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Abstract—With the development of smart electricity metering
technologies, huge amount of consumption data can be retrieved
on daily and hourly basis. Energy consumption forecasting
facilitates electricity demand management and utilities load
planning. Most of the prior researches are focused on commercial
customers or residential building-level energy consumption, or
use behavioral and occupancy sensor data to experiment on indi-
vidual household’s electrical consumption. This paper investigates
fifteen anonymous individual household’s electricity consumption
forecasting using support vector regression(SVR) modelling ap-
proach, applied to both daily and hourly data granularity. The
electricity usage dataset was collected from fifteen households
by London Hydro, a local utility company, from 2014 to 2016.
Exploratory data analysis (EDA) is adopted for data visualization
and feature selection. Our analysis demonstrates that forecasting
residential energy consumption by weather, calendar and Time-
of-usage price is feasible and reliable with sufficient accuracy
for some individual residential uses in either daily or hourly
prediction.

I. INTRODUCTION

Canadian households consume 1.4 million Tera-joules of
energy in their homes in 2013, up 7.2% from 2011. House-
holds use electricity for cooling, heating and power appliances
and electronics. Electricity accounts for 44.6% of the total
energy consumed by those Canadian residential customers [1].
The accelerated development of smart metering technologies
and the Green Button initiative[2] enables measuring, col-
lecting and presenting electricity consumption information for
residential customers. Applications of Home Area Network
and Home Energy Management System (HEMS) and Demand
Response (DR) have brought a new focus on individual
household. The premise and potential of residential energy
consumption prediction have gradually been recognized by
governments and research institutes. Smart meters, as part of
Advance Metering Infrastructure (AMI), are being installed
in households at increasing rate. modelling and forecasting
household electricity consumption facilitates utility industry to
optimize city energy load planning and provide personalized
residential services [3].

Electricity usage at the individual household level shows
high variance, since it relies on users’ lifestyle, occupancy
behavior, building charcteristics, weather and calendar infor-
mation [4? , 5]. Feeding machine learning models with the data
from energy smart meters and other relevant factors to infer
the energy consumption for the next days and hours is known
as sensor-based forecasting approach [6]. Prior research [7–

11] has established the prediction accuracy of sensor-based
approaches on the forecasting of commercial or residential
in building level. In addition, these studies have investigated
which machine learning techniques perform well at modelling
commercial consumption. However, unlike the regularity in
workplace with aggregated electric consumptions on routine
schedules, more irregularity is foreseen in residential electrical
consumption. Most households exhibit low base loads (0-
500W) [12] and load profiles for appliances, which have
relatively high power consumption, such as air conditioning,
clothes watcher and drying, pool pumps, electric heaters, etc.,
are highly dynamic.

Some targeted residential energy measures are taken on
residential buildings [6, 8, 13] with specific datasets on multi-
family residential building level of aggregation or sensor data
about user behaviors and occupancy. However, in the real
application, utility companies’ knowledge about the customers
is generally limited to the billing address, smart meter ID and
contract account’s basic information [8].

Conducting detailed surveys to acquire detailed cus-
tomer profile might be typically expensive impractical, time-
consuming and facing low customer participation [14]. In
this case, forecasting single-family’s electrical consumption
using the raw data collected from commonly deployed smart
meters in household’s home with weather variables[15, 16] and
calendar information[13, 17, 18]) is a cost-effective approach
to gain insights into residential customers and optimize energy
efficiency programs.

Traditional utility prices involve a set rate per kilowatt-hour,
fluctuating during the Summer and Winder. “Time-of-usage
(TOU)” rate plan is a sliding rate scale structured according to
on-peak, mid-peak and off-peak times of day [19]. In Ontario,
TOU rates are defined by Ontario Energy board [20] as shown
Table I, and are mandatory for residential customers across the
province. Our study also examines the impact of TOU pricing
scheme on residential electrical usage.

