
Why Do We Need Personality Diversity in Software Engineering? 
 

Luiz Fernando Capretz Faheem Ahmed 
University of Western Ontario United Arab Emirates University 
Dept. Elect. & Computer Engineering College of Information Technology 
London, ON, Canada N6A5B9 Al Ain, United Arab Emirates 
lcapretz@eng.uwo.ca f.ahmed@uaeu.ac.ae 

 
Abstract 
Diversity of skills is good for society, it is also good in problem 
solving because different people see a problem from several pers-
pectives, so diversity should be good for software engineering too. 
This study tackles a difficult to study aspect of software engineer-
ing, that is, how to best associate personnel with the various tasks 
in a software project. The approach uses psychological types to 
determine who is best suited to particular development roles. The 
article has four main objectives: (1) to arouse awareness of human 
factors among software engineers; (2) to investigate how psycho-
logical factors can contribute to their effectiveness at work; (3) to 
catalyze effort among software engineers leading towards a deeper 
understanding and broader applications of human factors in the 
light of the activities involving the engineering of software; and (4) 
to emphasize the important of skill diversity in the software engi-
neering field. This article provides conceptual knowledge, reports 
findings, and presents both real and hypothesized beliefs from the 
software engineering community. Likewise, it is hoped that the 
article will motivate software engineers and psychologists to con-
duct more research in the area of software psychology, so as to 
understand more profoundly the possibilities for increased effec-
tiveness and fulfilment among software engineers. 

Keywords: Software Psychology, Personality Types, Diversity in 
Software Engineering, Human Factors in Software Engineering, 
Software Skills, MBTI 

1. Introduction 
Software engineering has been one of the most impactful profes-
sions of the last 30 years and will continue to expand its bounda-
ries into the next decades. Software development has been 
considered a socio-technical endeavour for some time. For soft-
ware engineers the need to communicate effectively with users and 
team members has been increasingly emphasized. When someone 
accepts the vision that awareness of psychological dimensions 
within oneself and human factors within one’s work environment 
increase the software engineer’s productivity, we must then wonder 
which psychological traits would be most worth investigating. 

Although in the 70s and 80s software developers (systems analysts 
and programmers) had the lowest needs for social interaction on 
their jobs; nowadays human resources people responsible for hir-
ing software engineers indicate that in addition to knowledge in 
applied computing and business, it is very important that software 
professionals have the capacity to learn, ability to work in teams, 
oral and writing skills, and orientation to health and wellness. In 
short, adaptability, communication, and stress management are 
seen as key skills for the software professional. Yet, such skills are 
not developed through logic and algebraic reasoning alone, but 
involve “soft areas”, feelings, and senses. 

Thus the time appears to be set to address specific psychological 
factors as applied to the work of various software engineers. The 
reason for addressing these human factors is largely the recognition 
that software engineers could benefit from greater awareness of 
themselves and others in order to develop their “soft skills”, which 
in turn can positively influence their work. Software engineers 
have long realized that “soft skills” are increasingly required in the 
course of their work. However, specific studies have been sporadic 
and often incidental. 

Software production is a result of human activities, which often 
include problem-solving capabilities, cognitive aspects, and social 
interaction. However, human beings are more complicated and less 
predictable than computers. Therefore, the complexity of human 
personality entails intricate dynamics that are integral and yet often 
overlooked in software development. Thus, sooner or later, major 
issues relevant to software engineering boil down to people and 
their personality traits. 

Software is a word with multiple connotations. Individuals discuss-
ing software may refer to the structure of a program, the functio-
nality of an application system, the appearance of an interface, or 
even the overall user experience with a hardware-software envi-
ronment. Software engineering spans both new software develop-
ments and the maintenance of legacy systems, with each software 
life cycle phase bringing its own context of understanding what 
matters, what can be created, and what tools and methods are ap-
propriate. Because of its multifaceted work, software development 
is among the most challenging jobs performed by mankind. 

Over the last three decades, the engineering of software has be-
come a very broad field, consequently the skills necessary to suc-
cessfully work in this area thirty years ago may no longer apply. 
For instance, software design has became much more than manipu-
lating formal or semi-formal notations; rather, it revolves around 
the interaction between designers and users, primarily, the design-
er’s perception of what the user wants, and the user’s perception of 
what he/she really needs. Today, successful software is developed 
after a tremendous amount of time has been spent with the user in 
the form of prototyping, experimentation, and feedback. In fact, 
these three activities represent the de facto life cycle of many use-
ful software systems. 

As companies rely more heavily on project teams and encourage 
software engineers to collaborate with their customers, the oppor-
tunities for conflicts abound. When it comes to personality types, 
opposites do not always attract each other [1]. When software pro-
fessionals discuss how a task needs to be accomplished, they tend 
to be poor at verbalizing how the task affects the involved individ-
uals. The greatest difference between software engineers and the 
general population is the percentage who takes action based on 

ACM SIGSOFT Software Engineering Notes Page 1 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111

mailto:lcapretz@eng.uwo.ca�
mailto:f.ahmed@uaeu.ac.ae�


what they think rather than what they feel. Unfortunately, this men-
tality does not help bring software engineers closer to their users. 
Reality shows that software developers require more than computer 
literacy; they also need emotional literacy and mutual understand-
ing to build teams and to collaborate effectively with users. Specif-
ically, there should be a clear association between activities or 
roles, software skills, and personality types. 

Research relating personality styles to software engineering has 
been scattered and difficult to interpret uniformly. This paucity 
may indicate that the relationship between software engineering 
and personality styles is too complex to investigate. For instance, 
certain personality traits such as introversion/extroversion may 
have a significant impact on system analysis, but they may not af-
fect the other software life cycle phases. Thus, studies to determine 
which personality profiles are more suitable for certain software 
development activities are of paramount importance. 

