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a b s t r a c t 

Large scale smart meter deployments have resulted in popularization of sensor-based electricity forecast- 

ing which relies on historical sensor data to infer future energy consumption. Although those approaches 

have been very successful, they require significant quantities of historical data, often over extended pe- 

riods of time, to train machine learning models and achieve accurate predictions. New buildings and 

buildings with newly installed meters have small historical datasets that are insufficient to create accu- 

rate predictions. Transfer learning methods have been proposed as a way to use cross-domain datasets to 

improve predictions. However, these methods do not consider the effects of seasonality within domains. 

Consequently, this paper proposes Hephaestus, a novel transfer learning method for cross-building en- 

ergy forecasting based on time series multi-feature regression with seasonal and trend adjustment. This 

method enables energy prediction with merged data from similar buildings with different distributions 

and different seasonal profiles. Thus, it improves energy prediction accuracy for a new building with 

limited data by using datasets from other similar buildings. Hephaestus works in the pre- and post- pro- 

cessing phases and therefore can be used with any standard machine learning algorithm. The case study 

presented here demonstrates that the proposed approach can improve energy prediction for a school by 

11.2% by using additional data from other schools. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

The world today relies on data to drive discovery, optimize pro-

cesses, and improve decision making. Sensors are becoming cheap

and popular, enabling everyone to collect new data and create new

applications. This is leading to an explosive growth of data in terms

of the number of attributes, data points and datasets. 

In the building sector, smart meters that measure and commu-

nicate electricity consumption have become widely deployed. They

create opportunities for new energy applications and possibilities

to apply sensor-based energy forecasting on a large scale. Sensor-

based forecasting relies on historical data from smart meters or

sensors to infer future energy consumption. It uses machine learn-

ing techniques such as Support Vector Regression [1] , Neural Net-

works [2] , and autoregressive integrated moving average (ARIMA)

models [2] . 
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In machine learning, the quantity and complexity of data re-

uired to provide accurate predictions depend on data randomness

nd number of features [3,4] . Data randomness represents lack of

attern, while features are attributes that are correlated with the

abels. In general, more data translate into more accurate machine

earning models. Therefore, to accurately forecast energy consump-

ion for a building using a machine learning approach, a sufficient

uantity of historical data from the same building is needed. 

The challenge is that building managers are eager for accurate

redictions as early as possible, but new buildings have small his-

orical data sets. Therefore, this work explores sensor-based fore-

asting for a building with limited historical data by using con-

umption data from other similar buildings. The goal is to increase

ata variance, to fill in gaps due to missing samples, and conse-

uently to create more accurate predictions. 

The solution would be simple if the datasets considered were in

he same domain and could be represented by the same models;

 standard machine learning algorithm could be used to analyze

ll datasets as one. However, this is not the case because building

onsumption data are gathered in diverse contexts. For example,

https://doi.org/10.1016/j.enbuild.2018.01.034
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f one building uses incandescent lights and another uses fluores-

ent lights, their energy consumptions cannot be represented by a

ingle predictive model without adjustments. In addition, the sea-

ons of the year and human activities may result in distinct sea-

onal patterns (e.g., one building can have peaks during Mondays,

ut another on Fridays, depending on the routine that each one

ollows). Therefore, to analyze different buildings together, their

easonality differences must also be considered. Similarly, trend, a

ong-term variation (direction) of the data, also can be different

mong buildings and needs to be accounted for. 

Approaches collectively known as transfer learning address the

hallenge of transferring extracted knowledge from one domain to

nother [5] . Nevertheless, these approaches do not consider the

easonality effects present in electricity data and usually cannot be

sed with diverse machine learning techniques. 

To overcome these limitations, this paper introduces Hephaes-

us, a transfer learning method with seasonal and trend adjust-

ent for cross-building energy prediction. Hephaestus can be ap-

lied to buildings with small data sets by leveraging data from

ther similar buildings. Moreover, it works with any standard ma-

hine learning algorithm. The proposed solution is evaluated on a

ase study involving energy prediction for a school by using addi-

ional data from other schools. The results obtained show that pre-

iction accuracy is significantly improved compared to using only

ata from the target school, or to using all data, but without Hep-

aestus. 

This paper is organized as follows: Section 2 reviews re-

ated concepts in normalization, time series, and transfer learn-

ng. Section 3 reviews related work, and Section 4 describes the

roposed Hephaestus method. Section 5 presents the energy con-

umption case study, and, finally, Section 6 concludes the paper. 

. Background 

This section introduces the concepts of normalization, time se-

ies analysis, and transfer learning that were used to design Hep-

aestus. 

.1. Normalization 

Normalization is defined in this paper as follows: 

efinition 1 (Normalization) . Given two different sets of values S 1 
nd S 2 , a normalization � is a linear transformation where �( S 1 )

nd �( S 2 ) are in the same domain and have similar scales. 

It is the process of aligning values measured and stored at dif-

erent scales or proportions to a common scale so that they can

e compared and operated on together. In machine learning, nor-

alization is an essential pre-processing step and can significantly

mprove model performance. 

