. On some occasions, these transformations can be done
using internal logic, like the classification of a given day as a weekday or a weekend.
Therefore, this process enables contextual attributes that may look uninteresting at first,
but can be extended to provide powerful contextual meaning to data.

Inf Retrieval J	

1 3

3 � Related work

Related work is divided into three sub-sections. The first covers local learning and pro-
vides a review of how this technique has been used, the second section describes the use
of contextual information in recommender systems, and the third section reviews archi-
tectures for contextual recommender systems.

3.1 � Local learning

Several studies have used local learning to achieve simplified local models and increased
precision. Piegat and Pietrzykowski (2016) presented a new version of the mini-model
method. In their work, the authors extended the mini-model method to include local dimen-
sionality reduction, leading to simpler local models and increased precision.

The work conducted by Domeniconi et al. (2007) also aimed to perform dimensional-
ity reduction. They tackled the curse of dimensionality by using local feature weighting to
discover clusters in input sub-spaces. Their method associated with each cluster a weight
vector, whose values were then used to capture the relevance of features within the corre-
sponding cluster.

Wu and Schölkopf (2006) presented a local learning approach for clustering. Their
idea was that an adequate clustering result should have the property that the cluster label
of each data point can be well predicted based on its neighbouring data and their cluster
labels. Relaxation and eigen-decomposition techniques were used to solve this problem.
In addition, the authors provided a parameter selection method for the proposed clustering
algorithm.

Chitta et al. (2015) proposed a sparse kernel k-means clustering algorithm that incre-
mentally sampled the most informative points from the dataset using importance sampling
and constructed a sparse kernel matrix using these sampled points. This sparse kernel

Fig. 1   Example of contextual inference for location and weather conditions

	 Inf Retrieval J

1 3

matrix was then used to perform clustering and obtain cluster labels. This combination of
sampling and sparsity reduces both the running time and the memory complexity of kernel
clustering.

Zhou et al. (2016) proposed a global and local structure-preserving sparse sub-space
learning model for unsupervised feature selection. Their model can perform feature selec-
tion and sub-space learning simultaneously.

Reviewed studies (Piegat and Pietrzykowski 2016; Domeniconi et al. 2007; Wu and
Schölkopf 2006; Chitta et al. 2015; Zhou et al. 2016) focussed on ways of adapting exist-
ing models to simplify them and improve their accuracy while also performing dimension-
ality reduction. Nevertheless the models presented were static and could not be directly
extended to other recommender models. In contrast, our work focusses on contextual infor-
mation that is explicitly available in the dataset or can be inferred to perform clustering.
Hence, by using context, the properties of local learning can be applied to existing recom-
mender algorithms.

3.2 � Contextual information in recommender systems

Several studies have focussed on enhancing recommendation accuracy by using contex-
tual information gathered from user interactions. Costa and Manzato (2016) proposed to
improve prediction accuracy by incorporating various types of feedback into the recom-
mendation process. In their work, each type of feedback is trained using a distinct recom-
mender algorithm, and the results are unified into a final score.

Wei et al. (2017) tackled the cold-start problem that is common in recommender sys-
tems by integrating the CF approach with machine learning algorithms. Their approach
uses a deep learning neural-network model to improve overall recommendation accuracy
for cold-start situations. The authors focussed only on time contexts.

Capdevila et al. (2016) used geo-location information to improve the accuracy of rec-
ommendations in the context of a location-based social network. Using mining techniques,
the proposed recommender system uses geolocated time-referenced reviews of venues to
recommend locations to a user based on current geographic location.

In contrast to these studies (Costa and Manzato 2016; Wei et al. 2017; Capdevila et al.
2016), the present research proposes an extensible architecture that can leverage contextual
information to create contextualized local models. This enables recommendations using
any kind of contextual information. By using local learning with contextual information to
generate the models, only the ratings made in the same context as the target prediction are
used. Moreover, by using a pre-filtering approach on the training set, any CF model can be
used to generate the recommendations.

Adomavicius and Tuzhilin (2011) argued the importance of contextual information in
recommender systems, discussed the notion of context and how it can be modeled. The
described pre-filtering paradigm uses contextual information to select data for recommen-
dations. Similarly, Adomavicius et al. (2005) presented a multidimensional recommenda-
tion model which also uses context information such as time to carry out filtering. Like-
wise, our study uses context to select data for building the contextual models; however, we
also propose an architecture for building such systems. Moreover, Adomavicius and Tuzhi-
lin (2011) focused on reviewing approaches for modeling the context without experimental
evaluation. Adomavicius et al. (2005) evaluated the proposed approach on the dataset of
around 1500 records specifically created for this purpose through Web survey on movies.
In contrast, our evaluation was performed on a real-world dataset containing information

Inf Retrieval J	

1 3

about website visitors clicks (over 130 million records in case study 1 and over three mil-
lion records in case study 2). Evaluation with real-world datasets is important as it better
represents the scenario in which recommendation system will be used.

Palmisano et al. (2008) also incorporate pre-filtering in their approach: the customers
are first clustered, and then pre-filtering is applied to incorporate context. The evaluation
is performed on two datasets: an artificial set and a real-world dataset set artificially aug-
mented to increase size. In contrast, our study does not use clustering, proposes an archi-
tecture, and evaluates on real-world datasets.

