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Abstract: The smart grid employs computing and communication technologies to embed intelligence
into the power grid and, consequently, make the grid more efficient. Machine learning (ML) has
been applied for tasks that are important for smart grid operation including energy consumption
and generation forecasting, anomaly detection, and state estimation. These ML solutions commonly
require sufficient historical data; however, this data is often not readily available because of
reasons such as data collection costs and concerns regarding security and privacy. This paper
introduces a recurrent generative adversarial network (R-GAN) for generating realistic energy
consumption data by learning from real data. Generativea adversarial networks (GANs) have
been mostly used for image tasks (e.g., image generation, super-resolution), but here they are used
with time series data. Convolutional neural networks (CNNs) from image GANSs are replaced
with recurrent neural networks (RNNs) because of RNN's ability to capture temporal dependencies.
To improve training stability and increase quality of generated data, Wasserstein GANs (WGANSs) and
Metropolis-Hastings GAN (MH-GAN) approaches were applied. The accuracy is further improved
by adding features created with ARIMA and Fourier transform. Experiments demonstrate that data
generated by R-GAN can be used for training energy forecasting models.

Keywords: energy forecasting; generative adversarial network; recurrent neural network; generative
model; Fourier transform; ARIMA; energy data

1. Introduction

In a smart grid, digital information and communication technologies are employed to manage
the power grid in a reliable, economical, and sustainable manner. The aim is to achieve high
availability and security, prevent failures, increase resiliency and power quality while, at the same
time, provide economic and environmental benefits. Increased integration of distributed generation
such as photovoltaic panels and wind turbines, together with expansion of electric vehicles and
charging to/from the batteries, will require changes in the grid operation, increased flexibility, and
dynamic management.

To adapt to these changes, the smart grid employs two-way communication, software, sensors,
control, and other digital systems. The advanced metering infrastructure (AMI) is one of the
technologies enabling the smart grid: smart meters, which are deployed as part of AMI, measure,
communicate, and record energy consumption in intervals of an hour or less. Monitoring devices
such as a phasor measurement unit generate state measurements at the granularity of microseconds
enabling enhanced monitoring and control.

These data in the energy sector have a potential to provide insights, support decision making,
increase grid flexibility and reliability [1]. Machine learning (ML) has been used for various smart
grid tasks because of its ability to learn from data, detect patterns, provide data-driven insights and
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predictions. Examples include short and long term demand forecasting for aggregated and individual
loads [2], anomaly detection [3,4], energy disaggregation [5], state estimation, generation forecasting
encompassing solar and wind, load classification, and intrusion detection.

All those ML applications are dependent on the availability of sufficient historical data. This is
especially heightened in the case of complex models such as those found in deep learning (DL) as
large data are required for training DL models. Although a few anonymized data sets have been made
publicly available [6,7], many power companies are hesitant to release their smart meter and other
energy data due to privacy and security concerns [8]. Moreover, risks and privacy concerns have been
identified as key issues throughout data driven energy management [1]. Various techniques have been
proposed for dealing with those issues: examples include the work of Guan et al. [9] on secure data
acquisition in smart grid and the work of Liu et al. [10] on privacy preserving scheme for the smart
grid. Nevertheless, privacy and security concerns result in a reluctance to share data and, consequently,
impose challenges for the application of ML techniques in the energy domain [11].

In practice, ML also encounters challenges imposed by missing data and incomplete observations
resulting from sensor failures and unreliable communications [12]. This missing and incomplete data
often needs to be recovered or estimated before ML can be applied. Moreover, training ML models may
require data difficult to obtain because of associated costs or other reasons. For example, nonintrusive
load monitoring (NILM) which deals with inferring the status of individual appliances and their
individual energy consumption from aggregated readings requires fine-grained data for individual
appliances and/or large quantities of labeled data from very diverse devices. Collecting such data
requires installation of sensors on a large scale and can be cost prohibitive.

The generative adversarial networks (GANs) have been proposed for generating data from a
target distribution [13]. If GANs could generate realistic energy data, they could be used to generate
data for ML training and for imputing missing values. GAN consists of two networks: the generator
and discriminator. The generator is tasked with generating synthetic data whereas the discriminator
estimates the probability that the data is real rather than synthetic. The two networks compete with
each other: the objective is to train the generator to maximize the probability of the discriminator
making a mistake. GANs have mostly been used in computer vision for tasks such as generating
realistic-looking images, text to image synthesis [14], image completion, and resolution up-scaling [15].

This paper proposes a recurrent generative adversarial network (R-GAN) for generating realistic
energy consumption data by learning from real data samples. The focus is on generating data for
training ML models in the energy domain, but R-GAN can be applied for other tasks and with different
time-series data. Both the generator and discriminator are stacked recurrent neural networks (RNNs) to
enable capturing time dependencies present in energy consumption data. R-GAN takes advantage of
Wasserstein GANs (WGANSs) [16] and Metropolis-Hastings GAN (MH-GAN) [17] to improve training
stability, overcome the mode collapse, and, consequently, generate more realistic data.

For evaluation of image GANSs, scores such as Inception score [18] have been proposed, and
it is even possible to visually evaluate generated images. However, for the non-image data, GAN
evaluation is still an open challenge. As the objective here is to generate data for ML training, the
quality of the synthetic data is evaluated by measuring the accuracy of the machine learning models
trained with that synthetic data. Experiments show that the accuracy of the forecasting model trained
with the synthetic data is comparable to the accuracy of the model trained with the real data. Statistical
tests further confirm that the distribution of the generated data reassembles that of the real data.

The rest of the paper is organized as follows: Section 2 discusses the background, Section 3
presents the related work, Section 4 describes the R-GAN, Section 5 explains the experiments and
corresponding results, and finally Section 6 concludes the paper.

2. Background

This section introduces generative adversarial networks and recurrent neural networks.
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2.1. Generative Adversarial Networks

Generative adversarial networks (GANSs) [13] discover and learn patterns present in the training
data and are thus capable of generating new data with similar characteristics. For example, a GAN
trained on the set of photographs is capable of producing new images that look realistic to the human
observer [19,20].