Min-max is one of the most popular normalization methods in

achine learning [6,7] . It is commonly referred to simply as “nor-

alization” or sometimes as “feature scaling” and is represented

y the equation: 

in-max = 

x − X min 

X max − X min 

(1) 

here x is the current value, and X min and X max are the minimum

nd maximum values of the entire dataset. The min-max method

escales values and confine samples to an interval between 0 and

. 

The z-score, also known as the standard score or standardiza-

ion, is another normalization method. It is represented by the

quation: 

 = 

x − μ
(2) 
σ

hich returns the distance of x from the mean μ, measured in

ultiples of the standard deviation σ [8] . The use of z-score nor-

alization is recommended for attributes that follow a normal dis-

ribution. 

Unlike min-max, the z-score does not limit values to lie be-

ween a specific minimum and maximum. Instead, it maintains the

ormal distribution, in which most values are statistically concen-

rated within a range of z-scores. Because a z-score can be any real

umber, outliers can still have higher values that are not limited by

he minimum and maximum values. 

.2. Time series regression model and seasonal adjustment 

A time series regression model is used to predict new values

ased on time series data, which contain successive measurements

t different points in time. These models are used in many areas,

ncluding revenue prediction [9] and energy consumption forecast-

ng [10,11] . 

A time series regression model can be either additive [12] : 

 t = T t + C t + S t + I t (3)

r multiplicative 

 t = T t × C t × S t × I t (4)

The trend component ( T t ) is a smooth, regular, and long-term

tatistical series and represents a general growth or decline; the

yclical ( C t ) component is a pattern that occurs repeatedly sev-

ral times during an irregular period; the seasonal component ( S t )

s similar to the cyclical component, but the pattern occurs in a

ell-defined period (e.g., daily, weekly, or monthly); and the irreg-

lar component ( I t ) is the remainder, which can be related to non-

emporal factors or simply considered an error. The cyclical ( C t )

nd trend ( T t ) components are often analyzed together and merged

s a single trend-cycle component ( TC t ) [12,13] . 

Choosing the most appropriate model depends on the data to

e analyzed. The additive model is most suitable when the varia-

ion (the distance between highs and lows) remains relatively con-

tant over time; the multiplicative model is most useful when the

ariation changes with the local average (the higher the average,

he higher the variation) [13] . 

Seasonal adjustment is a procedure to improve the properties of

he parameter estimates for time series regression [12] . In this pro-

edure, past observations are used to calculate a trend factor and

 seasonal index as estimate of the trend-cycle ( TC t ) and seasonal

 S t ) components. The trend factor and seasonal index are then used

o remove the respective components from the time series, en-

bling data analysis without these components and later adjust-

ent of the prediction. 

.3. Transfer learning 

Transfer learning aims to improve the learning task in a tar-

et domain using the knowledge from other domains and learning

asks [5] . It is defined as follows: 

efinition 2 (Transfer Learning) . Given a source domain D S and

 learning task T S , a target domain D T and a learning task T T ,
ransfer learning aims to improve the learning of the target predic-

ive function r T ( ·) in D T using the knowledge in D S and T S , where

 S � = D T , or T S � = T T [5,14] . 

From the definition above, a domain is defined as a pair

 = {F , P (X ) } , where F = { f 1 , ., f n } is a feature space with n di-

ensions, f k is a feature, X is a learning sample such that X =
 x 1 , . . . , x n } ∈ F and P ( X ) is the marginal probability distribution of

 . For domains to be considered different it is sufficient that ei-
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Fig. 1. Types of machine learning approaches. 
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ther feature spaces or marginal probability distributions are dif-

ferent. A task is a pair T = {Y, r(·) } , where Y is the label space

and r ( ·) is the predictive function. From a probabilistic viewpoint,

r ( X ) can also be written as the conditional probability distribution

P ( Y | X ) [5] . 

Fig. 1 compares different types of machine learning approaches.

Fig. 1 (a) shows how a standard machine learning algorithm works,

using only a single domain for each model to learn from separately.

Fig. 1 (b) demonstrates how transfer learning differs from standard

machine learning, using the knowledge extracted from multiple

source domains to improve the prediction for a target domain. 

Transfer learning has three main categories [5,15] : (a) induc-

tive transfer learning, where the target task is different from the

source task ( T S � = T T ); (b) transductive learning, where the tasks

are the same ( T S = T T ), but the domains are different ( D S � = D T ). In

particular, when the feature spaces of the domains are the same

( F S = F T ) but the distributions are different ( P ( X S ) � = P ( X T )), this

category is also known as domain adaptation; and (c) unsupervised

transfer learning, which is similar to inductive transfer learning for

unsupervised learning tasks, where no labeled data are available. 