3.3 � Architectures for contextual recommender systems

Eirinaki et al. (2018) surveyed large-scale recommender systems built for social networks;
they outlined several challenges that might have a negative impact on such systems includ-
ing data volume, variety, and volatility. To handle the issue of data volume, they suggested
using various technologies such as Hadoop, Spark and MapReduce to process the data in
parallel and to perform machine learning tasks such as predictions. Our work proposes
a local learning-based architecture that can efficiently analyze large datasets by splitting
them into smaller sets using different contextual information. The evaluation of the pro-
posed architecture outperforms the traditional solutions.

Yao et al. (2015) proposed a graph-based recommendation framework that constructs a
multi-layer context graph from implicit feedback data and then executes ranking algorithms
on this graph to produce context-aware recommendations. The proposed graph models the
interactions between users and items and incorporates a variety of contextual information
into the recommendation process.

De Pessemier et al. (2014) described a framework to detect the current context and user
activity by analyzing data retrieved from various sensors available on mobile devices. On
top of this framework, a recommender system was built to offer users personalized content
consisting of relevant information such as points of interest, train schedules, and tourist
information.

Unlike the works of Yao et al. (2015) and De Pessemier et al. (2014), our architecture
can leverage contextual information to create smaller local models using different con-
textual information. Moreover, our case studies demonstrate the proposed architecture on
large real-world datasets.

4 � (CF)2 architecture

This section introduces the context filtering for collaborative filtering (CF)2 architecture,
illustrated in Fig. 2. It uses embedded contextual attributes available in the datasets as fil-
tering criteria to apply local learning techniques. Each resulting subset is then used to train
contextual collaborative filtering models that are trained using only the portion of the rat-
ing data that matches the contextual criteria. This is exemplified in Fig. 3, where a full
dataset is divided into smaller subsets based on contextual criteria.

(CF)2 operates in two phases: a training phase and a production phase. Each of these
phases is represented as a layer in the architecture. Moreover, an additional third layer,
called the storage layer, is used to handle rating data and contextual information retrieval.
This layer is also responsible for storing the trained models. The three layers ensure better
separation of concerns and provide stronger decoupling between the phases.

	 Inf Retrieval J

1 3

The following subsections describe the architectural details of the proposed (CF)2.

4.1 � External entities

The external entities are the components that (CF)2 must interact with to provide meaning-
ful recommendations to its users, but are not part of the (CF)2 architecture itself. As illus-
trated in the upper part of Fig. 2, they include: trainer, client, application, external knowl-
edge and recommender service.

The client is a software application responsible for capturing ratings given by a user and
submitting them to an application. The application is the service that stores the ratings
given by a client. The client may also be involved in obtaining recommendations from the
recommender service.

The recommender service is the service responsible for processing requests issued by
clients when they are in need of recommendations. Requests issued to this service must be
accompanied by a client identifier, an identifier for the item for which the requesting party

Fig. 2   Context filtering for collaborative filtering (CF)2 architecture

Fig. 3   Dataset divided into smaller subsets based on contextual attributes

Inf Retrieval J	

1 3

wants to obtain recommendations, and a list of contextual attributes. The request must
include the item identifier because the user is looking for recommendations similar to a
specific item.

The trainer is the service responsible for initiating the training phase. This service can
be manually invoked by a system administrator or periodically invoked by a time-based job
scheduler. The external knowledge is the service that holds the additional contextual infor-
mation used by the contextual storage component.

The only artifact generated by (CF)2 is the list of recommendations that are returned
when requested by the client.

4.2 � Storage layer

This layer contains all the components required by (CF)2 to access data in a standard man-
ner. Because the data used by (CF)2 may be stored by third-party applications, this layer
provides a set of components that serves as abstraction to these datasets.

The rating storage ensures a standardized interface to access the rating dataset stored in
the application. This interface will be used during the training phase to provide access to
these ratings.

The contextual storage component ensures a standardized interface to access the data-
sets that can provide additional contextual information to the data. (CF)2 can use more
than one service to provide external contextual data. Hence, this component implements a
method for each of these services to abstract the peculiarities of each external service.

The use of external contextual attributes is achieved by matching embedded contextual
attributes available in the rating storage component with those provided by the contextual
storage component.

To exemplify such a data structure, Fig. 4 illustrates a scenario in which two contextual
attributes embedded in the dataset (location and date) are used to match an external contex-
tual value (weather condition).

The contextual model storage component functions as the interface between the train-
ing phase and the production phase, handling storage of and access to all the contextual
collaborative filtering models trained during the training phase. These models will later be
used by the recommender engine to provide customized recommendations.

4.3 � Training layer

The training layer contains the components required to extract contextual attributes from
the rating data provided by the rating storage and to train CF models. These components
are used to generate the contextual models that the recommender engine will use to provide
personalized recommendations during the production phase.

Fig. 4   External service provid-
ing external contextual attributes

	 Inf Retrieval J

1 3

This layer is separated into two components. The contextual filtering component is
responsible for identifying the contextual attributes of past ratings and performing con-
textual inference when required. The recommender trainer component is responsible for
carrying out training for each of the identified contextual attributes.