As illustrated in Figure 1, a GAN consists of two networks: a generator and a discriminator.
The task of the generator is to mimic data samples (e.g., images, video, audio) with the objective of
fooling the discriminator into thinking that the generated samples are real. The discriminator learns to
recognize whether a sample is real or synthetic. The two try to defeat each other: the generator tries to
fool the discriminator into thinking that the produced samples are real while the discriminator tries to
identify the fake samples.

The generator produces fake data from the random input as illustrated in Figure 1.
The discriminator receives two inputs, the real data and the fake data generated by the generator, and
produces an output indicating probabilities that samples are real. The two play min-max game with
value function V(D, G):

Ingn mDaXV(Dr G) = Exwpdam(x) [logD(xH + IEz~pz(z) [Zog(l - D(G(Z)))] (1)

where G and D are the generator and discriminator, x is the real data sample drawn from p,,(x), and
z is the random (noise) input drawn from p,(z).
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Figure 1. Generative Adversarial Network.

Studies have demonstrated that GANs can provide good samples [19-21]; however, their training
may experience diverging or oscillatory behavior resulting in failure to converge [22]. GANs are also
prone to mode collapse and vanishing gradients. Mode collapse refers to a situation in which the
generator collapses and always produces the same outputs whereas vanishing gradients indicate a
situation in which the generator updates become so small that the overall GAN fails to learn [22].

Wasserstein GANs (WGANSs) [16] have been proposed to deal with non-convergence and
vanishing gradient problems. The cost function in original GANs has a large variance of gradients
what makes the model unstable. WGANs improve stability of the training process by using a new cost
function, Wasserstein distance, which has smoother gradients everywhere. The Wasserstein distance
calculation can be simplified using Kantorovich-Rubinstein duality to:

W(prpg) = % s B (1))~ Ere ) @



Energies 2020, 13, 130 4 of 23

where p, and p are probability distributions, sup is the least upper bound, and f is a K-Lipschitz
function following the following constraint:

If (x1) = f(x2)] < Kl|x1 — x] 3)

Wasserstein distance in WGAN, uses 1-Lipschitz functions, therefore, the K = 1.

Metropolis-Hastings GAN (MH-GAN) [17] aims to improve standard GANs by adding aspects of
Markov Chain Monte Carlo. In standard GANSs, the discriminator is used solely to train the generator
and is discarded upon the end of training. In MH-GAN, the discriminator from GAN training creates a
wrapper around the generator. The generator produces a set of samples, and the discriminator chooses
the sample closest to the real data distribution. This way, the discriminator contributes to the quality
of the generated samples.

2.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [23] are a family of neural networks designed for processing
sequential data including time series data such as those found in energy forecasting. While feedforward
neural networks only consider the current input to calculate the output, RNNs consider the current
input together with all previously received inputs by using recurrent connections that span adjacent
time steps. This enables RNNs to capture temporal dependencies.

As illustrated in Figure 2, an RNN takes a sequence of inputs (x1, X3, ..., X ) to produce a sequence
of outputs (y1,y2, ..., ym ). Note that the number of outputs m can be less or equal to the number of
inputs n. Hidden states /1 serve as a mechanism to remember information through time. The output at
time step ¢ is obtained as:

ye = f(xe, hy_yy) 4)

where x; is the current input, h;_; is the previous hidden state, and f is a non-linear function.
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Figure 2. Recurrent Neural Network.

The cell in Figure 2 can be any RNN cell including vanilla and long short-term memory (LSTM).
The back-propagation through time algorithm with the Vanilla RNN cell can lead to the vanishing
gradient problem for longer sequences. The LSTM cell was designed to overcome this problem, and,
as a result, these models are able to store information for longer periods of time. Figure 2 illustrates a
single layer RNN. The stacked RNN, sometimes referred to as multilayer RNN, extends this model by
stacking layers of memory cells on top of each other. These additional layers add levels of abstractions
and potentially allow the cells at each layer to operate at different time scales [24].

3. Related Work

As our study focuses on generating data for energy forecasting, this section first reviews data sets
used in energy forecasting studies and then discusses GAN networks in different domains.

3.1. Data Sets in Energy Forecasting

Amasyali and El-Gohary [25] surveyed energy forecasting studies: 67% of reviewed studies used
real data, 19% simulation data, and 14% public benchmark data. This dominance of real data sets
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demonstrated the importance of historical data and illustrated the need for new and/or larger energy
forecasting data sets. While some of the real data used for forecasting are pubic [2], a number of studies
deal with private [26] real-world data sets.

In the same work [25], Amasyali and El-Gohary point out that physical models including
simulation software such as EnergyPlus, eQUEST, and Ecotect, calculate building energy consumption
based on detailed building and environmental parameters, but such detailed information may not
always be available. On the other hand, data driven approaches do not require such details about
the simulated building, but they require sensors for data collection. From their survey [25], it can be
observed that simulation is often used in the design stage while data driven approaches are common
in demand and supply management. Physics and data driven approaches do not replace each other;
they are applied in different scenarios based on their advantages and disadvantages.

Deb et al. [27] reviewed time series techniques for building energy consumption. They observed
that simulation and energy modeling software such as EnergyPlus, IES, eQUEST, and Ecotect have
been greatly successful in energy modeling of new buildings. For energy forecasting, when historical
data is not available, computer simulations are very effective [27]. However, many factors govern
energy consumption including physical properties of building materials, weather, and occupants’
behaviors. Due to complexity of those factors and their interactions, accurate energy forecasting
through simulations is challenging [27]. Deb et al. [27] noted that for existing buildings, when
historical data is available, data driven techniques such as those based on machine learning and
statistics have been more accurate than simulations.

Lazos et al. [28] investigated approaches for incorporating weather conditions into energy
forecasting. The three categories of forecasting approaches were considered: statistics, machine
learning, and physics(numerical)-based models. While physics models do not require historical data
and are able to provide explanations for the forecasts, they are often highly complex and require
extensive details about structural characteristics, thermodynamic, operating schedule, and other
properties. Lazos et al. [28] also noted that it is challenging to model occupants” behaviors in
physics-based systems. In contrast, data driven approaches do not require such details about the
buildings and are capable of capturing some of occupants’ behavior from historical data, but require
significant amounts of data.