A major rationale behind this paper is to discern connections be-
tween human factors, particularly psychological types, and the 
process of developing software. Accordingly, the work focuses on 
the complex relationship between people’s skills and software de-
velopment. This interdisciplinary, human-centred research makes 
use of theories about psychological types, human personality fac-
tors, and software engineering. It contributes towards a bridge that 
links software engineering and software psychology, and it at-
tempts to shed light on several outstanding problems that plague 
the software industry 

1.1 Introduction to the Myers-Briggs Type Indicator (MBTI) 
First of all, it is essential to introduce the four scales of the MBTI 
[2]. The MBTI is an instrument for measuring and understanding 
individual personality types. Specifically, it can reveal how people 
prefer to receive information, how they form opinions, and how 
they organize their lives. The MBTI currently ranks among the 
most popular indicators used in the workplace [3, 4], and it estab-
lishes four parameters for assessing personality types. Although all 
individuals possess the personality qualities contained within each 
scale or parameter, each individual naturally prefers some qualities 
or is more comfortable with some traits than others. For the MBTI, 
each scale is bimodal, with its central point having a zero value. 
Each respondent is required to choose between preferences; the 
higher the score on each preference, the stronger that preference is 
likely to be. 

Extroversion (E) versus Introversion (I) 
The first scale represents complementary attitudes towards the ex-
ternal world. While the extrovert prefers looking outward, the in-
trovert has an inward view. For example, strong extroverts are 
sometimes said to “talk to think” whereas introverts “think to talk”. 
Contrary to popular belief, the implications of these terms go 
beyond the common stereotypes of sociable versus shy. Extroverts 
are talkative, initiators of conversation, and outgoing. They prefer 
action and variety. Introverts, in contrast, are quiet, reserved, and 
respond to conversation rather than initiate it. They prefer silence 
and time to consider matters. Overall, extroversion implies a ten-
dency to be talkative, lively, and expressive; introversion describes 
a person that is quiet, introspective, and reserved. 
 

Sensing (S) versus Intuition (N) 
The second scale distinguishes the way that individuals assimilate 
information from the environment. While a sensing individual 
might need to absorb a whole series of facts in linear fashion, an 
intuitive person can take in the same information through abstrac-
tion and concepts that, while initially appearing to be unrelated, 
can establish meaning beyond the information captured only by the 
senses. Sensing individuals dislike new problems unless prior ex-
perience shows how to solve them; on the other hand, intuitive 
people enjoy solving new problems and dislikes performing repeti-
tive tasks. The adjectives that describe a sensing person are realis-
tic, practical and fact-oriented; while those that qualify as an 
intuitive individual are speculative, imaginative and principle-
oriented. Of course, we all share both sets of qualities to some de-
gree, but one set usually predominates. 

Thinking (T) versus Feeling (F) 
The third mode of orientation in the MBTI classification involves 
the dichotomy of thinking and feeling. Again, these terms are more 
comprehensive than everyday usage would indicate. In particular, 
these terms refer to the process of decision-making. This scale of 
preferences identifies thinking as the logical way of making a deci-
sion, while feeling describes the tendency to rely on values as a 
basis for making decisions. Thinking people are principle-oriented, 
cool-headed and firm, whereas feeling people are emotion-
oriented, warm-hearted and have strong interpersonal skills. 

Judging (J) versus Perceiving (P) 
The fourth scale differentiates between the way in which individu-
als orient their lifestyles and organize their worlds. Judging identi-
fies the tendency to be extremely organized. If a deadline is to be 
met, a judging person usually finishes the task well in advance. At 
the other extreme, a perceiving individual prefers procrastinating, 
appears to be disorganized, and seems to be distracted from com-
pleting a task until some little bell goes off at the last minute and 
propels this individual to get the job done. Perceiving people like 
to delay decisions. Often, the easiest way to distinguish between 
these two types of individuals is to look at the person’s desk. The 
desk of a judging person is immaculately organized, whereas the 
desk of a perceiving person appears to be in constant chaos even 
though the perceiving individual claims to know exactly where 
everything is located and states that there are rules underlying the 
apparent chaos. The adherence to deadlines, punctuality, closure 
and routine describe judging personalities, while the terms open-
ended, tentative, adaptable and spontaneous apply to perceiving 
types. 
 
Summarizing, the MBTI sorts these four sets of preferences, se-
lecting one from each pair, to delineate a person’s preferred type. 
Hence, there are 16 possible configurations, presented in Table 1, 
in addition to the percentages of the various types among a repre-
sentative sample of the U.S. adult population; however, these per-
centages may vary from one country to another. If the MBTI 
results reveal that a person is ISTP, the terminology suggests that 
the person prefers ISTP, rather than being an ISTP. Thus there are 
no rights or wrongs in the personality types, there are merely prefe-
rences. 
 
 

ACM SIGSOFT Software Engineering Notes Page 2 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



ISTJ 
11.6% 

ISFJ 
13.8% 

INFJ 
1.5% 

INTJ 
2.1% 

ISTP 
5.4% 

ISFP 
8.8% 

INFP 
4.4% 

INTP 
3.3% 

ESTP 
4.3% 

ESFP 
8.5% 

ENFP 
8.1% 

ENTP 
3.2% 

ESTJ 
8.7% 

ESFJ 
12.3% 

ENFJ 
2.5% 

ENTJ 
1.8% 

 
Table 1. The 16 MBTI types and their distribution among the 

USA adult population [2] 
 
2. Related Work 
Human factors in software engineering have different dimensions. 
Studies have been performed from different perspectives. These 
perspectives could be the investigation of human factors in differ-
ent phases of software life cycle, or the effect of team work in 
software development, or how can a personality profile suit a par-
ticular task like code review, or about some other miscellaneous 
issues. A few studies have investigated the relationship between 
human skills and the software life cycle phases. 

Karn and Cowling [5] investigate the effects of different personali-
ty types using MBTI on the working of some software engineering 
team. The study describes how ethnographic methods could be 
used to study software teams, and to understand the role of human 
factors in a software project. The results of the study indicated that 
certain personality types were more inclined to certain roles. 

Using the 16PF test [6], Acuna et al. [7] measured the correspon-
dence between individual capabilities, such as intrapersonal, orga-
nizational, interpersonal, management, and software roles, 
including team leader, quality manager, requirements engineer, 
designer, programmer, maintainer, tester, and configuration man-
ager. Feldt et al. [8] evaluated the personality of 47 software pro-
fessionals using the IPIP 50-item five-factor personality test [9]. 
After extensive statistical analyses, they found that there are mul-
tiple and significant correlations between personality factors and 
software engineering, and they concluded that individual differenc-
es in personality can explain and predict how judgments are made 
and how decisions are evaluated in software development projects. 