In this work, we conduct experiments on a dataset of
fifteen randomly-selected residential users from a local util-
ity company. It is three-year’s (2014-2016) hourly electric-
ity consumption data from anonymous households, with un-
known dwelling properties, occupation, nor household’s socio-
economic status. Our study reveals the competency of support
vector regression model, which is the most popular machine
learning approach for business energy prediction, in the ap-
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TABLE I: Ontario Electricity Time-of-use Price Table [20]

From To Summer Rate
(May-Oct. Weekdays)

Winter Rate
(Nov.-Apr. Weekdays)

7:00AM 11:00AM
mid-peak rate
9.5 cents/kWh

on-peak rate
13.2 cents/kWh

11:00AM 5:00PM
on-peak rate

13.2 cents/kWh
mid-peak rate
9.5 cents/kWh

5:00PM 7:00PM
mid-peak rate
9.5 cents/kWh

on-peak rate
13.2 cents/kWh

7:00PM 7:00AM
off-peak rate

6.5 cents/kWh
off-peak rate

6.5 cents/kWh

plication field of residential sector. Due to complexity of
individual behaviors, the prediction accuracy varies among
those single-families.

The remainder sections of the paper is organized as follows:
Section II gives an overview of related researches in the area
of energy modelling and prediction; Section III analyzes the
most popular algorithm for energy forecasting and how to
evaluate the accuracy; Section IV describes the methodology
of machine learning approach in detail; Section V presents
the implementation and experimental results and the evalua-
tion of the algorithm’s correctness; Section VI presents our
conclusions and future directions.

II. RELATED WORK

The number of research studies in energy consumption,
including annual consumption for various uses, characteristics
impacting energy usage and consumption prediction, is dra-
matically increased with the development of smart meters and
other data collection methods. Many studies have explored
machine learning approaches for modelling electrical con-
sumption, applied in both commercial and residential sectors.

To reduce the impact of individual user’s stochasticity in
energy consumption, the majority of energy modelling studies
work on aggregated level in either residential buildings [8, 11,
13, 16, 17, 21–23] or commercial buidings [6, 7, 9, 10, 24–27].
For example, Jain and Smith presents energy modelling results
on multi-family residential buildings [8] , with single-family’s
consumption aggregated into building level. They built energy
forecasting model using support vector regression on different
data granularity, and the results indicated the most effective
models were built with hourly consumption at floor level with
a CV value of 2.16 and a standard error of 28%. Y. Liu and
W. Wang proposed a forecast engineer [11] based on sliding
window empirical mode decomposition (SWEMD) and Elman
Neural Network (IENN) to predict electricity load of building
level consumers. The research of Katarina Grolinger et al. [7]
demonstrates both Neural Network(NN) and Support Vector
Machines(SVM) are accurate in the “consumption prediction
for event-organizing venues” using energy consumption data
and event-related attributes.

F. Zhang and C. Deb investigated an institutional building’s
energy consumption dataset using weighted Support Vector

Regression model [24], which was used to forecast half-hourly
and daily electrical consumption for the same building.

In Fazil Kaytez’s paper [25], the result of LS-SVM model
is a quick prediction and also more accurate than the result
of both traditional regression analysis and Artificial Neural
Networks (ANN).

In the area of individual residential energy forecasting, prior
research studied on highly detailed dataset [13, 28] to predict
household’s electrical loads including demographic survey
information, dwelling properties, appliance ownership, and
occupancy detection, which are typical Bottom-up approaches
[29]. The research focusing on residential buildings by Richard
E. Edwards and Joshua New [13] studies a special research
data set: three homes with 140 sensors collecting human
behaviors on opening/closing refrigerators, using ovens as well
as occupancy patterns. It presents results for commercial con-
sumption prediction and residential consumption prediction
that NN-based methods are the best methods for commercial
consumption prediction, while Least Squares Support Vector
Machines(LS-SVM) perform better on predicting residential
consumption hourly. The prediction accuracy comes from
decomposing of electrical usage behaviors by a large number
of sensors in the experiments, and can hardly be replicated for
large-scale and cost-sensitive field application. Li and Dong
built occupancy prediction models [21] based on occupancy
sensors experimented in four residential houses, to predict
occupancy presence using Markov model.

Without deploying behavioral sensors, other works fo-
cused on behavior pattern clustering and stochastic simulation
approach[14, 16, 22] to recognize and simulate occupant
behavioral patterns with clustering algorithm.