According to the reviewed studies [25,27,28], simulation can be used for energy forecasting, but
machine learning models trained with historical data are much more common. Moreover, synthetic
building energy consumption data is especially hard to generate because, in addition to the building
properties, use type, and operating schedule, energy consumption also depends on human behavior.
Pillai et al. [29] proposed an approach for generating synthetic load profiles using available load
and weather data. While Pillai et al. aim to create benchmark profiles, our work generates data for
ML. Ngoko et al. [30] generated solar radiation data using Markov models; in contrast, our study is
concerned with generating data for energy forecasting.

3.2. Generative Adversarial Networks (GANs)

In recent years, Generative Adversarial Networks (GANSs) have seen great progress and received
increased attention because of their ability to learn high-dimensional distributions. Originally, GANs
were designed for images, and today, the most common use of GAN is in tasks that involve images.
For example, works of Mao et al. [19], Denton et al. [20], and Karras et al. [21] deal with generating
high quality images: Mao et al. [19] focus on vanishing gradient problem, Denton et al. [20] propose the
Laplacian pyramid of adversarial networks for generating high-resolution images, and Karras et al. [21]
improve the human-face generation by using style-based generator. StackGAN [14] synthesizes
high-quality images from text descriptions by using a two-stage process: first, a low resolution image
is created from text descriptions, and then this image with text goes through a refinement process to
create photo-realistic details. SRGAN, a GAN for image superresolution (SR) [31] is capable of inferring
photo-realistic images with 4x upscaling factors. Zhang et al. [32] used GANs for image de-raining
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(removing rain from images), consequently improving the visual quality and making images better
suited for vision systems.

While the reviewed works [14,19-21,31,32] deal with images, our study is concerned with time
series data in the energy domain. The possibility to apply GANs with sequential and time-series data
has been recognised, and GAN-based approaches have been proposed in different domains and for
different tasks. Continuous Recurrent Neural Networks with adversarial training (C-RNN-GAN) [33]
have been used for music generation and SeqGAN [34] for text generation. While those works [33,34]
deal with discrete sequence generation, the majority of data in the energy domain is real-valued and
thus our work is concerned with real-valued data.

Esteban et al. proposed a Recurrent GAN [35] for generating realistic real-valued
multi-dimensional time series data focusing on the application to medical data. Similar to our
study, the work of Esteban et al. also uses recurrent neural networks for both the generator and
discriminator. In contrast to the work of Esteban et al. which uses a GAN similar to the original
Goodfellow et al. GAN [13], our approach applies Wasserstein GAN. Moreover, we take advantage of
Metropolis-Hastings GAN (MH-GAN) [17] approach for generating new data. The same work [35]
proposed “Train on Synthetic, Test on Real” (TSTR) approach for evaluating GANs. TSTR is applicable
when a supervised task can be defined over the training data: the basic idea is to use synthetic data
generated by GAN to train the model and then test the model on a held-out set from the real data.
Our study also employs TSTR as a part of the evaluation process.

EEG-GAN generates electroencephalographic (EEG) brain signal using Wasserstein GANs with
gradient penalty (WGAN-GP) [36]. While EEG-GAN employs a convolutional neural network (CNN),
our work replaces CNN with RNN because of its ability to model temporal dependencies.

To deal with learning from imbalanced datasets, Douzas and Bacao [37] applied GANs to
generating artificial data for the minority classes. Their experiments show an improvement in
the quality of data when GANs are used in place of oversampling algorithms such as SMOTE
(synthetic minority over-sampling technique). MisGAN, a GAN-based framework for learning from
complex, high-dimensional incomplete data [38], was proposed for the task of imputing missing data.
VIGAN [39] also deals with imputation, but in this case with scenarios when certain samples miss an
entire view of data. While Douzas and Bacao [37], Li et al. [38], and Shang et al. [39] generate specific
part of data (imbalanced classes or missing data), our work deals with generating new energy data
samples for training ML models.

Another category of works important to discuss here consists of those related to the GAN
evaluation. With image GANSs, evaluation often involves visual inspection of the generated sample;
however, this is more difficult to do with time-series data. Inception score (IS) has been proposed for
evaluating image generative models [40]; IS uses Inception network pre-trained on ImageNet data set
to calculate the score. Nevertheless, not only is IS not applicable for non-image data, it is also incapable
of detecting overfitting [41].

Sajjadi et al. [42] proposed precision and recall for distributions. Precision measures how much of
distribution Q can be generated by a part of reference distribution P while recall measures how much
of P can be generated by a part of Q. By using a two-dimensional score, they are able to distinguish
between the quality of generated images from the coverage of the reference distribution. Still, their
study [42] was primarily concerned with images.

Theis et al. [43] compared different evaluation approaches and concluded that different metrics
have different trade-offs and favour different models. They highlight the importance of matching
training and evaluation to the target application. As the main objective of our work is to generate
electricity data suitable for training machine learning models, the evaluation is performed in the
context of the application by assessing the suitability of the generated data for ML task. Specifically,
this is done by training the prediction model on the generated data and testing it on the real data.
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4. Methodology

Figure 3 depicts the overview of the R-GAN approach. As R-GANs use RNNs for the generator
and discriminator, data first needs to be pre-processed to accommodate the RNN architecture.
Accordingly, this section first describes data pre-processing consisting of feature engineering (ARIMA
and Fourier transform), normalization, and sample generation (sliding window). Next, R-GAN is
described and the evaluation process is introduced.

R-GAN: I
Using WGAN and
MHGAN with LSTM
cell

Random
Input/Noise

Pre-progessing N T ~
hy
ARIMA
; 4—
Fourier
Transform "
_ Generator — Stacked LSTM Y. Update
Normalization Generator
v Generated
Sliding Time Series Calculate
Window Data Generator
l Loss
e h N L
hy
Update
Discriminator
\Discriminator— Stacked LSTM/ Calculate

Discriminator
Loss
Real/Fake? ?
N

Figure 3. Recurrent Generative Adversarial Networks (GAN) for Energy Data.

,,/‘

4.1. Data Pre-Processing

In this paper, the term core features refers to energy consumption features and any other features
present in the original data set (e.g., reading hour, weekend /weekday). In the data pre-processing
step, these core features are first enriched through feature engineering using auto regressive integrated
moving average (ARIMA) and Fourier transform (FT). Next, all features are normalized and the sliding
window technique is applied to generate samples for GAN training.