Transfer learning can also be grouped according to what kind

of knowledge is transferred across tasks [5] : 

a) Instance-based, where labeled data are selected and reweighted

from the source domain to be used in the target domain; 

b) Feature representation-based, where a new feature space is

composed to satisfy all the domains; 

c) Parameter-based, where the parameters used to train the

source are used to train the target; and 

d) Relational knowledge-based, where a mapping of relational

knowledge is built between the source and target domains. 

3. Related work 

In this paper, related work is divided into two subsections. The

first subsection discusses energy forecasting methods, including

those used in the building sector. The second subsection presents

transfer learning studies within different domains and based on

various aspects such as domain generalization and seasonal adjust-

ment. 
.1. Energy forecasting 

The importance of energy forecasting together with large-scale

eployments of smart meters and other sensors that can capture

nergy consumption at short intervals have resulted in increased

nterest in sensor-based forecasting. Although in the past, energy

onsumption was predicted on annual or monthly bases, today

orecasting has moved towards hourly or even shorter intervals

1,16] . 

Research studies have investigated energy prediction in residen-

ial [17] , institutional [18] , commercial [16] , event venues [19] , and

ther buildings. These studies predicted future energy consump-

ion based on past energy consumption data and various contex-

ual attributes such as weather, operating hours, and occupancy. In

ost sensor-based forecasting research, including the studies just

entioned, energy prediction for a building relies on past energy

ata from the same building because it is expected that future en-

rgy consumption patterns will follow historical ones. Neverthe-

ess, to carry out such forecasting, a large quantity of past data is

eeded, possibly over an extended time period to capture differ-

nt weather and seasons. Hence, such solutions cannot be used for

ew buildings where very few historical data points are available.

he work described here investigates if and how energy forecast-

ng can be performed for a new building with very limited histor-

cal data, but using data available from other buildings. It explores

ow knowledge obtained from one building can be transferred to

nother building for the purpose of energy forecasting. 

Sensor-based forecasting techniques are numerous: a few ex-

mples are Support Vector Regression (SVR) [20] , Neural Networks

NN) [21] , gray-box models [22] , decision trees [23] , local learn-

ng [24] , and multiple linear regression [25] . Ensemble approaches

ombine these techniques to improve prediction accuracy [26,27] .

everal review studies have also been published: Yildiz et al.

28] reviewed commercial building electricity load forecasting, Deb

t al. [29] surveyed time series forecasting techniques for build-

ng energy consumption, and Daut et al. [30] focused on conven-

ional and artificial intelligence methods. Although these studies

chieved excellent prediction accuracy in various context, they still

id not support energy prediction for buildings with limited his-

orical data. The present work builds on these studies by enabling

ransfer of forecasting knowledge among similar buildings. 

The work of Mocanu et al. [31] focused on cross-building trans-

er learning and provided energy prediction solution for buildings

ith limited historical data by using data from other buildings.

hey combined reinforcement learning with a deep belief network

o facilitate on-line learning. In contrast to Mocanu et al. who

roposed a new energy forecasting approach, the present work is

pecifically looking at how forecasting knowledge from one build-

ng can be transferred to another building while continuing to use

xisting machine learning-based prediction techniques. 

.2. Transfer learning 

Transfer learning can also be found in the literature under the

erm cross-domain followed by some other term such as learn-

ng [32] , prediction [33] , data [34] , or data fusion [15] . Sometimes

he term domain is replaced by the domain category (e.g., cross-

ompany [34] and cross-building [31] ). 

Transfer learning has been recently used in many real-world

roblems: in software engineering, it has addressed cross-company

oftware defect classification [33,35] and cross-company software

ffort estimation [34] ; in voice processing, it has improved mis-

ronunciation detection [36] ; in image processing, it has dealt

ith visual recognition [32,37–42] ; in natural language processing

NLP), it has addressed sentiment analysis [37,43–46] ; in energy

nd buildings, it has improved energy [31] and temperature pre-
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iction [47] . As discussed in Section 3.1 , Mocanu et al. [31] focused

n cross-building energy prediction. On the other hand Grubinger

t al. [47] addressed temperature prediction: they merged the

haracteristics of the source(s) and target domains to produce a

eneralized domain that was used to predict the temperature in

he target domain. Grubinger et al. used a customized prediction

echnique, unlike Hephaestus that can work with standard ma-

hine learning algorithms. 

Although most transfer learning studies deal with classifica-

ion tasks [32,33,35–41,43] , regression tasks are mostly restricted

o specific areas [34,42,44,46] . 

To manage transfer learning among domains, the domains must

e adapted to an individual virtual domain using a procedure,

hich can be explicit or implicit, to reduce the distance between

he allocated data in it. An implicit procedure processes the data in

uch way that reduces the distance as a consequence [43,44] . On

he other hand, an explicit procedure transforms distance reduc-

ion into an optimization problem by directly attempting to mini-

ize the distance, as presented in [33,45] . Both these methods rely

n optimization algorithms, meaning that they are computationally

xpensive. Furthermore, they cannot work with other standard ma-

hine learning algorithms and have not been used for regression

asks, unlike Hephaestus that is designed to work with standard

achine learning algorithms. As a compromise between implicit

nd explicit distance optimization, Li et al. [37] proposed heteroge-

eous domain adaptation to work with generic classification tasks.

owever, Hephaestus again has an advantage as it can work with

ll standard machine learning tasks, including regression and clas-

ification. 