Hannay et al. [10] report the impact of the Big Five [11] personali-
ty traits on the performance of pair programmers together with the 
impact of expertise and task complexity. The study involved 196 
software professionals in three countries forming 98 pairs. The 
results show that personality may be a valid predictor for long-term 
team performance; however, they found that personality traits, in 
general, have modest predictive value on pair programming per-
formance compared with expertise, task complexity, and country. 
They recommend that more effort should be spent on investigating 
other performance-related predictors such as expertise, and task 
complexity, as well as other promising predictors, such as pro-
gramming and learning skills. They also suggest that effort should 
be spent on elaborating the effects of personality on various meas-
ures of collaboration, which, in turn, may be used to predict and 
influence performance. Insights into malleable factor such as learn-
ing, motivation, and programming skills rather than static, factors 
may then be used to improve pair programming performance. 

Within the field of software engineering, there are tremendous dif-
ferences among individual performance in programming. Instruc-
tors of programming courses witness first hand the huge variety 
among students in learning achievement and programming assign-
ments. Furthermore, Shneiderman [12] reports that some pro-
grammers perform as much as ten times better than other 
programmers with similar backgrounds. Walz and Wynekoop [13] 
derive a methodology for identifying the traits and characteristics 
of top performing software developers: (1) those who are best at 
making things work; (2) those who can best communicate with 
end-users, identify requirements, and transform them into a logical 
design; and (3) those destined for management. Turley and Bieman 
[14] also seek to identify the attributes that differentiate exception-
al and non-exceptional software engineers and map them to the 
MBTI scale; these differences may result from the fact that produc-
tive people are carrying out the tasks they prefer. 

Cognitive styles have been examined as factors that may help to 
explain some of the variability; however, they have failed to con-
sistently explain individual preference towards computer pro-
gramming as opposed to another task, such as system analysis or 
design. Accordingly, MBTI offers the potential to provide a suita-
ble model for comparison. Indeed, effective software development 
demands a broad set of skills. If a project lacks people with certain 
preferences, some individuals may have to perform tasks to which 
they are not naturally suited or may not find enjoyable. 

Kerth et al. [15] are sceptical about the ability of MBTI to predict 
who is going to make a good software engineer; this is because 
MBTI does not consider variables such as passion, experience, and 
financial rewards. They are correct about the inability of a single 
personality test to predict success in a field as broad as software 
engineering, where different skills are required for system analysis, 
design, testing, maintenance and technical support. Nevertheless, 
they contradict themselves when they state: “We see zero indica-
tion that MBTI preference correlates with job success”, but later 
affirm: “systematically excluding certain types from a team pro-
duces an imbalance that is likely to have a poor performance”. 

This debate is long overdue. Psychological assessment instruments 
have been used for over sixty years and have reached a mature 
stage for predicting career selection and behaviour. Many of these 
instruments are based on the theories of C. Jung and S. Freud. In 
particular, MBTI has been one of the most popular tools used for 
ascertaining personality types, especially because the instrument 
has been supported by extensive data. For instance, the profiles of 
which personality types are attracted to which specific occupations 
are derived from more than two million indicators administered 
annually all over the world. Although a few times MBTI measures 
have been questioned [16], the instrument does not predict success 
in a career; it does, however, identify preferences for occupations. 

There is clear evidence that personality preferences have great 
impact on motivation, quality of work, and retention in the field of 
software engineering [17]. Hardiman [18] has claimed that the 
MBTI may be the best predictor of who will become a competent 
programmer. He observed that the majority of good programmers 
were ISTJ, INTJ, ESTJ, ENTJ, ISFJ, or ENTP; in brief, they are 
mostly NTs and SJs. He also implies that NF types tend to have 
trouble with the sequential and abstract thinking necessary for writ-
ing programs. Capretz [19] has investigated the profile of a group 

ACM SIGSOFT Software Engineering Notes Page 3 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



of 100 software engineers (80% male and 20% female) who study 
in private or public universities, work for the government or are 
employed by software companies. All these individuals are produc-
tive and motivated software engineers and were selected to partici-
pate in this study based on their occupation. This study has shown 
that ISTJ, ISTP, ESTP and ESTJ orientations compose over 50% 
of the sample and are therefore significantly over-represented, 
whereas the INFJ, ESFP and ENFJ groups are all particularly un-
der-represented. 

Bishop-Clark [20] investigated the relationship between cognitive 
aspects, personality traits and computer programming. She divides 
programming into several stages: problem representation, program 
design, implementation, and debugging. Moreover, she organizes 
the theories and empirical studies of computer programming into 
four sub-tasks: problem solving, designing, coding, and debugging. 
The cognitive styles discussed entail dichotomies such as field 
dependency/independency, analytic/holistic, impulsivi-
ty/reflectivity, and divergent thinking; the personality traits include 
locus of control, and introversion/extroversion. These variables 
were mentioned because, according to her theory, they were all 
important within the realm of computer programming. In general, 
her model suggests that different characteristics are necessary for 
different tasks; for example, she indicates that the attribute neces-
sary for debugging is reflectivity rather than impulsivity. 

In contemporary society, the software industry has become a major 
employer. It has, in fact, generated many commentaries on the 
unique contributions of professionals engaged in its many sub-
areas. Specialties within software engineering are as diverse as 
those in any other profession. Software engineering comprises 
stages in separate and distinct phases including system analysis, 
design, programming, testing, and maintenance. It may be that cer-
tain personality dimensions affect one phase but not others, or af-
fect specific phases in different fashions. 

Teague [21] tried to map the MBTI dimensions into three major 
subtasks of computing: system analysis, system design, and pro-
gramming. A study of 38 computing professionals confirmed that 
computer specialists are not a homogeneous group. The personality 
types preferred for system analysts included those with a combina-
tion of extroversion (E) and intuition (N), as nine of the thirteen 
participants preferring analysis had these two characteristics. Fur-
thermore, ten of the thirteen participants favouring system design 
fell within the most preferred range of attributes, with six having 
the intuition (N) and thinking (T) characteristics considered useful 
for higher level design, two having the sensing (S) and Judging (J) 
characteristics desired for dealing with the detailed aspects of de-
sign, and two being ISTP – practical problem solvers. Finally, sev-
en out of the ten respondents preferring programming also 
corresponded to personality types of traditional programmers, such 
as ISTJ, who are sensors (S) with attention to detail; the other three 
were classified as intuitives (N) and thinking (T). 