4.1.1. ARIMA

Auto regressive integrated moving average (ARIMA) [44] models are fitted to time series data
to better understand the data or to forecast future values in the time series. The auto regressive (AR)
part models the variable of interest as regression of its own past values, the moving average (MA) part
uses a linear combination of past error terms for modeling, and Integrated (I) refers to dealing with
non-stationarity.

Here, ARIMA is used because of its ability to capture different temporal structures in time series
data. As this work is focused on generating energy data, the ARIMA model is fitted to the energy
feature. The values obtained from the fitted ARIMA model are added as a new engineered feature
to the existing data set. The RNN itself is capable of capturing temporal dependencies, but adding
ARIMA further enhances time modeling and, consequently, improves the quality of the generated data
as will be demonstrated in Section 5.
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4.1.2. Fourier Transform

Fourier transform (FT) decomposes a time signal into its constituent frequency domain
representations [44]. Using FT, every waveform can be represented as the sum of sinusoidal functions.
An inverse Fourier transform synthesizes the original signal from its frequency domain representations.
Because FT identifies which frequencies are present in the original signal, FT is suitable for discovering
cycles in the data.

Like with ARIMA, only the energy feature is used with FT. The energy time series is decomposed
into sinusoidal representations, n dominant frequencies are selected, and a new time series is
constructed using these n constituent signals. This new time series represents a new feature. When
the number of components # is low, the new time series only captures the most dominant cycles,
whereas for a large number of components, the created time series approaches the original time series.
One value of n creates one new feature, but several values with their corresponding features are used
in order to capture different temporal scales.

The objective of using FT is similar to the one of ARIMA: to capture time dependencies and,
consequently, improve quality of the generated data. The experiments demonstrate that both ARIMA
and Fourier transform contribute to the quality of the generated data.

4.1.3. Normalization

To bring the values of all features to a similar scale, the data was normalized using MinMax
normalization. The values of each feature were scaled to values between 0 and 1 as follows:

;L x — Min(X)
T T Max(X) — Min(X)

©)

where x is the original value, Min(X) and Max(X) are the minimum and maximum of that feature
vector, and x’ is the normalized value.

4.1.4. Sliding Window

At this point, data is still in a matrix format as illustrated in Figure 4 with each row containing
readings for a single time step. Note that features in this matrix include all features contained in the
original data set (core features) such as appliance status or the day of the week, as well as additional
features engineered with ARIMA and FT.

As the generator core is RNN, samples need to be prepared into a form suitable for RNN. To do
this, the sliding window technique is applied. As illustrated in Figure 4, the first K rows correspond to
the first time window and make the first training sample. Then, the window slides for S steps, and the
readings from the time step S to K 4 S make the second sample. Note that in Figure 4, the stepis S =1
although other step sizes could be used. Each sample is a matrix of dimension K x F, where K is the
window length and F is the number of features.

Timestep | Feature | - value | Feature 2... | ... |Energy - value
; Timestep 2 Feature | - value | ... ... |Energy - value
r; -8_ Timestep 3 Feature 1 - value | ... ... | Energy - value
| 2dZ
:| 212 [
-§ = Timestep K | Feature 1 - value | ... ... |Energy - value
= Timestep K+1| Feature 1 - value | ...

Figure 4. Sliding Window Approach.
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4.2. R-GAN

Similar to an image GAN, R-GAN consists of the generator and the discriminator as illustrated
in Figure 3. However, while an image GAN typically uses CNN for the generator and discriminator,
R-GAN substitutes CNN with the stacked LSTM and a single dense layer. The architectures of the
R-GAN generator and discriminator are shown in Figure 5. The stacked LSTMs were selected because
the LSTM cells are able to store information for longer sequences than Vanilla RNN cells. Moreover,
stacked hidden layers allow capturing patterns at different time scales.

A

T1 11 Dense Layer's Dense Layer's

output [K x F] output [1]

GELU activation Tanh activation
function eo00 'EEI"SQ function 0000 Dense
ayer PP Layer
F AN RNN's output
1% N
.

S Tmeal | IKxd

22 A~
‘. ~~ RNN's output
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[~ RNN [~ RNN

+oo;:>
- {.o‘oo} :
(o000
|
[oo‘oo}
-~ a[oo‘voo]'
wiss
~/
_J
ﬂoooo\‘
- {.o‘oo]:“
(o000 .
|
[oo‘ooj -
- —»[00700] ‘
|

o0
N
L

¥

—[e000]
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/' o000

Input [Kx 1] Input [K x F]

Generator Discriminator

Figure 5. Recurrent GAN (R-GAN) generator and discriminator.

Both the generator and discriminator have a similar architecture consisting of stacked LSTM
and a dense layer (Figure 5), but they differ in dimensions of their inputs and outputs because they
serve a different purpose: one generates data and the other one classifies samples into fake and real.
The generator takes random inputs from the predefined Gaussian latent space and generates time
series data. The input has the same dimension as the siding window length K. The RNN output before
the fully connected later has dimension K x ¢ (window length X cell state dimension). The generated
data (generator output) has the same dimensions as the real data after pre-processing: each sample is
of dimension K x F (window length x number of features).

GELU (Gaussian error linear unit) activation function has been selected for the generator and
discriminator RNNs [45] as it recently outperformed rectified linear unit (ReLU) and other activation
functions [45]. The GELU can be approximated by [45]:

GELU(x) = 0.5x (1 + tanh (ﬁ (x+ 0.044715x3)>> (6)

Similar to the ReLU (rectified linear unit) and the ELU (exponential linear unit ) activation
functions, GELU enables faster and better convergence of neural networks than the sigmoid function.
Moreover, GELU merges ReLU functionality and dropout by multiplying the neuron input by zero
or one, but this dropout multiplication is dependent on the input: there is a higher probability of the
input to be dropped as the input value decreases [45]. The stacked RNN is followed by the dense layer
in both the generator and discriminator. The dense layer activation function for the generator is GELU
because of the same reasons explained with GELU selection in a stacked RNN. In the discriminator,
the dense layer activation function is tanh to achieve real/synthetic classifications.

As illustrated in Figure 3, the generated data together with pre-processed data are passed to
the discriminator which learns to differentiate between real and fake samples. After a mini-batch
consisting of several real and generated samples is processed, discriminator loss is calculated and the
discriminator weights are updated using gradient descent. As R-GAN uses WGAN, the updates are
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done slightly differently than in the original GAN. In the original GAN work [13], each discriminator
update is followed by the generator update. In contrast, the WGAN algorithm trains the discriminator
relatively well before each generator update. Consequently, in Figure 3, there are several discriminator
update loops before each generator update.