Although some of the studies mentioned at the beginning of

his section naturally dealt with the time component (e.g., voice

rocessing), none of them considered trends and seasonality (e.g.,

ross-building energy consumption). Microsoft SQL Server (a re-

ational database management system) can use more than one

ource to create time series predictions, an ability that Microsoft

alls cross prediction [48] . SQL Server embeds two algorithms: an

utoregressive tree model with cross-predictions (ARTXP) [49] for

hort term predictions, and an autoregressive integrated moving

verage (ARIMA) for long term predictions. Cross-predictions are

ossible only for ARTXP models, and no information is publicly

vailable about how it operates. However, it does not support fea-

ures other than time. 

Hephaestus deals with both time series and multi-feature re-

ression together. It separates out the time component from the

arious domains, adapts the remainder component for all domains

nto a single domain, and uses any standard machine learning al-

orithm to create a predictive model. 

. Hephaestus method 

This paper proposes Hephaestus, a novel cross-building energy

rediction method based on transfer learning with seasonal and

rend adjustment. To improve prediction for a target building, Hep-

aestus uses measurements from additional similar buildings col-

ected over a much longer time frame. Moreover, Hephaestus is de-

igned to work in the pre- and post-processing phases of standard

achine learning, acting directly on top of feature and label values

nd without the need to modify the machine learning algorithm

tself, making it possible to use any standard regression algorithm. 

Hephaestus can be classified as an inductive transfer learning

ethod. Considering that X represents the building feature space

nd the labels Y represent its energy consumption, it is clear that

he predictive functions from the source and target domains are

ifferent ( P ( Y S | X S ) � = P ( Y T | X T )) and therefore the learning tasks are

lso different ( T � = T ). 
S T 
Fig. 2 provides an overview of Hephaestus. The inputs are: (a)

he target , which represents the target dataset and contains past

nformation from the target building; (b) sources 1 . n , which rep-

esents additional datasets that will be used to improve the target

rediction; and (c) the predictive set , which contains unlabeled data

o be predicted. 

Hephaestus consists of four main phases: (A) time series adap-

ation , in which the time effects (e.g. seasonality, trends) for all

ource and target datasets are analyzed, transferred to the target

if needed), and have seasonal and trend components removed;

B) non-temporal domain adaptation , in which the domains of non-

emporal features and of the consumption data are adapted; (C)

tandard machine learning , which uses any appropriate standard al-

orithm to train the predictive model and generate predictions us-

ng the predictive set ; and (D) adjustment , in which the prediction

s readjusted using the factors calculated in the time series adapta-

ion and non-temporal domain adaptation phases. 

Hephaestus can be considered as both a parameter and an in-

tance transfer method. It transfers the time factors and normaliza-

ion parameters (if the target dataset does not have enough data to

alculate them) as well as instances containing non-temporal fea-

ures to train the predictive model. The following subsections dis-

uss the four phases of Hephaestus. 

.1. Time series adaptation 

Different buildings from the same category (e.g., schools, of-

ces) can have distinct time profiles, but similar behavior for non-

emporal features. For example, commercial building consumption

rofiles usually follow a weekly pattern, but may have peaks and

alleys on different days of the week. Hence, it is important to re-

ove seasonal and trend effects before analyzing and transferring

he knowledge encoded by the correlation of non-temporal fea-

ures and consumption data. 

This phase has two objectives: (a) removing the effects of time

rom all datasets, and (b) transferring time series knowledge (if

eeded) from the sources to the target building. Fig. 3 illustrates

his phase. The n raw source datasets and the target dataset are

eceived as input. As output, the labels Y for each dataset contain

he consumption data after trend and seasonality removal. 

Formally, if each dataset has a unique time profile, the condi-

ional probability P ( y | x t ), where x t is a temporal feature (i.e., con-

ains a value in the time domain), is not equal for all sources and

he target. Therefore, the goal of time series adaptation �() here is

o approximate the conditional probability P ( �( Y )| X ) of all build-

ngs by removing the effects of all temporal features (e.g. day of

he week) from consumption data. 

.1.1. Trend removal 

The consumption data from each input dataset may have differ-

nt trends. To reduce this difference, the trend removal procedure

alculates the trend factor and removes it from the consumption

ata, which lose their long-term tendency, as can be seen in Fig. 3 .

To calculate the trend factors, a two-step procedure is executed.

irst, trend smoothing is performed using moving averages: 

s i = 

1 

m 

m −1 ∑ 

j=0 

y i − j (5) 

here ts i is calculated for each data point i in the consumption

ime series and m represents the last m data points before i . In

eneral, m is chosen to ensure that only long-term trends are re-

oved. For instance, if the dataset consists of daily entries, m can

e set to 365 to keep the cyclical components related to monthly

nd weekly seasonality. 
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Fig. 2. Overview of Hephaestus method. 