Regarding the selection of features, there are four main
categories of factors are defined by Bechel et al., dramatically
affecting the electricity consumption: Weather and location,
dwelling characteristics, appliance and electronics stock, and
occupancy and behavior [14]. To be more practical and feasi-
ble, more recent researches have looked into ways to utilize
timporal variables, such as calendar information (hour of a
day, day of a week, week of a year, holidays, weekends,
weekdays, season, etc.)[9, 30] and weather variables and fore-
casts (weather condition, temperature, humidity, irradiation
and wind speed, etc.), which can be obtained from local or
regional weather stations [7, 31].

Wide range of modelling techniques have been used to
predict electricity load, including Neural Networks (ANN)
[11, 13], support vector machine (SVM) [13, 21, 24], au-
toregressive integrated moving average (ARIMA) models [32],
regressions models [32], clustering techniques [14] and empir-
ical mode decomposition (EMD) [11]. Neural networks have
been extensively used for industrial electricity forecasting,
while Support vector regression (SVR) have been successfully
used in solving nonlinear regression and time series problems
[24], is considered as an emerging technique and performed
best in some residential energy experiments [13].

In this study, Support Vector Regression(SVR) is used for
the prediction of fifteen households’ residential electricity



consumption. These households are anonymous residents in
London Ontario, with a home-installed smart meter for elec-
tricity measurement.

III. BACKGROUND

This section introduces the scenarios of machine learning
approach Support Vector Regression and performance mea-
sures.

A. Support Vector Regression

Support vector machines (SVM) [33] are supervised ma-
chine learning models used for classification and regression
problems. SVMs essentially consist of kernel and optimizer al-
gorithm. Kernel divides ono-linear data into high-dimensional
space and makes data linearly separable. The learning takes
place in the feature space, and the data points only appear
inside dot products. The optimizer algorithm is applied to solve
the optimization problem. Since SVM seeks to minimize an
upper bound of the generalization error consisting of the sum
of the training error and a confidence level, it shows superiority
compared with commonly used empirical risk minimization
(ERM) principle, which only minimize the training error. Thus,
SVM usually achieves higher generalization performance than
other machine learning techniques. Support vector regression
(SVR) is a version of SVM, which is a non-linear regression
model that looks at the extremes of data sets and draw a
decision boundary (or a hyperplane) to solve function fitting
problems. A non-linear regression with epsilon intensive band
is presented in Fig. 1. Sometimes data sets are linearly non-
separable and have to be mapped onto an N-dimensional space
and an (N-1)-dimensional separating hyperplane need to be
found. However, the process is computationally expensive. A
suitable kernel trick could significantly reduce the computa-
tional cost.

The relationship between inputs x1, x2, ..., xn and output Y
is determined as:

Y =Wϕ(x) + b (1)

ϕ(x) is a kernel function, and RBF, Polynomial, Linear kernels
are used in our implementation.

k(x, y) = exp(−‖x− y‖
2

2σ2
) (2)

The probability of making mistakes by the trained model
using training data is minimized by minimizing the following
convex criterion function:

1

2
‖w‖2 + C

1

N

N∑
i=1

ξi + ξ∗i (3)

with the following constraints:

yi − wTϕ(xi)− b ≤ ε+ ξi

wTϕ(xi) + b− yi ≤ ε+ ξ∗i

In the above equations, w is a weight vector and C is the cost
of making an error. ξi and ξ∗i are the residuals beyond the ε
boundary, which are shown in Fig. 1.

Fig. 1: Non-linear Regression with epsilon intensive band.

B. Performance Measures

To determine the performance of the prediction model, two
metrics are adopted for the validation: the mean absolute
percentage of error (MAPE).

The MAPE metric is a widely-adopted measure of predic-
tion accuracy in electricity predictions studies [7, 24, 28]. It
generally represents accuracy as a percentage, defined by the
formula:

MAPE(%) =
100

n

n∑
j=1

∣∣∣∣yj − ŷjyj

∣∣∣∣ (4)

where yj denotes the actual electricity consumption of house-
hold j, ŷj denotes the predicted consumption, and n is the
number of observations.