Once the generator and discriminator are trained, the R-GAN is ready to generate data. At
this step, typically only the trained generator is used. If the generator was trained perfectly, the
resulting generated distribution, P;, would be the same as the real one. Unfortunately, GANs
may not always converge to the true data distribution, thus taking samples directly from these
imperfect generators can produce low quality samples. However, our work takes advantage of the
Metropolis-Hastings GAN (MH-GAN) approach [17] in which both the generator and discriminator
play roles in generating samples.

Data generation using MH-GAN approach is illustrated in Figure 6. The discriminator, together
with the trained generator G, forms a new generator G’ . The generator G takes as input random
samples {2, z1, ..., zx } and produces time series samples {x(, x}, ..., X }. Some of the generated samples
are closer to the real data distribution than the others. The discriminator serves as a selector to choose
the best sample x from the set {x('), xi, .y x,’c} The final output is the generated time series sample x.

4.3. Evaluation Process

The main objective of this work is to generate data for training ML models; therefore, the presented
R-GAN is evaluated by assessing the quality of ML models trained with synthetic data. As energy
forecasting is a common ML task, it is used here for the evaluation too. In addition to Train on
Synthetic, Test on Real (TSTR) and Train on Real, Test on Synthetic (TRTS) approaches proposed by
Esteban et al. [35], two additional metrics are employed: Train on Real, Test on Real (TRTR) and Train
on Synthetic, Test on Synthetic (TSTS).

Train on Synthetic, Test on Real (TSTR): A prediction model is trained with synthetic data and tested
on real data. TSTR was proposed by Esteban et al. [35]: they evaluated the GAN model on a clustering
task using random forest classifier. In contrast, our study evaluates R-GAN on an energy forecasting
task using an RNN forecasting model. Note that this forecasting RNN is different than RNNs used
for the GAN generator and discriminator, and could be replaced by a different ML algorithm. RNN
was selected because of its recent success in energy forecasting studies [26]. This forecasting RNN is
trained with synthetic data and tested on real data.

Consequently, TSTR evaluates the ability of the synthetic data to be used for training energy
forecasting models. If the R-GAN suffers from the mode collapse, TSTR degrades because the generated
data do not capture diversity or real data and, consequently, the prediction model does not capture
this diversity.

Generator G

x’ X' v X'

\ 4 \ 4 v

Generator G'

Selector/Discriminator

X

v
Figure 6. Metropolis-Hastings GAN (MH-GAN) approach.
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Train on Real, Test on Synthetic (TRTS): This is the reverse of TSTR: a model is trained on the real
data and tested on the synthetic data. The process is exactly the same as in TSTR with exception of
reversed roles of synthetic and real data. TRTS serves as an evaluation of GAN’s ability to generate
realistic looking data. Unlike TSTR, TRTS is not affected by the mode collapse as a limited diversity
of synthetic data does not affect forecasting accuracy. As the aim is to generate data for training ML
models, TSTR is a more significant metrics than TRTS.

Train on Real, Test on Real (TRTR): This is a traditional evaluation with the model trained and tested
on the real data (with separate train and test sets). TRTR does not evaluate the synthetic data itself, but
it allows for the comparison of accuracy achieved when a model is trained with real and with synthetic
data. Low TRTR and TSTR accuracies indicate that the forecasting model is not capable of capturing
variations in data and do not imply low quality of synthetic data. The goal of the presented R-GAN
data generation is the TSTR value comparable to the TRTR value, regardless of their absolute values:
this demonstrates that the model trained using synthetic data has similar abilities as the model trained
with real data.

Train on Synthetic, Test on Synthetic (TSTS): Similar to TRTR, TSTS evaluates the ability of the
forecasting model to capture variations in data: TRTR evaluates the accuracy with real data and TSTS
with synthetic data. Large discrepancies between TRTR and TSTS indicate that the model is much
better with real data than with synthetic, or the other way around. Consequently, this means that the
synthetic data does not reassemble the real data.

5. Evaluation

5.1. Data sets and Pre-Processing

The evaluation was carried out on two data sets: UCI (University of California, Irvine) appliances
energy prediction data set [46] and Building Data Genome set [6]. UCI data set consists of energy
consumption readings for different appliances with additional attributes such as temperature and
humidity. The reading interval is 10 min and the total number of samples is 19,736. Day of the week
and month of the year features were created from reading date/time, resulting in a total of 28 features.

Building Data Genome set contains one year of hourly, whole building electrical meter data for
non-residential buildings. In experiments, readings from a single building were used; thus, the number
of samples is 24 x 365 = 8760. With this data set, energy consumption, year, month, day of the year,
and hour of the day features were used.

For both data sets, the process is the same. The data set is pre-processed as described in Section 4.1.
ARIMA is applied first to create an additional feature: to illustrate this step, Figure 7 shows original
data (energy consumption feature) and ARIMA fitted model for UCI data set.

Next, Fourier transform (FT) is applied. FT can be used with a different number of components
resulting in different signal representations; in the experiments, four transformations were considered
with 1, 10, 100, and 1000 components. The four representations are illustrated in Figure 8 on UCI data
set. It can be observed that one component results in almost constant values and 10 components capture
only large scale trends. As the number of components increases to 100 and 1000, more smaller-scale
changes are captured and the representation is closer to the original data. These four transformations
with 1, 10, 100, and 1000 components make the four additional features.
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Figure 7. Auto Regressive Integrated Moving Average (ARIMA) fitted model (UCI data set).

At this point, all needed additional features are generated (total of 33 features), and the
pre-processing continues with normalization (Figure 3). To prepare data for RNN, the sliding window
technique is applied with the window length K = 60 indicating that 60 time steps make one sample,
and step S = 30 specifying that the window slides for 30 time steps to generate the next sample.
This window size and step were determined from the initial experiments.
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Figure 8. Cont.
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Figure 8. The results of Fourier transform with 1, 10, 100, and 1000 components (UCI data set).