More recently, Capretz and Faheem [22] have mapped some op-
posing psychological traits, such as extroversion-introversion, 
sensing-intuition, thinking-feeling, and judging-perceiving, to the 
main stages of a software development life cycle. Subsequently, 
they have argued that assigning a person with specific psychologi-
cal characteristics to the stage of the software life cycle best suited 

for his or her traits increases the chances of a successful outcome 
for the project.  

Software is developed by people, used by people, and supports 
people’s work. As such human characteristics, behaviour, and co-
operation are central to practical software development [23]. Spe-
cifically, the personality of software engineers has become 
increasingly important in recent years. First, software engineers 
nowadays are expected to have a broader range of skills than in the 
past. Secondly, many users are dissatisfied with the personal rather 
than the technical services they receive from software engineers. 
Several studies involving the personality traits of software engi-
neers have been reported. However, much of the research has 
sought to classify software engineers into personality profiles ac-
cording to particular psychological attributes measured by a perso-
nality instrument. A common thread running through the results of 
these and other similar studies is the prevalence of introverts (I), 
thinking (T), judging (J), and almost as many sensing (S) as intui-
tive (N) types among software professionals. While these empirical 
studies suggest that the MBTI poles are related to software engi-
neering, they do not specify at which phase of the software life 
cycle they occur or how they are related. 

Despite early interests in the importance of human factors in the 
engineering of software [24], particularly the personal characteris-
tics of people involved in the software engineering processes, such 
factors have been largely overlooked. This oversight, in turn, has 
prevented the acquisition of detailed knowledge about how differ-
ent aspects of personality correlate with software life cycle phases 
and hindered the use of this knowledge to improve software engi-
neering processes. A more focused approach may help identify at 
which software life cycle phase a particular personality type has 
the most significant impact. This fundamental issue is further ex-
amined in the next section. 

3. Mapping Job Requirements and Skills to Personality 
Characteristics 
Software engineering has been roughly characterized as set of ac-
tivities comprising system analysis, design, programming, testing, 
and maintenance. Logically, they are different tasks which are put 
together to achieve the objective of software construction and op-
eration. The micro-level interpretation of these activities demands 
a set of abilities to carry them out effectively. For example, the 
skills required to design a software system are quite different from 
those needed to test the software. The psychological hypothesis 
that not every one can perform all tasks effectively suggests that 
personality traits play a critical role in the performance of people 
executing the same task. Hence if we map the job and skill re-
quirements with personality characteristics, we would likely be 
able to establish a link between the software life cycle phases and 
corresponding personality traits. 

After analyzing various job descriptions for software engineers 
appearing in newspapers and magazines, posted at the website 
monster.com, and described in [25], we determined the preferable 
skills and related them to personality characteristics. Subsequently, 
the skills desirable and highly desirable for effectively performing 
the tasks in each phase of the software life cycle were mapped to 
the MBTI dimensions. The job advertisements in the area of soft-
ware engineering generally divide the skill requirements into two 
categories: “hard skills” and “soft skills”. Hard skills are the tech-

ACM SIGSOFT Software Engineering Notes Page 4 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



nical requirements and knowledge a person should possess to carry 
out a task; these skills include the theoretical foundations and prac-
tical experience that a person should have to comfortably execute 
the planned task.  

Even though soft skills incorporate the psychological phenomena 
that include the personality types, social interaction abilities, com-
munication, and personal habits, it is apparent that people imply 
that soft skills should complement the hard skills. Consequently, 
we related the job requirements or “hard skills” to personality re-
quirements or “soft skills” for different positions such as system 
analysts, designers, programmers, testers, and maintainers, which 
reflect the various software life cycle phases. Moreover, we also 
mapped the different “soft skills” to the personality characteristics 
of an individual by rating them as “highly desirable” or “desira-
ble”. Although in Figures 1-5 most skill requirements are “desira-

ble” and are connected to the personality characteristics, only the 
“highly desirable” skill requirements for a particular phase of the 
software life cycle are considered. 

3.1 System Analysis 
The system analysis phase emphasizes the identification of high-
level components in a real-world application and involves the de-
composition of the software system into its main modules. In addi-
tion to other minor skills, the system analysis phase requires that 
the system analyst determine the users’ needs, consider the clients’ 
requirements of the software system, understand the system’s es-
sential features, and create an abstract model of the application in 
which these requirements are met. Overall, the main product of the 
system analysis phase is a graphical and/or textual description, 
either informal or formal, of an abstract model of the application. 

 

 
Figure 1. Mapping system analysts and their skills to personality characteristics [22] 

System analysis demands a great deal of human interaction with 
users and clients. To communicate with users and management, 
extroverts are better at talking and getting responses than intro-
verts, since introverts have a difficult time achieving a problem 
representation with users due to their internal orientation. Thus, it 
seems reasonable to assume that extroversion would affect this 
phase in a positive manner. Additionally, system analysts must be 
able to empathize with the users’ problems in order to fully under-
stand their needs, hence interpersonal skills are highly desirable. 

Recognizing this fact can offer a critical insight for software pro-
fessionals, who are often viewed as being disconnected from the 
users. 

In general, there is a tendency for software engineers to assume 
that because they possess more technical expertise than most users, 
their solutions are more appropriate, but the users do not always 
agree with this assessment. Extroverts (Es) and feelers (Fs) interact 
with users better than introverts (Is) and thinkers (Ts); in particu-
lar, feelers (Fs) excel at making people feel comfortable, whereas 

Personality Charac-
teristics 

 

Soft Skills Requirements 
 

System Analyst Job Requirements 
 
 Liaising extensively with external or internal clients 

 

Analyzing clients' existing systems 
 

Translating client requirements into highly specified project 
briefs 
 

Identifying options for potential solutions and assessing 
them for both technical and business suitability 
 

Creating logical and innovative solutions to complex prob-
lems 
 

Drawing up specific proposals for modified or replacement 
systems 
 

Producing project feasibility reports 
 

Working closely with developers and a variety of end users 
to ensure technical compatibility and user satisfaction 
 

Overseeing the implementation of a new system 
 

Planning and working flexibly to a deadline 
 

Keeping up to date with technical and industry sector 
developments 
 

Communication skills 
 

Interpersonal skills 
 

Ability to work independently 
 

Active Listener 
 

Strong analytical & problem solving skills 
 

Open & adaptable to changes 
 

Innovative 
 

Organization skills 
 

Pay thorough & acute attention to details 
 

Fast learner 
 

Team player 
 

Extroversion (E) 
 

Introversion (I) 
 

Sensing (S) 
 

Intuition (N) 
 

Thinking (T) 
 

Feeling (F) 
 

Judging (J) 
 

Perceiving (P) 
 

ACM SIGSOFT Software Engineering Notes Page 5 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



thinkers (Ts) are not attuned to the user’s feelings. Therefore, when 
appointing system analysts, it is preferable to look for EFs, which 
are indicated as highly desirable characteristics for system analysts 
in Figure 1. 