IV. METHODOLOGY

This work uses machine learning approach: support vector
regression modelling for electricity forecasting, both hourly
and daily granularities are investigated with evaluated ac-
curacy. This section introduces the data set and how the
prediction model is built with several variants and data ex-
ploratory analysis. Fig 2 illustrates the framework of individual
household electrical forecasting.

A. Data preprocessing

In this paper, we study on the energy data from London
Hydro, the electricity service provider in London, Ontario,
Canada. The dataset incorporates hourly electricity consump-
tion of fifteen households from 2014 to 2016. The raw dataset
from smart meter reading contains electricity consumption
data measured in kilowatts-hour (kWh) for households on a
time scale of one hour. We obtain the weather and humidity
historical hourly data from Canadian Government Official
Website as impacted factors to residential energy consumption.

1) Data Cleansing: The original electricity consumption
data contains 534,966 lines of hourly meter reading value
for fifteen households in 3 years, however, there exists some
missing or disordered hours. To avoid undesirable impacts
to the prediction model, we replace those invalid or missing
consumption values by the average electrical consumption
value of the previous and the following hours. There are also
some invalid weather conditions or temperature/humidity data



Fig. 2: Framework of individual household electricity forecasting

in the dataset downloaded from the Governmental Website. To
tackle the missing hourly temperature and humidity, an aver-
age temperature/humidity value of the previous and following
hours is calculated as a substitute for the missing hour; for
the invalid weather condition (Snow, Cloudy, Clear, etc.), we
refill the cell by the last hour’s weather condition.

2) Feature preparation: The cleaned and consistent dataset
is reorganized and additional new features are generated as
follows:

• Weather Condition: We aggregate over 20 weather condi-
tions in the original version to seven main weather condi-
tions: “Cloudy”, “Clear”, “Fog”, “Haze”, “Rain”,“Snow”
and “Ice”.

• Temperature: Temperature is a factor used to predict
hydro usage because Air Condition (AC) consumption
takes a large proportion in all electricity consumption,
especially in summer, as well as other residential electri-
cal applications.

• Humidity. We retrieve the relative humidity data from
government of Canada website, which represents the
measurement of water vapor relative to the temperature
of the air as a percentage.

• Hour of the Day: 1 to 24. Hour of the day is an
important attribute to forecast energy consumption. The
consumption in midnight is highly possible less than the
consumption at 7:00 pm, which could also be confirmed
by Integrated Energy Mapping Strategy [34].

• Day of the Week: 1 to 8 for weekdays, weekends and
long weekends. Monday through Sunday is represented
by number 1 to 7, and 8 represents long weekends in
Ontario. We use this factor to detect the usage pattern in

a national holiday.
• Week of the Year: 1 to 52 to represent the week of the

year.
• Month: 1 to 12. We implement month as a factor to

complement temperature and reduce the possibility of
making prediction errors.

• Season: Spring, Summer, Fall and Winter. We use season
as an attribute to detect the relationship between season
and hydro usage and to improve the forecasting accuracy.

• Price: The electricity time-of-usage (TOU) rate [20] is
listed in Table I and it could influence the electrical usage
for the households.

B. Exploratory data analysis
Comparing with commercial electricity consumption, the

most significant characteristic of residential electricity usage
is that some families live regular lives, which can be reflected
from the similarities in consumption patterns. However, some
families are irregular in energy usage. It leads to various
consumption patterns among different families.

Investigating the correlation between the input features
and the forecasted loads [16] facilitate choosing the features
which exhibit significant correlation to energy consumption
for a particular household, thus the computational time for
parameters tuning is reduced with a subset of significantly
correlated variables.

1) Consumption Patterns: The stochasticity in family mem-
ber’s behaviors results in various electricity consumption pat-
terns. Fig. 3(a) shows two households’ electricity usage trends
and pattern respectively, during Jan. 1 2014 to December 31,
2016. In the figure, X-axis denotes time, and Y-axis stands for
electricity consumption.