Fig. 3. Time series adaptation phase. 



M. Ribeiro et al. / Energy & Buildings 165 (2018) 352–363 357 

 

c

t  

w  

o

 

t  

b  

p  

E  

p  

p

 

s  

r  

s  

h  

c  

t  

N

4

 

d  

s  

S  

t  

l  

t

 

c  

d  

o  

p

s  

 

t  

s  

s  

E

 

e  

t  

t  

i  

fi

 

i  

r

4

 

t  

t  

a  

g  

H  

t

 

t  

t  

t  

d

4

 

r  

a  

t  

t  

t  

d

 

a  

f  

b  

o  

a

 

Z  

t  

a  

e

 

s  

p  

r  

s  

h

 

m  

F  

e  

b  

t

4

 

l  

d  

a  

s  

f  

f  

t  

t  

t

 

t  

b  

p  

p  

s  

d  

t

 

t  

a  

t  

n

4

 

r  

g  

h  
The second step involves trend removal . The trend factor is cal-

ulated by the equation: 

 f i = t s i /t s r (6)

here r is the index of a reference value, commonly the last point

f the dataset. 

The calculated trend factors tf i are used to remove the long

erm trend. If the time series follows the additive model described

y Eq. (3) , the trend is subtracted from the consumption data

oints, and if it follows the multiplicative model described by

q. (4) , the data points are divided by tf i . Later, in the Adjustment

hase ( Section 4.4 ), the inverse procedure is executed to adjust the

rediction. 

Sometimes the small amount of data in the target dataset is

tatistically insufficient to determine the trend. This issue can be

esolved by using the trend factors calculated from one of the

ource datasets or a composite of all of them, assuming that they

ave similar trends. For example, two approaches can be used: (a)

alculating the average of all the source datasets or (b) choosing

he dataset that is most similar to the target (e.g., using K-Nearest

eighbors). 

.1.2. Seasonality removal 

Like trends, consumption data from different buildings can have

ifferent seasonal profiles (for example, weekly seasonality) that

hould be removed to reduce seasonal impact, as shown in Fig. 3 .

easonality removal calculates the seasonal indexes, first to remove

hem from the consumption data using a removal function, and

ater to adjust the prediction using the inverse of the removal func-

ion. 

In this step, the same procedure is followed for each seasonality

onsidered. Let P be the set of all values from a seasonality (e.g.,

ays of the week), where p is a specific value in P , y p , j is the j th

f m data points that occur in p , and y is the average of all data

oints from every p ∈ P . The seasonal index is calculated as: 

 p = 

1 

y 

1 

m 

m ∑ 

j=1 

y p, j (p ∈ P ) (7)

This seasonal index s p is then used to remove seasonality. If

he time series follows the additive model described by Eq. (3) ,

 p is subtracted from the consumption data points, and if the con-

umption time series follows the multiplicative model described by

q. (4) , the consumption data points are divided by s p . 

As with trend removal, the target dataset may not be large

nough to calculate seasonal indexes with statistical relevance. In

his case, the target’s seasonality removal can be calculated using

he seasonal indexes from one of the source datasets or a compos-

te of all of them, assuming that they have similar seasonal pro-

les. 

The outcome of this phase, after trend and seasonality removal,

s the residual component of consumption data with time effects

emoved. 

.2. Non-temporal domain adaptation 

The goal of the non-temporal domain adaptation phase is to align

he domains of all non-temporal features (those that do not define

ime and do not depend on it) and of the consumption data to en-

ble them to be handled together. This paper proposes local and

lobal normalization for the non-temporal domain adaptation, but

ephaestus is flexible enough to work with other domain adapta-

ion techniques. Fig. 4 illustrates how this phase works. 

For a feature f , the values X f from each source dataset and the

arget dataset are processed using global normalization if the rela-

ionship between Y and X f is absolute or using local normalization if
his relationship is relative. These two normalization methods are

escribed next. 

.2.1. Local normalization 

A relationship between Y and X f is relative if the value of Y

elies on a proportional value of X f . The conditional distributions

fter normalization P ( Y | �( X f )) of each source and the target are

he same, where �() is a normalization function. Local normaliza-

ion is illustrated in Fig. 4 , which shows all resulting marginal dis-

ributions centered in the same position for all source and target

atasets. 

The relation between energy consumption and external temper-

ture is an example of a relative relationship. In this case, the ef-

ects of temperature on consumption are specific for each building

ecause each has different heat-exchange characteristics with the

utside environment. By normalizing temperature, these effects are

ligned onto the same scale for all buildings. 

Depending on the nature of the feature, min-max ( Eq. (1) ) or

-score ( Eq. (2) ) normalization is used. In either case, only the fea-

ure values X 
D k 
f 

from the dataset D k belonging to the k th domain

re used in the calculation. Fig. 4 uses z-score normalization as an

xample. 