3.2 Software Design 
Software designers should have the ability to see the big picture. 
They should be able to isolate relevant items from large quantities 
of fuzzy and imprecise data, which require the intuition to discern 
patterns. Naturally, designers should be intuitive, as those who are 
imaginative and innovative thrive at designing, especially in com-
parison to their fact-oriented, black-and-white sensing counter-

parts. Software designers perform a wide range of tasks, which 
include prototyping, elaborating processing functions, and defining 
inputs and outputs. The first part of the design stage may require 
characteristics similar to those needed for analysis, as designing 
involves team discussions and interaction with the user. As de-
picted in Figure 2, intuition and thinking characteristics are highly 
desirable for software designers, whereas feeling is only somewhat 
desirable. The ability to be intuitive (N) is paramount, also impor-
tant is the capacity to predict how the users will feel about the de-
sign. Furthermore, a combination of judgers (J) and perceivers (P) 
would ensure that the best, rather than the first, design solution is 
found. 

 
Figure 2. Mapping software designers and their skills to personality characteristics [22] 

 

3.3 Programming 
Programming involves translating a refined version of the design 
into programs. This phase entails the identification of control 
structures, relevant variables and data structures, as well as a de-
tailed understanding of the syntax and specifics of a programming 
language. Programmers need to follow an iterative stepwise re-
finement process that is mostly top-down, breadth first. Thus, pro-
grammers should attend to details and keep a logical and analytical 
thinking style. 

The thinking dimension of the MBTI describes the way in which 
someone makes logical decisions. The problem of interpreting and 
giving meaning to variables may be a headache especially for feel-
ing types rather than for detached analytical, thinking types, sug-
gesting that the programming stage is more suitable for thinkers 
(T). Moreover, programming tasks, such as determining the details 
of module logic, establishing file layout, and coding programs de-
mand little interpersonal contact and reveal the programmer’s work 
life as essentially a solitary one. 

Personality Charac-
teristics 

 

Soft Skills Requirements 
 

Software Designer Job Requirements 
 

Having the ability to craft scenarios, storyboards, informa-
tion architectures, features and interfaces 

Collaborating closely with managment, engineers and 
fellow Designers to evaluate and iterate on ideas and 
designs 

Prototyping user experience and design ideas 

Keeping up to date with technical and industry sector 
developments 

Understanding business opportunities and assisting pro-
ject team with respect to architecture of the design solution 

Creating an architectural design with the necessary 
specifications for the hardware, software, and data 

Working closely with system users to ensure that 
implementation meets customer requirements and is 
aligned to the system’s technical architecture 

Developing, documenting and revising system design 
procedures 

Participating in testing and evaluating the systems 
functionality to ensure successful integration 

Determining hardware, software and network requirements 
of the software system 

Assisting systems analyses, costing and bidding activities 

Communication skills 
 

Interpersonal skills 
 

Ability to work independently 
 

Active Listener 
 

Strong analytical & problem solving skills 
 

Open & adaptable to changes 
 

Innovative 
 

Organization skills 
 

Pay thorough & acute attention to details 
 

Fast learner 
 

Team player 
 

Extroversion (E) 
 

Introversion (I) 
 

Sensing (S) 
 

Intuition (N) 
 

Thinking (T) 
 

Feeling (F) 
 

Judging (J) 
 

Perceiving (P) 
 

ACM SIGSOFT Software Engineering Notes Page 6 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



Programming is an activity that demands logical, impersonal anal-
ysis. As shown in Figure 3, programmers working with the specifi-
cations from designers need to be logical (Thinkers), pay attention 
to details (Sensing), and have the capacity to work independently 

(Introverts). They may sometimes program in pairs or even within 
a team, but the core of programming requires the ability to concen-
trate and work alone for many hours. Given these characteristics, it 
is not surprising that so many software engineers are ISTs. 

 
Figure 3. Mapping programmers and their skills to personality characteristics [22] 

 

3.4 Testing 
Testing involves finding defects in software. The testing stage is 
not the first time that defects are found; they can emerge in system 
analysis and design phases. But the main focus of testing is to find 
as many defects as possible, and there are several techniques to 
make testing more effective. 

First, each module is isolated from the other components in the 
system and tested individually. Such testing, known as unit testing, 
verifies that a module functions properly with the various input 
expected (and unexpected!) based on the module’s specification. 
After collections of modules have been unit-tested, the next step is 
to ensure the interfaces among them are well-defined; this is called 
integration testing. Finally system testing is the process of verify-
ing and validating whether the whole software works properly. 

Testing strategies are neither random nor haphazard, rather they 
should be approached in a methodical and systematic manner. Af-
ter a defect is detected, debugging can be a frustrating and emo-
tionally challenging activity that may lead software engineers to 
restructure their thinking and decisions.  

Testing requires attention to details, and is often performed by 
individuals working independently and the pressure to meet dead-
lines and deliver the product is enormous. Thus, precision (Sens-
ing) and order (Judging) characteristics are highly desirable. The 
process of testing demands a great amount of persistence, especial-
ly the task of choosing from a wide range of possibilities and keep-
ing an incredible degree of attention to detail. In theory, sensing 
(S) and judging (J) people would be more successful in the testing 
phase, as illustrated in Figure 4. 