(a) 3-year hourly consumption pattern

(b) 3-year hourly consumption heat-map

Fig. 3: Two households three years hourly consumption

There is a visually detectable pattern for home#1, whose
electricity usage ramps up during summer time and relatively
lower in winter. It is typical residential behaviors in Canada
due to the air conditioning usage in high-temperature days,
which boosts the electricity usage during May to October. For
Winter heating system, gas is more widely used for residential
homes other than electricity in most Ontario houses and
apartments, for the sake of lower cost. Therefore, there is less
electricity usage from October to May of next year. However,
the electricity usage pattern is not easily to be recognized for
home#2. Less regularity in electricity consumption pattern can
be deducted from the home#2 hourly trend.

For a better data visualization, detailed 2-D consumption
heat-maps are plotted for those two households as shown in
Fig. 3(b). In the figure, X-axis denotes the repetitive presented
hours in a week from Sunday to Saturday with a step of
6 hours, and Y-axis denotes the days from 2014 to 2016.
Each hourly consumption is represented by a color square
according to a predefined “rainbow” color bar with colors from
warm to cold. The more consumption for a particular hour
has, the warmer the color will be. For home#1, the periodical
appearance of high usage during daytime in Summers months
is evident, especially in the year 2014 and 2015. By contrast,

less regularity can be identified from the consumption data
visualization for home#2.

Residential characteristics including household’s socio-
economic status, its dwelling properties, employment status
and even number of persons living in the household is relevant
to the residential electricity usage hour-by-hour [14]. For
example, rental residence with changing tenants and unde-
termined vacancy can hardly be predicted in the electricity
consumption.

2) Peak Consumption Indicators: A residential customer
using multiple appliances simultaneously in a certain hour pro-
duces in an accumulated consumption peak. Those peaks with
three to five times of average hourly consumption contribute
significantly to the MAPE errors.

Take home#1 for example, for the period of three years
(2014-2016, totally 26304 hours), 77.2% of hours consume
less than two kWh electricity (Fig 4(a)). The average hourly
consumption of 3 years is 1.68 kWh, and median hourly
consumption is 1.35 kWh. In this case, those hours with
electricity usage greater than five kWh is defined as peak
consumption hours. Fig. 4(b) illustrates the relevant factors
among those 639 peak usage hours. For seasonal impact,
95.5% of peak hours appear in both Summer and Fall. Nearly
one-third of actual peak hours are in Sunday and followed by
Monday (13.62%). Regarding “hour of the day”, the hours of
17-19PM contribute the most electricity usage in a day. “TOU
Price” represents the Time of Usage pricing scheme defined
by Ontario Energy Board as described in Table I. The “on-
peak”, “mid-peak” and “off-peak” priced hours have similar
proportions in peak electricity consumption.

(a) Hourly consumption
distribution in three years

(b) Peak consumption hours
distribution in three years

Fig. 4: A household consumption and peak hours distribution

To capture peak consumption hours for residential users, a
new feature named “peak index” is added to fit the prediction
model for this household by calculating the peak factors (peak
seasons, top days in a week, and top hours in a day) for each
hour and align a corresponding weight to those hours.

C. Prediction Model

The prediction model is designed to work with SVR on both
hourly and daily data granularities for every household. For
each data granularity, one observation is associated with one
energy reading. Other features discussed before are added to
the energy reading data set. To explore the accuracy on daily



granularity, the Green Button hourly data are aggregated as
follows to obtain the daily electricity consumption:

Cd =

24∑
i=1

Chi
(5)

where Chi is the electrical consumption for the i
th

hour in a
day. To train the prediction model, splitting time series into
chronological sets and checking for parameters stabilities over
time is proved to be useful for business buildings energy
consumption prediction [7, 13]. However, irregularity and
uncertainty over time for some residential customers makes
consecutive training set less accurate, compared with random
sampling. Hence, for every household both consecutive time
splitting and random sampling are applied for the residential
electricity consumption prediction, and the method with less
errors will be selected.