Figure 5 illustrates the steps followed by (CF)2 to train the models using weather
condition as the contextual attribute. This illustration of the training phase is expanded
as follows:

1.	 The starting point of the training phase occurs within the context extractor sub-compo-
nent. This sub-component requests the rating storage component to provide a list of the
ratings captured by the application. This list contains the client identifier, item identifier,
rating, and contextual attributes location and date;

2.	 Because the weather condition cannot be retrieved directly from these attributes, the
contextual extractor sub-component delegates the contextual inference task to the con-
text inferrer sub-component;

3.	 To obtain the weather conditions at the time of a rating, the context inferrer sub-com-
ponent must reach out to the contextual storage component. In this case, the contextual
storage component provides a list containing the location and date followed by the
weather condition;

4.	 With the list of contexts in place, the context extractor component invokes the data
splitter sub-component to divide the rating dataset into smaller datasets, each of them
representing a different context, in this case a weather condition;

5.	 For each contextual dataset, the data splitter sub-component invokes the recommender
trainer component to train the local collaborative filtering models.

6.	 This results in the creation of a set of new models that will be stored in the contextual
model storage component.

Fig. 5   Training phase using the weather condition context

Inf Retrieval J	

1 3

To accommodate new ratings captured by the application and to provide more up-to-
date recommendations, this layer must be periodically invoked by an external system. The
exact periodicity is domain-specific and must be addressed on a case-by-case basis.

4.4 � Production layer

The production layer is responsible for handling incoming requests made to the recom-
mender service and returning the list of personalized recommendations.

This layer is divided into two components. The request inspector component is respon-
sible for handling all incoming requests to identify their contextual attributes. The recom-
mender engine component is responsible for choosing the proper model and for generating
the recommendations.

Figure 6 illustrates the steps followed by (CF)2 for an incoming request during the pro-
duction phase. This illustration of the production phase is further described below.

1.	 The production phase starts every time a client issues a request to the recommender
service. Using the example illustrated in Fig. 6, the request contains the client identifier,
item identifier, and contextual attributes location and date;

2.	 The recommender service then delegates the request to the context extractor sub-com-
ponent of the request inspector component;

3.	 The context extractor sub-component extracts the contextual attributes present in the
request. In this example, the contextual extractor sub-component delegates the contex-
tual inference task to the context inferrer sub-component;

4.	 Similarly to the training phase, the context inferrer sub-component reaches out to the
contextual storage component to obtain the weather condition at the time of the request;

Fig. 6   Production phase using the weather condition context

	 Inf Retrieval J

1 3

5.	 With the context properly identified, the context extractor sub-component invokes the
context chooser sub-component of the recommender engine component. The purpose
of this invocation is to obtain the corresponding contextual model;

6.	 The context chooser sub-component fetches the model from the contextual model storage
component;

7.	 The retrieved model is then passed to the predictor sub-component, which queries the
model for the list of recommendations;

8.	 This list of recommendations is then returned to the client.

5 � Evaluation

This section presents an evaluation of the (CF)2 architecture using two case studies. These
case studies simulated the recommender system of a Web site. To train the collaborative
filtering models, past interactions between clients and the Web site were used.

These past interactions were provided by a multi-media company specialized in weather-
and traveller-related content and technology. Historical traffic was captured in clickstream
form by two on-line marketing tools and Web analytics applications: Google analytics4 and
Adobe Omniture.5 All data that contained pseudo-identifiers were collected in accordance
with privacy policies. No personally identifiable information about users was used.

The task being evaluated is defined in the literature as Find Good Items. In this task, the
recommender system is interested in suggesting items to a user, but displaying only those
that are a “best bet”.

5.1 � Methodology

The evaluation scenario consists of a dataset D divided into two subsets, a training set T
and a validation set V. The training set represents 80% of the dataset and is obtained by
random selection from the original dataset without repetition. The remaining 20% repre-
sents the validation set.

Because an explicit rating is not provided by users, an implicit rating r
ui

 of 1 is used to
indicate that a user u is interested in the requested page i when the user accesses the page.

Fig. 7   Training set T segmented by contextual attributes and random dataset reduction

4  http://googl​e.com/analy​tics.
5  http://www.omnit​ure.com.

http://google.com/analytics
http://www.omniture.com

Inf Retrieval J	

1 3

Moreover, because CF models need enough data to generate good recommendations, r
ui

 with
contextual attributes representing less than 0.1% of the total dataset were removed.

Each contextual attribute c is represented by a training subset T
c
 and a validation subset V

c

representing ratings of T and V containing the contextual attribute c. Moreover, because this
research aims to prove that the use of contextual attributes as filtering criteria is better than
random dataset reduction, the training subset Tc

r
 and the validation subset Vc

r
 represent ran-

domly selected subsets of T and V with the same size as T
c
 and V

c
 . This process is illustrated in

Fig. 7. Each box expressing a Training Set T
c
 is visualized by a unique color indicating that the

set comprises of the entities with the same contextual attributes. On the other side, each box
representing a Training set Tc

r
 is depicted by mixed colors demonstrating the randomness of

contextual attributes within the set.
Moreover, because the evaluation is performed by comparing the proposed architecture

with the traditional approach, the subsets T and V represent the rating r
ui

 given by a user u to
a page i, regardless of context. Both sets will be used to train and validate the traditional CF
model m.