Personality Charac-
teristics 

 

Soft Skills Requirements 
 

Software Programmer Job Requirements 

Participates in development efforts, elaborates and docu-
ments all business-related applications 

Analyzes business requirements for system subcompo-
nents and prepare detailed programming specifications for 
assigned system applications 

Formulates test cases to test application software in de-
velopment, to ensure a program’s functionality matches its 
specification’s business requirements, and to ensure the 
company’s programming standards are followed 

Analyzes technical specifications, builds and implements 
functionally accurate and modular application programs 
according to approved design specifications 

Coordinates programming tasks, team members, and 
projects within the department 

Determines forms, procedures, and other documentation 
needed for installation and maintenance of application 
programs 
 

Translates detailed flow charts into coded machine instruc-
tions and conferring with technical personnel in planning 
programs 
 

Selects and incorporates available software programs 

Communication skills 
 

Interpersonal skills 
 

Ability to work independently 
 

Active Listener 
 

Strong analytical & problem solving skills 
 

Open & adaptable to changes 
 

Innovative 
 

Organization skills 
 

Pay thorough & acute attention to details 
 

Fast learner 
 

Team player 
 

Extroversion (E) 
 

Introversion (I) 
 

Sensing (S) 
 

Intuition (N) 
 

Thinking (T) 
 

Feeling (F) 
 

Judging (J) 
 

Perceiving (P) 
 

ACM SIGSOFT Software Engineering Notes Page 7 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



 
Figure 4. Mapping testers and their skills to personality characteristics [22] 

 

3.5 Maintenance 
Software is normally subject to continual change after it is written 
and while it is operational, thus indicating the necessity of main-
taining an evolving system. It has been observed that projects in-
volving research and state-of-the-art development tend to attract 
more intuitive people, whereas those having tasks concerned with 
maintaining and enhancing software systems tend to attract more 
sensing types, who tend to be practical, realistic, and observant. 

In general, a sensing (S) person prefers to perform a task in a par-
ticular way because it has proven to be successful in the past. Con-
versely, the intuitive (N) person prefers to perform the task in 
totally different way because it has never been done that manner 
before. Thus, intuitives (Ns) are likely to be bored with the incre-
mental improvements and small fixes that software maintenance 
entails, they put more emphasis on new projects. On the other 
hand, sensing (S) people enjoy jobs that require the use of well-
learned knowledge, rather than the development of new solutions; 

also they are very good observers and focus on details. Intuitives 
(Ns) are creative and enjoy abstract symbolic relations, which in-
volves finding patterns rather than dealing with details, they like to 
create new knowledge rather than applying existing techniques. 
Maintenance compels a thorough understanding of the software 
system, especially in terms of how one part can affect the other, 
and sensing (S) people would excel at maintenance because they 
like to figure out how things work. 

Perceivers (Ps) like to explore every possibility, and consequently, 
they have difficulty making decisions, whereas judgers (Js) seek 
closure. Perceivers should also enjoy maintenance because they are 
more open to changes and adaptations, and they would be more 
sympathetic with the constant changes requested by users. The 
problem-solving ability and hands-on approach of SPs is an asset 
for maintenance because they like to solve practical problems and 
would enjoy the challenge of fixing programs and systems. Figure 
5 displays these relationships, highlighting the qualities of software 
maintainers. 

Personality Charac-
teristics 

 

Soft Skills Requirements 
 

SoftwareTester Job Requirements 

Coordinates necessary testing resources to ensure comple-
tion by deadlines 

Gathers test requirements and producing test specifica-
tions 

Performs manual execution of tests, recording of results, 
investigation and logging of faults 

Manages and supports the team in creating reusable test 
assets for both manual and automated test scripts 

Demonstrates ability to define and implement medium to 
large scale test plans and strategies according to quality 
objectives, project timelines and resources 

Manages defects including the identification, logging, 
tracking, triaging, and verification of issues 

Identifies and mitigates business and technical risks in the 
development and execution of the test strategy 

Does analysis and evaluation, documentation and commu-
nication of testing progress for stakeholders 

Ensures test process, methodologies and tools are applied 
appropriately and that test phase entry/exit criteria are 
agreed to by stakeholders and applied by the test team 

Maintains relevant test results databases 

Communicates and negotiates testing timelines, budget, 
staffing, scope and critical milestones with project manag-
ers 

Communication skills 
 

Interpersonal skills 
 

Ability to work independently 
 

Active Listener 
 

Strong analytical & problem solving skills 
 

Open & adaptable to changes 
 

Innovative 
 

Organization skills 
 

Pay thorough & acute attention to details 
 

Fast learner 
 

Team player 
 

Extroversion (E) 
 

Introversion (I) 
 

Sensing (S) 
 

Intuition (N) 
 

Thinking (T) 
 

Feeling (F) 
 

Judging (J) 
 

Perceiving (P) 
 

ACM SIGSOFT Software Engineering Notes Page 8 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



 
Figure 5. Mapping maintainers and their skills to personality characteristics [22] 
 

Figure 6 shows the five main stages of a software life cycle model 
and depicts a framework to conceptualize the points at which a 
particular personality trait could have more effect. We assume that 
system analysis, design, programming, testing, and maintenance 
are the stages often occurring in well-accepted software life cycle 
models, despite some models not consider a few of these stages or 

include other stages. Regardless of the model used, a particular 
personality dimension influences each of the five stages to some 
extent. The theory behind personality types implies that each per-
sonality type is likely to affect some phases of the software life 
cycle more than others. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
Figure 6. MBTI dimensions and the phases of a software life cycle model 

Personality Charac-
teristics 

 

Soft Skills Requirements 
 

Maintenance Engineer Job Requirements 

Provide, maintain, or update systems documentation to 
reflect new applications or enhancements to existing appli-
cations 

Provide skills transfer or assistance to junior development 
team members to improve product quality, performance, 
and to ensure standards are implemented 

Regularly coordinate or take part in discussions with users 
and system analysts in developing and maintaining appli-
cations or enhancements to meet business needs 

Contribute to process-improvement initiatives, especially 
with regard to programming and IT 

Manage and support the maintenance of systems devel-
oped in-house as directed by the system Analyst or the 
Manager, system development, including ‘trouble-
shooting’, reporting problems and recommending, design-
ing, and implementing sound solutions 

Comply with mandated policies and procedures and contri-
bute in procedural improvements 

Coordinate system integration testing and participate in 
user acceptance testing 

Be willing to learn new technologies, and keep on top of 
emerging trends in application development, and have an 
open mind to considering different approaches to solving 
technical problems 

Communication skills 
 

Interpersonal skills 
 

Ability to work independently 
 

Active Listener 
 

Strong analytical & problem solving skills 
 

Open & adaptable to changes 
 

Innovative 
 

Organization skills 
 

Pay thorough & acute attention to details 
 

Fast learner 
 

Team player 
 

Extroversion (E) 
 

Introversion (I) 
 

Sensing (S) 
 

Intuition (N) 
 

Thinking (T) 
 

Feeling (F) 
 

Judging (J) 
 

Perceiving (P) 
 

   System  
   Analysis 

 
   Design 
 
  

  Programming 
 

 
  Testing 
 

 
   Maintenance 
 

E-F 

N-T 

I-S-T 

S-J 

S-P 

ACM SIGSOFT Software Engineering Notes Page 9 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



 
The personality traits that appear most relevant to each stage are 
portrayed in Figure 6 and the rationale for each selection was pre-
viously explained. These results are based on the MBTI theory and 
the general empirical data collected for this work. Specifically, the 
figure has been developed by relating the aspects of the personality 
theory to the tasks defining each stages of the software life cycle 
model. Overall, the table describes the potential impact of perso-
nality types on the software life cycle. 