For the machine learning regression model SVR, parameters
in the prediction model have to be resolved in the learning
phase. With a nonlinear kernel function, two basics parameters
should be determined in advance: the cost C, which denotes
the penalty for errors greater than ε as shown in Fig. 1 and
the nonlinear kernel coefficient γ. Combinations of model
parameters constitute a model configuration, among which the
best parameters need to be chosen for best prediction accuracy.
Grid search method is adopted for tuning the model configu-
ration. In the implementation, a set of C and γ parameters are
formed by assembling a grid of search parameters. Once the
optimized parameters are resolved, the prediction error could
be validated by model assessment. The SVR prediction module
was implemented in Python language.

Since each household requires SVR parameters tuning for
both chronological splitting and random sampling in hourly
and daily data granularities to get the best modelling con-
figuration, there are at least 15 × 2 × 2 = 60 times of grid
search tuning needed for the 15 households. A small cluster of
servers is used, and each server has 24 Intel Xeon CPUs, 96GB
memory and external storage to enable fast data reading during
execution. To fasten the SVR parameters’ cross-validation,
the parallelized computing was implemented in Python to
maximize the concurrently running of vacant CPUs.

V. EVALUATION

The proposed method has been experimented using residen-
tial electricity consumption data provided by London Hydro
in over three years. Data exploratory analysis as described
in section IV is conducted for all 15 households to visualize
whether households has settled habits and routine in daily life
or not. Then the SVR model is applied to each household
respectively on different data granularities.

A. Feature Coefficients

More exploratory analysis is made for each household to
analyze the relationship between those important factors and
the household?s electrical consumption.

(a) A household hourly consumption versus features

(b) Correlation coefficients of features for the household

Fig. 5: Relationship between features and consumption

Fig. 5(a) visualizes the correlations between a household’s
three-year hourly consumption and features like “tempera-
ture”, “humidity”, “hour of the day”, “week of the year”,
“day of the week” and “TOU price”. From the figure, the
“temperature” has an obvious positive correlation with energy
usage: the hourly consumption increases along with the rising
temperature. By contrast, “humidity” doesn?t have positive
correlation with consumption. For “hour of the day”, the
hours of 2AM to 6AM account for the lower electricity
usage, and hours in the afternoon always consume more.
Averagely, week 19 to week 39 in a year have more electrical
hourly consumption, which is correspondingly in the season of



Summer and Fall. During a week, Sunday has the most energy
usage compared with other days. For the features prepared
for the prediction, the correlation coefficients with the hourly
consumption of the same household are calculated, as shown in
Fig. 5(b). “temperature”, “hour of the day” and “peak index”
are the top three important factors with the top three high
coefficients. Those variables with negative coefficient reveal
the inverse relationships with hourly consumption for the
households. It is noted that household’s coefficients between
features and consumption differ from each other. For example,
a certain proportion of Ontario residents use electricity for
heating during Winter other than Gas, which results in a
remarkable electrical consumption at frozen days when the
temperature is low. Thus, non-positive correlation between
temperature and consumption can be found for those families.

B. Experiments and results

Fig. 6: A household hourly prediction vs actual observation

Fig. 6 illustrates the hourly actual electricity usage and the
predicted energy consumption values obtained by SVR model
for one month (e.g. September 2015) for home#1 mentioned
in section IV. It is noticed that the prediction curve follows the
fluctuation of the actual electricity usage during the day and
night on an hourly basis, except for several peak usage hours.
This occurs due to the fact that there are random variations
for an individual home user.

Fig. 7: Fifteen households’ consumption MAPE and mean
hourly consumption

TABLE II: Fifteen households’ SVR modelling evaluation
results and categories

Home
No.