5.2. Experiments

The R-GAN was implemented in Python with Tensorflow library [47]. The experiments were
performed on a computer with Ubuntu OS, AMD Ryzen 4.20 GHz processor, 128 GB DIMM RAM,
and four NVIDIA GeForce RTX 2080 Ti 11GB graphics cards. Training the proposed R-GAN is
computationally expensive; therefore, GPU acceleration was used. However, once the model is trained,
it does not require significant resources and CPU processing is sufficient.

Both discriminator and generator were stacked LSTMs with the hyperparameters as follows:

e  Number of layers L = 2

e  Cell state dimension size ¢ = 128
e Learningrate=2x 107°

e  Batch size = 100

e  Optimizer = Adam

The input to the generator consisted of samples of size 60 (to match the window length) drawn
from the Gaussian distribution. The generator output was of size 60 x 33 (window length x number
of features). The discriminator input was of the same dimension as the generator output and the
pre-processed real data.

Hyperparameters were selected according to the hyperparameter studies, commonly used settings,
or by performing experiments. Keskar et al. [48] observed that performance degrades for batch sizes
larger than commonly used 32-521. To keep in that range, and to be close to the original WGAN
work [16], batch size 100 was used. For each batch, 100 generated synthetic samples and 100 randomly
selected real samples were passed to the discriminator for classification. Increasing the cell state
dimension typically leads to the increased LSTM accuracy, but also increases the training time [49];
thus, moderate 128 size was selected.

Greff et al. [49] observed that the learning rate is the most important LSTM parameter and that
there is often a large range (up to two orders of magnitude) of good learning rates. Figure 9 shows
generator and discriminator loss for the learning rates (LR) 2 x 1076, 2 x 107>, and 2 x 10~* for UCI
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data set and the model with ARIMA and FT features. Similar patterns have been observed with
Building Genome data, therefore, here we only discuss loss for UCI experiments. The generator and
discriminator are competing against each other; thus, improvement in one results in a decline in the
other until the other learns to handle the change and causes the decline of its competitor. Hence,
in the graph, oscillations are observed indicating that the networks are trying to learn and beat the
competitor. For learning rate 2 x 107, the generator stabilizes quite well, while the discriminator
shows fluctuations as it tries to defeat the generator. Oscillations of the objective function are quite
common in GANs, and WGAN is used in this work to help with convergence. Nevertheless, as the
learning rate increases to 2 x 107> and 2 x 10~#, the generator and discriminator are experiencing
increased instabilities. Consequently, learning rate 2 x 10~ was used for the experiments presented in
this paper. Additional hyperparameter tuning has a potential to further improve archived results.
All experiments were carried out with 1500 epochs to allow sufficient time for the system to
converge. As can be seen from Figure 9, for learning rate 2 x 10~°, the generator largely stabilizes
after around 500 epochs and experiences very little change after 1,000 epochs. At the same time, the
discriminator experiences similar oscillation patterns from around 400 epochs onward. Thus, training
for 1000 epochs might be sufficient; nevertheless, 1500 epochs allow a chance for further improvements.

Generator Loss (LR=2e-6) Generator Loss (LR=2e-5)

Generator Loss (LR=2e-4)

Discriminator Loss (LR=2e-6) Discriminator Loss (LR=2e-5) Discriminator Loss (LR=2e-4)

Figure 9. Generator and discriminator loss for LR = 2 X 10,2 x 1074, and 2 x 10~* (UCI data set).

R-GAN was evaluated with the four models corresponding to the four sets of features:

e  Core features only.

o Core and ARIMA generated features.

e Core and FT generated features.

e Core, ARIMA, and FT generated features.

As described in Section 4.3, ML task, specifically energy forecasting, was used for the evaluation
with TRTS, TRTR, TSTS, and TSTR metrics. Forecasting models for those evaluations were also RNNS.
Forecasting model hyperparameters for each experiment were tuned using the expected improvement
criterion according to Bergstra et al. [50], which results in different hyperparameters for each set of
input features. This way, we ensure that the forecasting model is tuned for the specific use scenario.
The following ranges of hyperparameters were considered for the forecasting model:

e Hidden layer sizes: 32, 64, 128

e  Number of layers: 1, 2

e Batchsizes: 1,5, 10, 15, 30, 50

e  Learning rates: continuous from 0.001 to 0.03

For each of R-GAN models, 7200 samples were generated and then TSTR, TRTS, TRTR, an TSTS
approaches with an RNN prediction model were applied. Mean absolute percentage error (MAPE)
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and mean absolute error (MAE) were selected as evaluation metrics because of their frequent use in
energy forecasting studies [51,52]. They are calculated as:

o N o
MAPE — 100% Y — Yr (7)
N = oy
1 N
MAE = = Y |y: — 7] ®)
N t=1

where y is the actual value, 7 is the predicted value, and N is the number of samples.

5.3. Results and Discussion—UCI Data Set

This subsection presents results achieved on UCI data set and discusses findings. MAPE and
MAE for the four evaluations TRTS, TRTR, TSTR, and TSTS are presented in Table 1. For the ease of
the comparison, the same data is presented in a graph form: Figure 10 compares models based on
MAPE and Figure 11 based on MAE.

Table 1. Train on Real, Test on Synthetic (TRTS), Train on Real, Test on Real (TRTR), Train on Synthetic,
Test on Real (TSTR), and Train on Synthetic, Test on Synthetic (TSTS) accuracy for R-GAN (UCI data set).

MAPE (%) MAE
Features TRTS TRTR TSTR TSTS TRTS TRTR TSTR TSTS
Core features 13.60% 17.98% 18.67% 18.80% 5426 6382 6274  90.90
Core and ARIMA features 8.65% 11.43% 11.37% 8.92% 48.14 62.67 54.00 80.00
Core and FT features 9.07% 15.84% 17.79% 15.10% 4899 6312 6174  90.67

Core, ARIMA and FT features 528% 10.81% 10.12% 6.80% 46.41 62.27 52.54 78.35

TRTS and TSTS MAPE comparison TSTR and TRTR MAPE comparison

mTSTR
= TRTR

with FT with ARIMA  with ARIMA  core features with FT with ARIMA  with ARIMA  core features
features feature  and FT features features feature  and FT features

Figure 10. MAPE(%) comparison between TRTS/TSTS and TSTR/TRTR (UCI data set).
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Figure 11. MAE comparison between TRTS/TSTS and TSTR/TRTR (UCI data set).