Similarly to time series adaptation, depending on target dataset

ize, it is sometimes difficult or statistically insufficient to achieve

roper normalization using only the target dataset. This can be

esolved by using the normalization parameters from one of the

ource datasets or a composite of all of them, assuming that they

ave similar distributions. 

Because the consumption data from source and target datasets

ay follow different distributions, they must also be normalized.

or example, energy consumption depends on building size: the

nergy consumption peak in a bigger building can be expected to

e higher than in a smaller building. In this case, local normaliza-

ion should be used. 

.2.2. Global normalization 

A relationship between Y and X f is absolute if the value of Y re-

ies directly on the absolute value of X f . In this case, the X f of each

ataset is a subset of a superset F that contains all subsets from

ll datasets, and the conditional distributions P ( Y | �( X f , F )) for all

ource and target datasets are the same in a global context. There-

ore, the feature X f is considered to be already in the same domain

or all buildings. Global normalization is illustrated in Fig. 4 , where

he dashed lines represent the assumed marginal distribution of

he superset F and the continuous lines represent the marginal dis-

ribution of X f for the source and target datasets. 

For example, suppose that all the buildings are outfitted with

he same type of equipment (e.g., computers) and that the num-

er of pieces of equipment is a dataset feature. Assuming that each

iece of equipment consumes the same amount of energy inde-

endently of where it is installed, its relationship with energy con-

umption would be considered absolute because the consumption

epends directly on the number of pieces of equipment that are

urned on. 

Even though features with a global relationship are already in

he same global domain, they should also be normalized to bring

ll features into the same scale and to ensure prediction quality. In

his case, all the feature values X f from all datasets are used in the

ormalization. 

.3. Standard machine learning 

Hephaestus does not change how a machine learning (ML) algo-

ithm works because the input to the ML algorithm is still one sin-

le dataset. The pre- and post-processing phases executed by Hep-

aestus do not affect the execution of the algorithm itself. Hence,
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Fig. 4. Local and global z-score normalizations for relative and absolute relationships. 
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the method can work with any standard regression algorithm (e.g.,

support vector regression and neural networks) to build the pre-

dictive model, feeding the composed training set directly into the

algorithm without the need to adapt the algorithm. 

In addition, any other pre- or post-processing procedures, such

as instance selection/weighting and feature selection/weighting,

can be executed during the standard machine learning phase ei-

ther before training or after prediction. 

4.4. Adjustment 

It is important to note that the labels (energy consumption

data) have been modified during the time series adaptation and

non-temporal domain adaptation phases. To achieve the correct pre-

dicted values, readjustments for each phase must be made by ap-

plying the inverse functions from the time series adaptation �−1 ()

and the non-temporal domain adaptation �−1 () . 

5. Case study: energy consumption 

This case study aimed to use Hephaestus to improve energy

consumption prediction for a building with only one month of data

available, with the help of data from additional buildings. The goal

was to reach similar accuracy as if the model had been trained

with one entire year of data for the target building. 

The evaluation was performed using data from four schools

provided by Powersmiths [50] , a Canadian company whose main

product lines include meters and sensors to manage building re-

sources. The schools are of different sizes and located across New-

foundland, Canada, which provides diverse weather conditions that

are not too distinct from one another. Moreover, the schools share

similar seasonal patterns, including hours of operations, holidays,
nd seasons of the year, but their weekly profiles are different from

ne another. The datasets for the four schools contain three years

f daily data, from January 1, 2013, to December 31, 2015. Each

ataset contains 17 attributes, including 4 temporal attributes: (1)

ear, (2) month, (3) day, (4) day of the week; 12 non-temporal at-

ributes, all related to external weather: (5) minimum temperature,

6) maximum temperature, (7) mean temperature, (8) mean tem-

erature difference from the day before, (9) mean temperature dif-

erence from two days before, (10) mean temperature difference

rom three days before, (11) dew point, (12) mean dew point, (13)

inimum dew point, (14) minimum humidity, (15) maximum hu-

idity, and (16) mean humidity; and finally the label (17) energy

onsumption, which is measured and collected by the Powersmiths

eters. 

Fig. 5 shows a histogram of the daily energy consumption for

ach school. The histograms clearly show that each school has a

nique energy profile and therefore should be described by a dis-

inct prediction function. In this context, the use of Hephaestus is

ssential to adapt the datasets and enable them to be used in con-

unction. 

In the following discussion, the Evaluation subsection describes

ow the performance of Hephaestus was evaluated; the Implemen-

ation subsection describes certain important implementation de-

ails; the Preliminary Analysis subsection examines details of the

ata used in the case study; and the Results subsection discusses

ow Hephaestus performed. 

.1. Evaluation 

To evaluate the proposed approach, five prediction models were

mplemented for each school: 
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Fig. 5. Relative frequency histogram of energy consumption for each of the four schools. 