To assess the predictive quality of the models, this research used predictive accuracy
metrics. The metrics used are the mean squared error (MSE) and root mean squared error
(RMSE), which are given by the equation

(1)MSE(V) =
1

|V|
⋅

∑

(u,i)∈V

(
r
ui
− r̂

ui

)2

Table 1   Notations used throughout this paper

Symbol Description

r
ui

Rating given by a user u to page i
r̂
ui

Predicted rating given for a user u to page i
D Dataset containing ratings given by a user u to page i
T Subset of D containing random ratings and where |T| = 0.8 ⋅ |D|
T
c

Subset of T containing ratings given in a context c
T
c

r
Subset of T containing random ratings and where |Tc

r
| = |T

c
|

V Set D − T

V
c

Subset of V containing ratings given in a context c
V
c

r
Subset of V containing random ratings and where |Vc

r
| = |V

c
|

m CF model trained using set T
m

c
CF model trained using set T

c

m
c

r
CF model trained using set Tc

r

Fig. 8   Validation set V segmented into subsets V
c
 to predict ratings using model m

c

	 Inf Retrieval J

1 3

where V is the validation set, |V| is the size of V, r
ui

 is the true user rating, and r̂
ui

 is the
predicted rating. These and other notations used throughout the section are presented in
Table 1.

Training dataset T was then used to feed the training process by means of the rating
storage component. This step ensures the creation of a different model m

c
 for each contex-

tual attribute c present in T, as illustrated in Fig. 3.
Similarly to the training dataset, validation is performed by splitting the validation set V

into different contextual subsets V
c
 and using these subsets to compare the predicted rating

r̂
ui

 with the rating r
ui

 available in the validation set V
c
 . This process is illustrated in Fig. 8.

To evaluate the models m, representing the traditional approach, and mc

r
 , representing

random dataset reduction, the (CF)2 implementation was adapted to ignore context.

5.2 � Case studies

Because (CF)2 can use two types of contextual attributes, embedded and inferred, the eval-
uation process was divided into two case studies, each covering one of these types.

For the CF recommendation engine, both case studies used the matrix factorization
technique with the alternating least squares (Koren et al. 2009) (ALS) algorithm. This has
already been implemented by Spark’s spark.mllib machine learning library, providing an
“out-of-the-box” solution that can process large volumes of data. Moreover, this imple-
mentation includes a training technique based on the work done by Hu et al. (2008), which
specializes in training CF models using implicit ratings.

The model parameters were obtained after performing a cross-validation with partitions
of the T dataset. Various configurations of the regularization parameter ( � ), the number of
hidden features, the number of iterations, and the confidence level ( � ) were considered.
The parameter values that resulted in a minimum stable MSE were chosen and are given in
Table 2.

Each case study was executed on a private server with a 24-core Intel Xeon E5-2630 2.3
GHz and 96 GB RAM DDR3 1600 MHz running Ubuntu 14.04.2 LTS.

5.2.1 � Case study 1: embedded context

The first case study used clickstream data captured by the Google Analytics tool during the
summer of 2016 (June 20 to September 22) to create recommender models based on the
contextual attribute “operating system with platform”. To achieve this goal, the data were

(2)RMSE(V) =

√
1

|V|
⋅

∑

(u,i)∈V

(
r
ui
− r̂

ui

)2

Table 2   Parameters used to train
the CF models

Parameter Value

� (regularization parameter) 100
Number of hidden features 20
Number of iterations 10
� (confidence level) 1500

Inf Retrieval J	

1 3

pre-processed to remove entries captured by the clickstream that did not represent a page
view. These entries usually represent interactions with objects inside a Web page that do
not trigger a page change, like interaction with map objects or social media snippets. After
this step, the resulting dataset was filtered to contain only unique values with the following
properties:

•	 Visitor identifier
•	 Uniform resource locator (URL)
•	 Operating System
•	 Platform is mobile (true or false)

This process resulted in a dataset containing 130,684,845 unique samples. The Number
of unique users was 33,624,517, and the number of items (unique URLs) was 9,823,125.
The final dataset was then split into a training set T and a validation set V.

Fig. 9   MSE of m, m
c
 , and mc

r
 segmented by dataset

Table 3   MSE and RMSE
obtained in case study 1

Approach MSE RMSE

Traditional 0.2671 0.5168
Contextual 0.2367 0.4865
Randomized 0.8113 0.9007

	 Inf Retrieval J

1 3

The training set was then used to create the contextual models m
c
 , mc

r
 , and m, and to cal-

culate the time spent to train them. Moreover, the validation set was used to calculate the
MSE of each model.

The performance of the (CF)2 architecture is graphically represented in Fig. 9. For
presentation purposes, all contextual names were converted to the format “OS/Plat-
form”. The MSE obtained for the traditional approach, represented by model m was
compared with each model m

c
 and its equivalent model mc

r
 obtained by random reduc-

tion. To facilitate interpretation, the MSE for model m is displayed as a dotted reference
line.

From Fig. 9, it is clear that using the proposed architecture generally provided better
results than the traditional approach and significantly better results than random dataset
reduction. This is also corroborated by the MSE and RMSE values obtained for each
approach given in Table 3.