4. Final Remarks 
It is common sense to state that the production of any software 
involves a human element, at least to some extent. People have 
different personality traits, and the way they perceive, plan, and 
execute any activity is influenced by these traits. Most of the time, 
software development is a product of teamwork involving several 
people performing various tasks. The success and failure stories of 
software projects reveal the human factor as one of vital impor-
tance. According to psychology, not everybody can excel at all 
kinds of tasks. Thus better results are achieved if people with par-
ticular personality traits are assigned to different aspects of a 
project, especially the roles best suited to their ability. 

In software engineering, human factors are usually overlooked 
because the relationship between software production and perso-
nality types is extremely complex and challenging to investigate. 
Nevertheless, it has been worthwhile studying a possible relation-
ship between the engineering of software and personality types. 
This research addresses questions of great importance for software 
engineers, including the profiles of professional community mem-
bers, as well as the relationship between software development 
skills and personality types. It does not offer generic, one-size-fits-
all advice though. The MBTI indicates preferences only. Most 
careers have more of the types that in theory should find that career 
attractive. However, all types can be found in all careers. Employ-
ment and life decisions should not be based on the results of any 
single assessment, such as the MBTI instrument.  

Due to the diverse nature of software engineering, it is time to rec-
ognize that there is no single personality type that fits the wide 
spectrum of tasks that encompass the engineering of software. Al-
though a predominant type may be found within the software engi-
neering community, it is important to remember that all types are 
likely to be represented within that group. For example, 80% of 
software engineers have preference for thinking type. People of 
this type may be attracted to this occupation because it requires 
logical thinking. However, each of the other dimensions can also 
participating in the engineering of software and may be just as suc-
cessful and satisfied in this career field as the more common think-
ers.  

Under-represented types are likely attracted to the career for other 
reasons and may contribute in unique ways. Most people are able 
to find or create a rewarding niche for themselves in a profession 
with the predominance of particular types, by aligning their perso-
nality with their job duties and thus achieving satisfaction in a job 
where they can respect their preferences and feel comfortable with 
themselves and their roles. Indeed, a broad range of personality 
characteristics is beneficial to software engineering. It may be ad-

vantageous for software organizations to consider the strengths of 
their employees when assigning tasks in a project. 

Our study only considers the traditional stages of system analysis, 
software design, programming, testing, and maintenance, so it 
omits the different characteristics that may be more appropriate for 
other software occupations, such as project manager, trouble shoo-
ter, helpdesk personnel, database administrator, and so forth. 
Moreover, certain characteristics may be less desirable now than 
they were in the past. With the diminishing demand for the tradi-
tional lonely programmers and the increasing need for people who 
can communicate well at all levels of an organization, the software 
industry requires a much lower proportion of introverts and think-
ers than it needed in the past. Conversely, the software industry 
will employ a higher proportion of most of the under-represented 
personality types. Thus, the software industry cannot afford to lose 
potential professionals who may come from a diverse group of 
people [26]. 

Nowadays there are very few solo performers in most software 
organizations; people have to work collectively in teams of some 
sort, consequently, there should be a certain amount of diversity on 
the teams in terms of psychological type. In this case, better soft-
ware will result from the combined efforts of a variety of mental 
processes, experience, and values. Therefore all types are impor-
tant to software engineering, as every type can make a contribution 
towards solving the so-called software crisis. More than ever, 
software engineering needs diversity of traits. 

Finally, it takes variety to conquer complexity. Putting it in soft-
ware context, diversity of skills and personalities are needed to 
solve the myriad of problems related to software development and 
maintenance. Organizations would benefit from a conscious at-
tempt to diversify the styles or personalities of their software engi-
neers, since strong teams are the ones made up of diverse 
perspectives. Exposure to software psychology can help this diver-
sity to flourish. This variety will enable us to bring a richness of 
talents and points of view to bear upon the inherent complexity of 
software systems. 

References 
[1] S. Nash (1999): Turning Team Performance Inside Out, Davies-

Black Publishing, Mountain View, CA. 
[2]  I.B. Myers, M.H McCaulley, N.L. Quenk, and A.L. Hammer 

(1998): MBTI Manual: A Guide to the Development and Use of the 
Myers-Briggs Type Indicator, Consulting Psychologists Press, 
Mountain View, CA. 

[3]  N.A. Schaubhut and R.C. Thompson (2008): MBTI Type Tables 
for Occupations, Consulting Psychologists Press, Mountain View, 
CA. 

[4]  P.D. Tieger and B. Barron (2007): Do What You Are, 4th

[5]  J.S. Karn and A.J. Cowling (2006): Using Ethnographic Methods 
to Carry Out Human Factors Research in Software Engineering. 
Behavior Research Methods, vol. 38, n. 3, pp. 495-503. 

 ed., Little 
Brown and Company, New York, NY. 

[6]  M.T. Russell and D.L. Karol (1994): 16PF Fifth Edition Adminis-
trator’s Manual, Institute for Personality and Ability Testing. 

[7]  S.T. Acuna, N. Juristo, and A.M. Moreno (2006): Emphasizing 
Human Capabilities in Software Development. IEEE Software, vol. 
23, n. 2, pp. 94-101. 

ACM SIGSOFT Software Engineering Notes Page 10 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111



[8]  R. Feldt, R. Torkar, L. Angelis and M. Samuelsson (2008): To-
wards Individualized Software Engineering: Empirical Studies 
Should Collect Psychometrics. Workshop on Cooperative and Hu-
man Aspect of Software Engineering (CHASE), 2008, Leipzig, 
Germany, ACM, pp. 49-52. 