MAPE Accuracy
Category

Data Splitting
MethodHourly Daily

#1 23.31 12.78 Good hourly
and daily accuracy

Time-
based

splitting

#2 24.42 14.46
#3 35.82 17.30 Weak hourly,

better daily accuracy#4 36.65 19.66
#5 69.17 13.72

Poor hourly,
better daily accuracy

#6 43.41 21.89
#7 61.07 21.31
#8 53.81 25.61
#9 67.96 24.14

#10 36.05 22.55
Weak hourly,
better daily

accuracy Randomly
sampling

#11 44.63 22.66
#12 33.33 24.8
#13 45.33 29.31
#14 40.34 34.49 Poor hourly

and daily accuracy#15 64.38 34.95

The evaluation metrics for all 15 households is shown in
Table II. Although these 15 households’ consumption dataset
is a random sample from London’s residential customers
energy data, it represents several categories classified by
families’ regularities in electrical consumption, as indicates by
the column of “Accuracy categories”. Most of the households
have acceptable daily consumption MAPE (under 30), while
the accuracy for hourly consumption fluctuates dramatically.
The first two households (home#1 and #2) having both hourly
and daily MAPE under 30 show regularities in the activities of
electrical consumption over time. It is noticed that these two
families also have the highest hourly average consumptions
(Fig. 7) during three years. The families with ID from #3 to #9
have weaker hourly prediction accuracy, but present regularity
if hourly usage is aggregated into one day’s consumption.
Those households have similarities in their consumption pat-
terns over time, and gain better accuracy in terms of time-
based training and testing subsets splitting. By contrast, home
#10 to #15 demonstrate less regularity on continuous time
period, and can be better forecasted on randomly sampling
splitting.

TABLE III: Home #1 consumption MAPE comparison be-
tween all days and weekdays

Home #1 All Days Weekdays

Time-based
Splitting

Randomly
Sampling

Time-based
Splitting

Randomly
Sampling

MAPE 23.31 24.91 22.01 23.94

As analyzed before, more variability in electricity con-
sumption has been seen in weekends other than weekdays.
Table III shows and example of MAPE comparison between
the whole dataset and the subset of weekdays for the house-



Fig. 8: A household weekday hourly prediction over four months

hold #1. The forecasting for weekdays enjoys lower MAPE
errors for both time-based splitting and randomly sampling in
processing the training and testing datasets. Fig. 8 visualizes
the weekday electricity consumption prediction for the home
#1 in 4 months. Seasonal change from September to October
has brought substantial energy decrease, which led to non-
perfectly matched prediction curve, however, for the majority
of hours, fewer errors can be seen for the weekdays usage
forecasting from October to December 2015.

VI. CONCLUSION

Smart metering technologies boost the data analytics in
energy management, and create possibilities for new energy
services. This study explores the accuracy of machine learning
SVR modelling approach applying on residential customers.
Unlike the large number of studies considering commercial
building or multi-family residential buildings, this work has
studies single-families with electrical usage collected by a
smart meter installed by local utility company.

The development of smart meters and data collection tech-
nologies provides the possibility to collect detailed electricity
consumption data. We used hourly electricity consumption
data, detailed weather data in this study. This study confirmed
the influence of elements, including weather condition, tem-
perature, humidity holiday, hour of the day, day of the week,
month, season and price of electricity, on residential electricity
consumption and provided a quite efficient and accurate ap-
proach to make the prediction. We also revealed the correlation
coefficients of those features mentioned above that hour of
the day and temperature have the most significant impact on
electricity consumption in our case. Different methods are used
to split the dataset into training and testing subset. For the
households with similarity in electrical consumption over time,
consecutive time-based splitting works better than randomly
sampling the data, however, for those who lacks regularity
in the hourly electricity usage, sampling the whole dataset

irrelevant to time and using 20% of the sampling as testing
sub-dataset outperforms time-based approach.

Because of the stochasticity for single residential customers,
daily data granularity achieves better prediction results than
hourly data for all the 15 households. Aggregating hourly
consumption to daily is an effective way to mitigate the impact
of randomness in hourly behaviors of family members. The
lowest MAPE error for one of the fifteen household is 12.78
for daily prediction and 23.31 for hourly prediction, and it
reduces to 22.01 (hourly) if only weekdays are counted for
the same family.

The model would reveal a better prediction result if occu-
pancy of the house can be detected and added as a feature.
Future work will explore the possibilities of revealing more
user social and behavioral characteristics from the data, and
use those data as an input to the consumption prediction
model.

Our study uses one Machine Learning approach, Support
Vector Regression (SVR), because of the restriction of time
and computational hardware. Multiple models containing dif-
ferent attributes should be tested in the future.
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