Figure 10 relates the MSE of each model with the dataset size. Analysis of Fig. 10
shows that when using contextual dataset reduction, the MSE values tend to be lower
than the value obtained using the traditional approach, regardless of dataset size. The
same is not true for random dataset reduction. When using this technique, the error
increases as the dataset becomes smaller and converges to the accuracy of the traditional
approach as the dataset increases in size. This is to be expected because there is almost
no dataset reduction when the size approaches the original. The size of each dataset
classified by contextual attribute is displayed in Table 4.

Fig. 10   MSE value by dataset size for each dataset reduction technique

Inf Retrieval J	

1 3

Furthermore, the times (in s) taken to train each model m, m
c
 , and mc

r
 were compared

and are illustrated in Fig. 11.
These values indicate that the time to train each model increased almost linearly with

dataset size. This was especially true in the case of Spark’s implementation of ALS, but

Table 4   Size of each dataset
of case study 1 classified by
contextual attribute

Contextual attribute Dataset size

Full dataset Training set Validation set

OS/platform 1 17,099,871 13,681,058 3,418,813
OS/platform 2 151,710 120,902 30,808
OS/platform 3 2,464,423 1,971,104 493,319
OS/platform 4 1,623,950 1,300,121 323,829
OS/platform 5 65,221,859 52,179,154 13,042,705
OS/platform 6 385,096 307,823 77,273
OS/platform 7 923,827 738,438 185,389
OS/platform 8 626,817 501,195 125,622
OS/platform 9 11,812,359 9,452,167 2,360,192
OS/platform 10 30,374,933 24,300,878 6,074,055
Total 130,684,845 104,552,840 26,132,005

Fig. 11   Training time in seconds taken to train each model

	 Inf Retrieval J

1 3

other matrix factorization implementations should also experience a significant reduc-
tion in training time when dataset reduction is used.

5.2.2 � Case study 2: contextual inference

The second case study used contextual inference to create recommender models based on
the contextual attribute “weather condition”. This case study used click-stream data cap-
tured by the Adobe Omniture tool between April 1, 2015 and June 30, 2015 and included
only visits generated by users in London, ON, Canada. The captured data contained unique
entries with the following properties:

•	 Visitor identifier

Fig. 12   MSE of m, m
c
 , and mc

r
 segmented by dataset

Inf Retrieval J	

1 3

•	 Uniform resource locator (URL)
•	 Time of access
•	 Location

After filtering out entries that did not represent a page view and removing duplicate
entries, the resulting dataset contained 7,729,696 samples. Because the dataset still lacked
the “weather condition” property, the time of access property along with the location prop-
erty were used to obtain the weather condition for each visit. After removing duplicate
entries, the dataset containing the tuples visitor identifier, URL, and weather condition was
reduced to 3,181,808 entries. The Number of unique was users: 656,962 and the number of
items (unique URLs) was 3777. The final dataset was then split into a training set T and a
validation set V.

Table 5   MSE and RMSE
obtained in case study 2

Approach MSE RMSE

Traditional 0.1486 0.3855
Contextual 0.1977 0.4446
Randomized 0.7316 0.8553

Table 6   Size of each dataset of case study 2 classified by contextual attribute

Contextual attribute Dataset size

Full dataset Training set Validation set

Clear 120,430 96,511 23,919
Fog 32,945 26,437 6508
Haze 7241 5832 1409
Heavy thunderstorms and rain 9478 7564 1914
Light drizzle 49,873 40,000 9873
Light rain 105,339 84,186 21,153
Light rain showers 241,165 192,911 48,254
Light snowfall 10,159 8163 1996
Light snow showers 61,258 48,943 12,315
Light thunderstorms and rain 30,470 24,344 6126
Missing 9164 7315 1849
Mostly cloudy 1,112,850 890,189 222,661
Overcast 758,930 607,310 151,620
Partly cloudy 314,711 251,800 62,911
Rain 5719 4574 1145
Rain showers 14,002 11,216 2786
Scattered clouds 262,744 210,320 52,424
Shallow fog 11,711 9369 2342
Thunderstorm 10,979 8678 2301
Thunderstorms and rain 12,640 10,126 2514
Total 3,181,808 2,545,788 636,020

	 Inf Retrieval J

1 3

The training set was then used to create the contextual models m
c
 , mc

r
 , and m and to cal-

culate the time spent to train them. Moreover, the validation set was used to calculate the
MSE of each model, as shown in Fig. 12.

The MSE and RMSE values for each approach are given in Table 5.
Analysis conducted on these values indicates that (CF)2 yielded similar accuracy to

the traditional approach while outperforming the accuracy obtained using random dataset
reduction. Moreover, results indicated that accuracy improved as weather conditions dete-
riorated. The most compelling evidence was the MSE obtained for “heavy thunderstorms
and rain” and “thunderstorm” weather conditions. This occurred because under these cir-
cumstances, rating patterns among users are shared. In other words, users have the ten-
dency to check the same Web pages during bad weather.

Despite the fact that MSE improved in some contexts, the results obtained indicate that
weather condition is a less suitable contextual attribute than “operating system with plat-
form” for this application. Nevertheless, the use of a contextual attribute as a filtering crite-
rion for local learning is more appropriate than random selection.