Fig. 6. Rolling base forecasting. 
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• T.1 : ML algorithm (without Hephaestus) with one month of

data from the target school, to simulate the scenario where

only recent data from the target building are available. 
• T.12 : ML algorithm (without Hephaestus) with 12 months of

data from the target school, used as a benchmark to compare

with Hephaestus performance. 
• H.1-12 : Hephaestus with one month of data from the target

school plus 12 months from the other schools. 
• H.12-12 : Hephaestus with 12 months of data from the target

school plus 12 months of data from the other schools, used only

as a benchmark. 
• N.1-12 : ML algorithm (without Hephaestus) with one month of

data from the target school plus 12 months of data from the

other schools. In this case, only min-max normalization was

used for each feature to demonstrate the impact of Hephaes-

tus. 

Here ’the other schools’ refers to the three schools besides the

arget school itself. Hephaestus model H.1-12 was trained with

ata from the three schools, , and the prediction was evaluated on
he fourth school. The predictions were calculated for one entire

ear using rolling base forecasting, which uses a certain number of

onths to train the model and one month to test. Fig. 6 illustrates

ow this process works, using as an example one month of data

rom the target school plus 12 months from the other schools. 

The hypothesis to be tested was that Hephaestus models H.1-12

nd H.12-12 should be better than model T.1 and similar to model

.12. Moreover, was is expected that model N.1–12 should not per-

orm well because it used data from different domains to train the

redictive model without any adaptation. 

.2. Implementation 

The data for the analyzed schools showed that if the energy

onsumption is high its seasonal variations (differences between

ighs and lows) are also high. For example, Fig. 7 shows a sam-

le of energy consumption for School C. The graph clearly demon-

trates that both the energy consumption and its variation around

rend tended to increase over time. Because of this pattern, this ex-
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Fig. 7. Sample of an energy consumption timeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Seasonal index for all four schools. 

Fig. 9. Polynomial interpolation of the correlations between mean temperature and 

energy consumption. 
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periment was implemented using the multiplicative model for the

consumption time series. 

Trend removal was performed according to Eqs. (5) and (6) with

m = 365 . By using a large m , the cyclical components related to

seasonal weather features were kept. Using a smaller number of

days would remove, for example, the correlation between temper-

ature and energy consumption because the seasons of the year

would be removed with the trend. For seasonal removal, only

weekly seasonality was considered. 

From the three years of data, the first year was used exclusively

to calculate the long-term trend for the additional schools. The re-

maining two years were used to run the evaluation. Because all

models predicted only one month ahead, calculating the trend for

the target school was not necessary. 

In the non-temporal domain adaptation phase, all the non-

temporal attributes were normalized locally using z-scores ( Eq. 2 ). 

For the standard machine learning phase, two experiments were

constructed using two algorithms (a) a multilayer perceptron

(MLP) and (b) support vector regression (SVR). These algorithms

were chosen because they are commonly used for energy con-

sumption prediction [51] . This step was performed to demonstrate

that Hephaestus works with different standard machine learning

algorithms. 

The adjustment was calculated by applying the inverse of the

z-score function to the results from standard machine learning to

readjust for non-temporal domain adaptation and by multiplying

by the respective trend factor and seasonal index to reverse time

series domain adaptation, a procedure that can be written as: 

y = (z × σ + μ) × t f × s p (8)

5.3. Preliminary analysis 

This section describes the details of the datasets used in this

case study and helps to explain how Hephaestus works. Because

the focus of this subsection is on analyzing data not on the predic-

tion itself, this subsection used the entire dataset from all schools.

The weekly seasonal profiles for each school were calculated

during seasonal removal in the time series adaptation phase. Fig. 8

confirms that the school’s weekly profiles are different. Therefore,

data from one school cannot be used directly to predict the energy

consumption of another school because the prediction’s seasonality

will not fit the target’s seasonality. 

Furthermore, the correlation between non-temporal features

(e.g. external mean temperature) and energy consumption is not

the same for all schools. Fig. 9 (a) shows the correlation between

mean temperature and energy consumption, using a polynomial

interpolation of degree 3, before non-temporal domain adapta-

tion . In this scenario, determining the energy consumption of one

school using the curve from another school is not accurate because

the curves do not overlay each other. This demonstrates the need

for domain adaptation, which brings these curves close together to

improve machine learning accuracy. 
Fig. 9 (b) shows the correlation between external mean tem-

erature and energy consumption after the non-temporal domain

daptation phase. It is clear that the procedure successfully re-

uced the distance between the data distributions for each school.

nce the correlations for non-temporal features have been approx-

mated, they are ready to feed into the standard machine learning

lgorithm. 
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Table 1 

Energy consumption prediction errors for the schools (MLP). 

Model School A School B School C School D 

MAPE MSE MAPE MSE MAPE MSE MAPE MSE 

T.1 0.2088 229,548 0.3405 320,401 0.2105 264,078 0.3055 180463 

T.12 0.1196 104,4 4 4 0.2281 132,927 0.1040 76,155 0.2237 118421 

H.1–12 0.1191 86,240 0.2288 152,466 0.0986 74,601 0.2149 141240 

H.12-12 0.1156 83,337 0.2284 162,093 0.0928 66,509 0.2060 123051 

N.1–12 0.1928 277,025 0.6439 1,031,830 0.1941 234,497 0.2662 222852 

Fig. 10. Comparison of schools and models with their respective energy consumption prediction errors using MLP. 