[9]  T. Buchanan, J.A. Johnson and L.R. Goldberg (2005): Implement-
ing a Five-Factor Personality Inventory for Use on the Internet. Eu-
ropean Journal of Psychological Assessment, vol. 21, n. 2, pp. 116-
128. 

[10]  J.E. Hannay, E. Arisholm, H. Engvik, and D.I.K. Sjoberg (2010): 
Effects of Personality on Pair Programming. IEEE Transactions on 
Software Engineering, vol. 36, n. 1, pp. 61-80. 

[11]  L.R. Goldberg (1990): An Alternative Description of Personality: 
The Big-Five Factor Structure. Journal of Personality and Social 
Psychology, vol. 59, pp. 1216-1229. 

[12]  D. Shneiderman (1980): Software Psychology: Human Factors in 
Computer and Information Systems, Winthrop Publishers, Cam-
bridge, MA. 

[13]  D.B. Walz and J.L. Wynekoop (1997): Identifying and Cultivating 
Exceptional Software Developers. Journal of Computer Informa-
tion Systems, vol. 37, n. 4, pp. 82-87. 

[14]  E.A. Turley and J.M. Bieman (1995): Competencies of Exceptional 
and Non-Exceptional Software Engineers. J. of Systems and Soft-
ware, vol. 28, n. 1, pp. 19-38. 

[15]  N.L. Kerth, J. Coplien, and J. Weinberg (1998): Call for the Ra-
tional Use of Personality Indicators. IEEE Computer, vol. 31, n. 1, 
pp. 146-147. 

[16]  D.J. Pittenger (1993): The Utility of the Myers-Briggs Type Indica-
tor. Review of Educational Research, vol. 63, n. 4, pp. 467-488. 

[17]  E. Kaluzniacky (2004): Managing Psychological Factors in Infor-
mation Systems Work, Information Science Publishing, London. 

[18]  L.T. Hardiman (1997): Personality Types and Software Engineers. 
IEEE Computer, vol. 30, n.10, pp. 10. 

[19]  L.F. Capretz (2003): Personality Types in Software Engineering. 
International Journal of Human-Computer Studies, vol. 58, n. 2, 
pp. 207-214. 

[20]  C. Bishop-Clark (1995): Cognitive Style, Personality, and Comput-
er Programming. Computers in Human Behaviour, vol. 11, n. 2, pp. 
241-260. 

[21]  G.J. Teague (1998): Personality Type, Career Preference and Im-
plications for Computer Science Recruitment and Teaching. Pro-
ceedings of the Third Australian Conference on Computer Science 
Education, 1998, ACM, pp. 155-163. 

[22]  L.F. Capretz and F. Ahmed (2010): Making Sense of Software 
Development and Personality Types. IEEE IT Professional, vol. 12, 
n. 1, pp. 6-13. 

[23]  C.R.B. DeSouza, H. Sharp, J. Singer, L.Cheng, and G. Venolia 
(2009): Cooperative and Human Aspects of Software Engineering. 
IEEE Software, vol. 26, n. 6, pp. 17-19. 

[24]  G.M. Weinberg (1998): The Psychology of Computer Program-
ming, 2nd Edition, Van Nostrand Reinhold, New York, NY. 

[25]  J. Dolney (2009): Designing Job Descriptions for Software Devel-
opment. In Information Systems Development Challenges in Prac-
tice, Theory and Education, ed., C. Barry. Springer, pp. 447-460. 

[26]  L.F. Capretz (2002): Implications of MBTI in Software Engineer-
ing Education. ACM SIGCSE Bulletin, vol. 34, n. 4, pp. 134-137. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Luiz Fernando Capretz has almost 30 years 
of international experience in the software 
engineering field as a practitioner, manager 
and educator. Having worked in Brazil, Ar-
gentina, U.K., Japan, Italy, and the United 
Arab Emirates, he is currently an Associate 
Professor and the Director of the Software 
Engineering Program at the University of 
Western Ontario, Canada. He has published 

over 100 peer-reviewed research papers on software engineering in 
leading international journals and conference proceedings, and he 
has co-authored two books in the area. His present research inter-
ests include software engineering (SE), human factors in SE, soft-
ware estimation, software product lines, and software engineering 
education. Dr. Capretz received his Ph.D. in Computing Science 
from the University of Newcastle upon Tyne (U.K.), his M.Sc. in 
Applied Computing from the National Institute for Space Research 
(INPE, Brazil), and his B.Sc. in Computer Science from State Uni-
versity of Campinas (UNICAMP, Brazil). He is an IEEE senior 
member, ACM distinguished member, MBTI certified practitioner, 
Professional Engineer in Ontario (Canada), and he can be con-
tacted at lcapretz@eng.uwo.ca. 
 

Faheem Ahmed received his M.E.Sc. (2004) 
and Ph.D. (2006) in Electrical Engineering 
from the University of Western Ontario 
(Canada). Currently he is an assistant pro-
fessor at the College of Information Tech-
nology, United Arab Emirates University, 
Al Ain, United Arab Emirates. Ahmed has 
several years of industrial experience, hold-
ing various technical positions in software 

development organizations. During his professional career, he has 
been actively involved in the entire life cycle of the software de-
velopment process, including requirements management, system 
analysis and design, software development, testing, delivery and 
maintenance. Ahmed has authored and co-authored many peer-
reviewed research articles in leading journals and conference pro-
ceedings in the area of software engineering, and he has co-
authored the book, Software Product Lines: A Process Assessment 
Methodology – A Practitioner’s Approach, published by VDM-
Verlag. Ahmed’s current research interests are software product 
lines, software process modelling, software process assessment, 
and empirical software engineering. He is a member of IEEE, and 
he can be reached at f.ahmed@uaeu.ac.ae. 
 

ACM SIGSOFT Software Engineering Notes Page 11 March 2010 Volume 35 Number 2

DOI: 10.1145/1734103.1734111 http://doi.acm.org/10.1145/10.1145/1734103.1734111

mailto:lcapretz@eng.uwo.ca�
mailto:f.ahmed@uaeu.ac.ae�

	3.3 Programming
	3.4 Testing
	3.5 Maintenance
	E-F
	Design

	N-T
	I-S-T
	S-J
	Testing

	S-P