Taking dataset size into consideration, as shown in Table 6, this case study showed sim-
ilar behaviour as the previous case study. Like the first case study, the second one showed
that the MSE values tended to fluctuate around the value obtained for m, and both case
studies showed that m

c
 outperformed mc

r
 . This situation is shown in Fig. 13, which also

shows the MSE value for model m as a dotted reference line.
Analysis of the time (in s) taken to train each model m, m

c
 , and mc

r
 were conducted, and

the results are illustrated in Fig. 14. The results corroborate the findings of the previous
case study and show that training time increases almost linearly with dataset size.

Fig. 13   MSE value by dataset size for each dataset reduction technique

Inf Retrieval J	

1 3

5.2.3 � Discussion

The presented experiments show that the (CF)2 architecture achieves similar (or bet-
ter) accuracy using a small fraction of the data to collaborative filtering models trained
with the complete dataset. Whereas the second case study uses a single contextual attrib-
ute (weather), the first case study combines two attributes, operating system, and platform
(mobile or not), into a single attribute OS/Platform?. When several attributes are involved,
the amount of data may not be sufficient for training when data are split, and further inves-
tigation is needed to determine which attributes should be included. In the case study 1,
combining attributes was possible as the dataset consisted of over 130 million records and
after splitting, segments still remained sufficiently large.

Both studies used the categorical attributes; nevertheless, handling continuous attributes
can be done by converting them into categorical ones according to ranges. Depending on
the attributes, selecting different ranges may result in different recommendation accuracies.

In the first case study, the proposed approach provided better recommendations then the
traditional one (Table 3) whereas, in the second one, the traditional approach was slightly
better (Table 5). Observing Fig. 12, it can be noticed that the (CF)2 accuracy improved
as condition deteriorated: accuracy was much better with (CF)2 than with the traditional
approach for ”heavy thunderstorms and rain”. The results indicate that the choice of the
contextual attribute as well as the actual values of the attributes impact the quality of rec-
ommendations. Therefore, the important direction of future research in context-aware rec-
ommendation systems is a selection of context attributes to include in the recommendation
system.

Fig. 14   Time in seconds taken to train each model

	 Inf Retrieval J

1 3

6 � Conclusions

The work described in this paper has developed the (CF)2 architecture, which uses local
learning techniques to embed contextual awareness into CF models. By incorporating con-
text into standard CF models, recommender applications can provide recommendations
with a better chance of being relevant to users. Moreover, local learning using context as
a filtering criterion enables the use of large datasets in recommender systems. An over-
view of the architecture has been presented, including its components, their roles, and their
relationships.

Because of the generic approach of (CF)2 , its implementations can incorporate context-
aware recommender systems using one of the several widely available collaborative filter-
ing libraries.

The proposed architecture has been demonstrated on the two case studies involving Find
Good Items task. The first case study used embedded context, and the second used external
knowledge by means of contextual inference. Both case studies involved large real-world
datasets, were evaluated using the same methodology, and their accuracy was compared
against the traditional method. The results indicate that contextual models trained with a
small fraction of the data gave similar accuracy to models trained with the full dataset.
To explore impact of context on large dataset models, local models created using random
sampling were compared to contextual dataset reduction, and the results demonstrated that
using contextual information outperforms random selection in accuracy.

Extensions of this research will consider using instance selection techniques to reduce
dataset sizes even further. Moreover, privacy and security issues associated with recom-
mender systems can be incorporated into the (CF)2 architecture.

Acknowledgements  This research was supported in part by an NSERC CRD at Western University
(CRDPJ 492655-2016).

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual infor-
mation in recommender systems using a multidimensional approach. ACM Transactions on Infor-
mation Systems (TOIS), 23(1), 103–145.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey
of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engi-
neering, 17(6), 734–749. https​://doi.org/10.1109/TKDE.2005.99.

Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems (pp. 217–253). Boston,
MA: Springer. https​://doi.org/10.1007/978-0-387-85820​-3_7.

Aggarwal, C. C. (2016a). An introduction to recommender systems (pp. 1–28). Cham: Springer Interna-
tional Publishing. https​://doi.org/10.1007/978-3-319-29659​-3_1.

Aggarwal, C. C. (2016b). Neighborhood-based collaborative filtering (pp. 29–70). Cham: Springer
International Publishing. https​://doi.org/10.1007/978-3-319-29659​-3_2.

Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient machine
learning for big data: A review. Big Data Research, 2(3), 87–93. https​://doi.org/10.1016/j.
bdr.2015.04.001.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1007/978-0-387-85820-3_7
https://doi.org/10.1007/978-3-319-29659-3_1
https://doi.org/10.1007/978-3-319-29659-3_2
https://doi.org/10.1016/j.bdr.2015.04.001
https://doi.org/10.1016/j.bdr.2015.04.001

Inf Retrieval J	

1 3

Ansell, C., Lundin, M., & Öberg, P. O. (2017). Learning networks among Swedish municipalities: Is
Sweden a small world? (pp. 315–336). Cham: Springer International Publishing. https​://doi.
org/10.1007/978-3-319-45023​-0_15.