Fig. 11. Timeline comparison of predictions for MLP models. 
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.4. Results 

Table 1 shows the results of the experiment using the multi-

ayer perceptron (MLP). MLP training can get stuck in a local mini-

um and therefore, MLP training was repeated ten times with dif-

erent initial weights and the best model was selected for further

valuations. The columns Table 1 represent the Mean Absolute Per-

entage Error (MAPE) and the Mean Square Error (MSE) for each

arget school. MAPE expresses average absolute error as a percent-

ge whereas MSE measures the average of the squares of the er-

ors. MAPE and MSE are calculated as follows: 

AP E = 

1 

N 

N ∑ 

i =1 

| y i − ˆ y i | 
y i 

(9) 

SE = 

1 

N 

N ∑ 

i =1 

( y i − ˆ y i ) 
2 (10) 

here y i is the actual consumption, ˆ y i is the predicted consump-

ion, and N is the number of observations. 

These same values are plotted in Fig. 10 . Fig. 11 shows a time-

ine chart comparing the predictions made by the various models

sing MLP. 

Model N.1-12 proved to be the worst model for all schools. This

as expected because this model used data that were outside the

arget domain, making wrong inferences and thus increasing the

rror. This shows that data from other schools cannot be used as-

s, demonstrating the importance of the Hephaestus method. 
Model T.1 had the second worst results for every school. By

dding data from other schools using Hephaestus in model H.1-12,

ll schools improved their results compared with model T.1. When

alculating T.1 minus H.1-12 from Table 1 , school C had the highest

mprovement, reducing MAPE by 11.2% and MSE by 189,477. 

In addition, the prediction accuracy for model H.1-12 was al-

ost as good as for model T.12, which used 12 months from the

arget school. Moreover, H.1-12 performed even better than T.12 for

chools A and C (when considering both MAPE and MSE) and D

when considering MAPE only). 

Noted, however, that model T.12 gave better results than models

.1-12 and H.12-12 for schools B (considering MAPE and MSE) and

 (considering only MSE). When the two metrics indicate different

esults, such as the school C MAPE value better for model H.1-12

han for model T.12 and the MSE value better for model T.12 than

odel H1.1-12 ( Table 2 ), the conclusion cannot be drawn about

hich model performed better overall. However, the primary goal

f Hephaestus is to improve prediction for buildings with small

atasets, which was simulated by model T.1. Model T.12 was added

nly as a benchmark to verify whether H.1-12 could achieve accu-

acy similar to that obtained when 12 months of the target dataset

ere available, which is not possible in the problem Hephaestus

as designed to solve. 

Table 2 shows the results for support vector regression (SVR),

hich are plotted in Fig. 12 . The results are similar to the MLP

xperiment. This demonstrates that Hephaestus can work with any

tandard machine learning algorithm. 
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Table 2 

Energy consumption prediction errors for the schools (SVR). 

Model School A School B School C School D 

MAPE MSE MAPE MSE MAPE MSE MAPE MSE 

T.1 0.1798 185,051 0.2853 226,727 0.1594 160,584 0.2447 185,406 

T.12 0.1327 132,285 0.2240 140,457 0.1006 76,340 0.2081 121938 

H.1–12 0.1218 94,187 0.2272 142,427 0.0991 79,346 0.2227 156124 

H.12-12 0.1133 85,407 0.2296 147,068 0.0940 70,158 0.2124 136681 

N.1–12 0.1964 272,301 0.6623 986,109 0.2048 269,871 0.2656 224486 

Fig. 12. Comparison of schools and models with their respective energy consumption prediction errors using SVR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

This paper has proposed Hephaestus, a novel cross-building en-

ergy prediction method based on transfer learning with seasonal

and trend adjustment of time series. To improve predictions for

a target building with a small data set, the proposed method

uses measurements from other similar buildings collected over a

much longer time frame. Hephaestus works in the pre- and post-

processing phases, enabling the use of standard machine learning

algorithms. The method adjusts the data from multiple buildings

by removing the effects of time through time series adaptation and

prepares time independent features through non-temporal domain

adaptation. 

To validate Hephaestus, a case study on energy consumption

prediction for multiple schools was presented. Prediction accuracy

increased by up to 11.2% using data from additional schools com-

pared with a model that used only one month of data from the

target school. Even with only one month’s worth of data for the

target school, the prediction accuracy was similar to or even better

than that using 12 months of data from the target school 

Future work will explore adding an instance weighting method

to improve the performance of Hephaestus further. More experi-

ments will be performed using a smaller number of data samples

(i.e, days) from the target school to investigate how many data

points are needed for the Hephaestus approach. 
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