As we are interested in using synthetic data for training ML models, TSTR is a crucial metric.
In terms of TSTR, addition of ARIMA and FT features to the core features reduces MAPE from 18.67%
to 10.12% and MAE from 62.74 to 52.54. Moreover, it can be observed that for all experiments adding
ARIMA and FT features improves the accuracy in terms of both MAPE and MAE.
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Because forecasting models always result in some forecasting errors even when trained with
real data, it is important to compare the accuracy of the model trained with synthetic data with the
one trained with the real data. TRTR evaluates the quality of the forecasting model itself. As can be
observed from Table 1, TSTR accuracy is close to TRTR accuracy for all models irrelevant of the number
of features. This indicates that the accuracy of the forecasting model trained with synthetic data is
close to the accuracy of the model trained with real data. When the model is trained with real data
(TRTR), the MAPE for the model with all features is 10.81% whereas when trained with synthetic data
(TRTS) MAPE is 10.12%. Consequently, comparable TSTR and TRTR values demonstrate the usability
of synthetic data for ML training.

The accuracy of TSTR is higher than the accuracy of TRTS in terms of both MAPE and MAE for
all experiments. Good TRTS accuracy shows that the predictor is able to generalize from real data and
that generated samples are similar to real data. However, higher TSTR errors than TRTS errors indicate
that the model trained with generated data does not capture the real data as well as the model trained
on the real data. A possible reason for this is that, in spite of using techniques for dealing with mode
collapse, the variety of generated samples is still not as high as the variety of real data.

Visual comparison cannot be done in a similar way as in image GANSs, but Figure 12 shows
examples of two generated samples compared with the most similar real data samples. It can be
observed that the generated patterns are similar, but not the same as the real samples; thus, data looks
realistic without being a mere repetition of the training patterns. Although Figure 12 provides some
insight into generated data, already discussed TSTR and its comparison to TRTR are the main metrics
evaluating the usability of generated data for ML training.

Real vs. Synthetic Real vs. Synthetic
0.6 0.6
—Real —Synthetic —Real —Synthetic
05 05
0.4 0.4
& %
© 03 @ 03
& ‘ & /|
0.2 0.2 \ |
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Figure 12. Two examples of generated data samples compared to real data.

To further compare real and synthetic data, statistical tests were applied to evaluate if there is a
statistically significant difference between the generated and real data distributions. The Kruskal-Wallis
H test also referred to “one-way ANOVA on ranks”, and the Mann-Whitney U test were used because
both of them are non-parametric tests and do not assume normally distributed data. The parametric
equivalent of the Kruskal-Wallis H test is one-way ANOVA (analysis of variance). The null hypothesis
for the statistical tests was: the distributions of the real and synthetic populations are equal. The H
values and U values together with the corresponding p values for each test and for each of the GAN
models are shown in Table 2. Each test compares the real data with the synthetic data generated with
one of the four models. The level of significance « = 0.05 was considered.

As the p value for each test is greater than & = 0.05, the null hypothesis is confirmed: for each of
the four synthetic data sets, irrelevant of the number of features, there is little to no evidence that the
distribution of the generated data is statistically different than the distribution of the real data. H and
U tests provide evidence about the similarity of distributions; nevertheless, TSTR and TRTR remain
the main metrics for comparing among the GAN models.

Note the intuitive similarity between reasoning behind R-GAN and a common approach for
dealing with the class imbalance problem, SMOTE (Synthetic Minority Over-sampling TEchnique) [53].
SMOTE takes each minority class sample and creates synthetic samples on lines connecting any/all
of the k minority neighbors. Although R-GAN deals with the regression problem and SMOTE with
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classification, both create new samples by using knowledge about existing samples. SMOTE does so
by putting new samples between existing (real) ones whereas R-GAN learns from the real data, and
then it is able to generate samples similar to the real ones. Consequently, R-GAN has a potential to be
used for class imbalance problems.

Overall, the results are promising as the forecasting model trained on the synthetic data is
achieving similar forecasting accuracy as the one trained on the real data. As illustrated in Table 1,
both MAPE and MAE for the model trained on the synthetic and tested on the real data (TSTR) are
close to MAPE and MAE for the model trained and tested on the real data (TRTR).

Table 2. Kruskal-Wallis H Test and Mann-Whitney U test (UCI data set).

Kruskal-Wallis H Test Mann-Whitney U Test
H Value p Value U Value p Value

Model (Real vs. Synthetic)

Core features 416.50 0.312 0.247 0.619
Core and ARIMA features 428.00 0.375 0.107 0.744
Core and FT features 390.50 0.191 0.775 0.375
Core, ARIMA, and FT features 380.50 0.180 0.885 0.355

5.4. Results and Discussion—Building Genome Data Set

This subsection presents the results achieved with Building Genome data. MAPE and MAE for
the four evaluations TRTS, TRTR, TSTR, and TSTS are presented in Table 3. The same data is displayed
in a graph form for ease of comparison: Figure 13 compares models based on MAPE and Figure 14
based on MAE.

Similar to the UCI data set, TSTR accuracy is close to TRTR accuracy in terms of both, MAPE and
MAE, for all models, irrelevant of the number of features. As in the UCI experiments, this indicates
that the accuracy of the forecasting model trained with synthetic data is close to the accuracy of the
model trained with real data. The best model was with core and FT features: it achieved the MAPE of
4.86% when trained with real data (TRTR) and 5.49% when trained with synthetic data (TSTR).

While with UCI data set, the model with FT and ARIMA features achieved the best results, with
Building Genome data, the model with FT (without ARIMA) achieved the best result over all metrics.
Note that this is the case even when the model is trained and tested on the real data (TRTR) without
any involvement of the generated data: with ARIMA and FT, TRTR MAPE was 6.77% whereas with FT
only, MAPE was 4.87%. Thus, this degradation of the model with addition of ARIMA is a consequence
of the data set itself and not the result of data generation.

Table 3. TRTS, TRTR, TSTR, and TSTS accuracy for R-GAN (Building Genome data set).