Bindu, K. R, Visweswaran, R. L., Sachin, P. C., Solai, K. D., & Gunasekaran, S. (2017). Reducing the
cold-user and cold-item problem in recommender system by reducing the sparsity of the sparse
matrix and addressing the diversity-accuracy problem (pp. 561–570). Singapore: Springer. https​://
doi.org/10.1007/978-981-10-2750-5_58.

Bottou, L., & Vapnik, V. (1992). Local learning algorithms. Neural Computation, 4(6), 888–900. https​://
doi.org/10.1162/neco.1992.4.6.888.

Capdevila, J., Arias, M., & Arratia, A. (2016). GeoSRS: A hybrid social recommender system for geolo-
cated data. Information Systems, 57, 111–128. https​://doi.org/10.1016/j.is.2015.10.003.

Chitta, R., Jain, A. K., & Jin, R. (2015). Sparse kernel clustering of massive high-dimensional data sets
with large number of clusters. In: Proceedings of the 8th workshop on Ph.D. workshop in infor-
mation and knowledge management (pp. 11–18). New York: ACM. https​://doi.org/10.1145/28098​
90.28098​96.

Colombo-Mendoza, L. O., Valencia-García, R., Alor-Hernández, G., & Bellavista, P. (2017). Special
issue on context-aware mobile recommender systems. Pervasive and Mobile Computing. https​://
doi.org/10.1016/j.pmcj.2017.03.002.

da Costa, A. F., & Manzato, M. G. (2016). Exploiting multimodal interactions in recommender sys-
tems with ensemble algorithms. Information Systems, 56, 120–132. https​://doi.org/10.1016/j.
is.2015.09.007.

De Pessemier, T., Dooms, S., & Martens, L. (2014). Context-aware recommendations through context
and activity recognition in a mobile environment. Multimedia Tools and Applications, 72(3), 2925–
2948. https​://doi.org/10.1007/s1104​2-013-1582-x.

Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., & Papadopoulos, D. (2007). Locally
adaptive metrics for clustering high dimensional data. Data Mining and Knowledge Discovery,
14(1), 63–97. https​://doi.org/10.1007/s1061​8-006-0060-8.

Eirinaki, M., Gao, J., Varlamis, I., & Tserpes, K. (2018). Recommender systems for large-scale social
networks: A review of challenges and solutions. Future Generation Computer Systems, 78, 413–
418. https​://doi.org/10.1016/j.futur​e.2017.09.015.

Grolinger, K., Hayes, M., Higashino, W. A., L’Heureux, A., Allison, D. S., & Capretz, M. A. (2014)
Challenges for MapReduce in big data. In 2014 IEEE world congress on services (pp. 182–189).
IEEE. https​://doi.org/10.1109/SERVI​CES.2014.41.

Gunawardana, A., & Shani, G. (2009). A survey of accuracy evaluation metrics of recommenda-
tion tasks. Journal of Machine Learning Research, 10, 2935–2962. http://dl.acm.org/citat​ion.
cfm?id=15770​69.17558​83.

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In
8th IEEE international conference on data mining (pp. 263–272). IEEE. https​://doi.org/10.1109/
ICDM.2008.22.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems.
Computer, 42(8), 30–37. https​://doi.org/10.1109/MC.2009.263.

Kotsogiannis, I., Zheleva, E., & Machanavajjhala, A. (2017). Directed edge recommender system. In
Proceedings of the 10th ACM international conference on web search and data mining-WSDM’17
(pp. 525–533). New York: ACM Press. https​://doi.org/10.1145/30186​61.30187​29.

L’Heureux, A., Grolinger, K., ElYamany, H. F., & Capretz, M. (2017). Machine learning with big data:
Challenges and approaches. IEEE Access, 5, 7776–7797.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative
filtering. IEEE Internet Computing, 7(1), 76–80. https​://doi.org/10.1109/MIC.2003.11673​44.

Liu, H., & Motoda, H. (2001). Instance selection and construction for data mining (Vol. 608). Boston:
Springer. https​://doi.org/10.1007/978-1-4757-3359-4.

Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application develop-
ments: A survey. Decision Support Systems, 74, 12–32. https​://doi.org/10.1016/j.dss.2015.03.008.

Lughofer, E., & Pratama, M. (2017). On-line active learning in data stream regression using uncer-
tainty sampling based on evolving generalized fuzzy models. IEEE Transactions on Fuzzy Systems,
PP(99), 1–1. https​://doi.org/10.1109/TFUZZ​.2017.26545​04.

Palmisano, C., Tuzhilin, A., & Gorgoglione, M. (2008). Using context to improve predictive modeling
of customers in personalization applications. IEEE Transactions on Knowledge and Data Engineer-
ing, 20(11), 1535–1549.

Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., & Pedone, A. (2009). Experimental com-
parison of pre- vs. post-filtering approaches in context-aware recommender systems. In Proceedings

https://doi.org/10.1007/978-3-319-45023-0_15
https://doi.org/10.1007/978-3-319-45023-0_15
https://doi.org/10.1007/978-981-10-2750-5_58
https://doi.org/10.1007/978-981-10-2750-5_58
https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1016/j.is.2015.10.003
https://doi.org/10.1145/2809890.2809896
https://doi.org/10.1145/2809890.2809896
https://doi.org/10.1016/j.pmcj.2017.03.002
https://doi.org/10.1016/j.pmcj.2017.03.002
https://doi.org/10.1016/j.is.2015.09.007
https://doi.org/10.1016/j.is.2015.09.007
https://doi.org/10.1007/s11042-013-1582-x
https://doi.org/10.1007/s10618-006-0060-8
https://doi.org/10.1016/j.future.2017.09.015
https://doi.org/10.1109/SERVICES.2014.41
http://dl.acm.org/citation.cfm?id=1577069.1755883
http://dl.acm.org/citation.cfm?id=1577069.1755883
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3018661.3018729
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1007/978-1-4757-3359-4
https://doi.org/10.1016/j.dss.2015.03.008
https://doi.org/10.1109/TFUZZ.2017.2654504

	 Inf Retrieval J

1 3

of the 3rd ACM conference on recommender systems—RecSys ’09 (p. 265). New York: ACM Press.
https​://doi.org/10.1145/16397​14.16397​64.

Piegat, A., & Pietrzykowski, M. (2016). Local modeling with local dimensionality reduction: Learning
method of mini-models (pp. 375–383). Cham: Springer. https​://doi.org/10.1007/978-3-319-39384​
-1_32.

Pirasteh, P., Jung, J. J., & Hwang, D. (2014). Item-based collaborative filtering with attribute corre-
lation: A case study on movie recommendation (pp. 245–252). Cham: Springer. https​://doi.
org/10.1007/978-3-319-05458​-2_26.

Pratama, M., Zhang, G., Er, M. J., & Anavatti, S. (2016). An incremental type-2 meta-cognitive extreme
learning machine. IEEE Transactions on Cybernetics, 47(2), 1–15. https​://doi.org/10.1109/
TCYB.2016.25145​37.

Ricci, F., Rokach, L., & Shapira, B. (Eds.). (2015). Recommender systems handbook. Boston, MA:
Springer. https​://doi.org/10.1007/978-1-4899-7637-6.

Shi, Y., Larson, M., & Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix. ACM
Computing Surveys, 47(1), 1–45. https​://doi.org/10.1145/25562​70.

Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A compara-
tive review. Information Systems, 58, 87–104. https​://doi.org/10.1016/j.is.2014.10.001.

Su, X. (2015). Collaborative filtering: A survey. In 4th international conference on reliability, infocom
technologies and optimization (ICRITO) (trends and future directions) (p. 1). IEEE. https​://doi.
org/10.1109/ICRIT​O.2015.73592​03.

Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep learning based
recommendation system for cold start items. Expert Systems with Applications, 69, 29–39. https​://
doi.org/10.1016/j.eswa.2016.09.040.

Wu, M., & Schölkopf, B. (2006). A local learning approach for clustering. In Advances in neural infor-
mation processing systems (NIPS 2006) (pp. 1529–1536).

Yao, W., He, J., Huang, G., Cao, J., & Zhang, Y. (2015). A graph-based model for context-aware recom-
mendation using implicit feedback data. World Wide Web, 18(5), 1351–1371. https​://doi.org/10.1007/
s1128​0-014-0307-z.

Zhou, N., Xu, Y., Cheng, H., Fang, J., & Pedrycz, W. (2016). Global and local structure preserving sparse
subspace learning: An iterative approach to unsupervised feature selection. Pattern Recognition, 53,
87–101. https​://doi.org/10.1016/j.patco​g.2015.12.008.

https://doi.org/10.1145/1639714.1639764
https://doi.org/10.1007/978-3-319-39384-1_32
https://doi.org/10.1007/978-3-319-39384-1_32
https://doi.org/10.1007/978-3-319-05458-2_26
https://doi.org/10.1007/978-3-319-05458-2_26
https://doi.org/10.1109/TCYB.2016.2514537
https://doi.org/10.1109/TCYB.2016.2514537
https://doi.org/10.1007/978-1-4899-7637-6
https://doi.org/10.1145/2556270
https://doi.org/10.1016/j.is.2014.10.001
https://doi.org/10.1109/ICRITO.2015.7359203
https://doi.org/10.1109/ICRITO.2015.7359203
https://doi.org/10.1016/j.eswa.2016.09.040
https://doi.org/10.1016/j.eswa.2016.09.040
https://doi.org/10.1007/s11280-014-0307-z
https://doi.org/10.1007/s11280-014-0307-z
https://doi.org/10.1016/j.patcog.2015.12.008

	(CF)2 architecture: contextual collaborative filtering
	Abstract
	1 Introduction
	2 Background
	2.1 Collaborative filtering
	2.2 Local learning
	2.3 Contextual inference

	3 Related work
	3.1 Local learning
	3.2 Contextual information in recommender systems
	3.3 Architectures for contextual recommender systems

	4 architecture
	4.1 External entities
	4.2 Storage layer
	4.3 Training layer
	4.4 Production layer

	5 Evaluation
	5.1 Methodology
	5.2 Case studies
	5.2.1 Case study 1: embedded context
	5.2.2 Case study 2: contextual inference
	5.2.3 Discussion

	6 Conclusions
	Acknowledgements
	References