MAPE (%) MAE
Features TRTS TRTR TSTR TSTS TRTS TRTR TSTR TSTS
Core features 6.16%  5.13%  648%  4.65% 4898 4688  49.00 4554
Core and ARIMA features 1037% 10.54% 11.89%  9.84% 6138 6215 6416  59.2
Core and FT features 416%  4.86%  549%  3.88% 4413 4446 4512  43.84

Core, ARIMA and FT features 6.76% 6.77% 7.37% 6.5% 50.03 50.83 51.33 50.00

Analyses of the ARIMA feature in the two data sets showed that the Pearson-Correlation between
energy consumption and the ARIMA feature was very different for the two data sets. For Building
Genome data, the correlation was 0.987 and for UCI data set it was 0.75, indicating a very high linear
correlation between the ARIMA and consumption features in Building Genome data. In Building
Genome data set, ARIMA was able to model the patterns of the data much better what indicates that
the temporal patterns were much more consistent than it was the case with UCI data set. This pattern
regularity also explains higher TRTR accuracy of Building Genome models than UCI models: the best
TRTR MAPE for Building Genome was 4.86% and for UCI data set it was 10.81%.
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High multicollinearity can indicate redundancy of the feature set and can lead to instability of
the model and degraded performance [54-56]. One way of dealing with multicollinearity is feature
selection [55] which will remove unnecessary features. With such a high correlation in Building
Genome data, removal of one of the correlated features is expected to improve performance as
confirmed in our experiments with the model without the ARIMA feature performing better. This
could be remedied through feature selection [55]. As the aim of our work is not to improve the
accuracy of the forecasting models, but to explore generating synthetic data for machine learning,
feature selection is not considered.

From Tables 1 and 3, it can be observed that, as with UCI data set, for Building Genome data
set TSTR errors are higher than TRTS errors in terms of both, MAPE and MAE, for all experiments.
As noted with UCI experiments, this could be caused by the variety of generated samples not being as
high as the variety of real data.

TRTS and TSTS MAPE comparison TSTRand TRTR MAPE comparison
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Figure 13. Mean Absolute Percentage Error (MAPE)(%) comparison between TRTS/TSTS and
TSTR/TRTR (Building Genome data set).
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Figure 14. Mean Absolute Error (MAE) comparison between TRTS/TSTS and TSTR/TRTR (Building
Genome data set).

Two statistical tests, the Kruskal-Wallis H test and the Mann-Whitney U test, were applied to
evaluate if there is a statistically significant difference between the synthetic and real data. Again, the
null hypothesis was: the distributions of the real and synthetic populations are equal. Table 4 shows H
values and U values together with the corresponding p values for each test and for each of the GAN
models. The same level of significance @ = 0.05 was considered.

For Building Genome experiments, same as for UCI experiments, the p value for each test is
greater than « = 0.05 and the null hypothesis is confirmed: for each of the four synthetic data sets,
irrelevant of the number of features, there is little to no evidence that the distribution of the generated
data is statistically different than the distribution of the real data.

Overall, the results for both data sets, UCI and Building Genome data set, exhibit similar trends.
As illustrated in Tables 1 and 3, accuracy measures, MAPE and MAE, for the models trained on the
synthetics data and tested on the real data (TSTR) are close to MAPE and MAE for the model trained
and tested on the real data (TRTR) indicating suitability of generated data for training ML models.
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Table 4. Kruskal-Wallis H Test and Mann-Whitney U test (Building Genome data set).

Kruskal-Wallis H Test Mann-Whitney U Test
H Value p Value U Value p Value

Model (Real vs. Synthetic)

Core features 430.0 0.387 0.087 0.767
Core and ARIMA features 434.00 0.409 0.056 0.813
Core and FT features 403.50 0.248 0.473 0.492
Core, ARIMA, and FT features 433.00 0.404 0.063 0.802

6. Conclusions

Machine learning (ML) has been used for various smart grid tasks, and it is expected that ML
role will increase as new technologies emerge. Those ML applications typically require significant
quantities of historical data; however, those historical data may not be readily available because of
challenges and costs associated collecting data, privacy and security concerns, or other reasons.

This paper investigates generating energy data for machine learning taking advantage of
Generative Adversarial Networks (GANSs) typically used for generating realistic-looking images.
Introduced Recurrent GAN (R-GAN) replaces Convolutional Neural Networks (CNNs) used in
image GANs with Recurrent Neural Networks (RNNs) because of RNNs ability to capture temporal
dependence in time series data. To deal with convergence instability and to improve the quality of
generated data, Wasserstein GANs (WGANs) and Metropolis-Hastings GAN (MH-GAN) techniques
were used. Moreover, ARIMA and Fourier Transform were applied to generate new features and,
consequently, improve the quality of generated data.

To evaluate the suitability of data generated with R-GANSs for machine learning, energy forecasting
experiments were conducted. Synthetic data produced with R-GAN was used to train the energy
forecasting model and then, the trained model was tested on the real data. Results show that the model
trained with synthetic data achieves similar accuracy as the one trained with real data. The addition of
features generated by ARIMA and Fourier transform improves the quality of generated data.

Future work will explore the impact of reducing training set size on the quality of the generated
data. Also, replacing LSTM with Gated Recurrent Unit (GRU) and further R-GAN tuning will
be investigated.
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Abbreviations

The following abbreviations are used in this manuscript:

AMI Advanced Metering Infrastructure

ARIMA AutoRegressive Integrated Moving Average
C-RNN-GAN  Continuous recurrent GAN

CNN Convolutional Neural Network

DL Deep Learning

EEG electroencephalographic brain signal
EEG-GAN GAN for generating EEG

ELU Exponential Linear Unit

FT Fourier Transform
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LSTM Long Short-Term Memory

LR Learning Rate

GAN Generative Adversarial Network
GELU Gaussian Error Linear Unit

GRU Gated Recurrent Unit

MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error (MAE)

ML

Machine Learning

MH-GAN Metropolis-Hastings GA

NILM Nonintrusive Load Monitoring

R-GAN Recurrent GAN

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SMOTE Synthetic Minority Over-sampling TEchnique
SR image superresolution (SR)

SRGAN GAN for image superresolution (SR)

TRTR Train on Real, Test on Real

TRTS Train on Real, Test Synthetic

TSTR Train on Synthetic, Test on Real
TSTS Train on Synthetic, Test on Synthetic

WGAN Wasserstein GAN
WGAN-GP  Wasserstein GAN with gradient penalty
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