
Information and Software Technology 115 (2019) 44–57

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Automatic recall of software lessons learned for software project managers

Tamer Mohamed Abdellatif ∗ , Luiz Fernando Capretz , Danny Ho

Department of Electrical & Computer Engineering, Western University, 1151 Richmond Street, London, Ontario N6A 5B9, Canada

a r t i c l e i n f o

Keywords:

Software lessons learned recall

Software project management

Knowledge management

Textual information retrieval models

Topic modeling application

Information extraction

a b s t r a c t

Context: Lessons learned (LL) records constitute the software organization memory of successes and failures. LL

are recorded within the organization repository for future reference to optimize planning, gain experience, and

elevate market competitiveness. However, manually searching this repository is a daunting task, so it is often

disregarded. This can lead to the repetition of previous mistakes or even missing potential opportunities. This, in

turn, can negatively affect the organization’s profitability and competitiveness.

Objective: We aim to present a novel solution that provides an automatic process to recall relevant LL and to

push those LL to project managers. This will dramatically save the time and effort of manually searching the

unstructured LL repositories and thus encourage the LL exploitation.

Method: We exploit existing project artifacts to build the LL search queries on-the-fly in order to bypass the

tedious manual searching. An empirical case study is conducted to build the automatic LL recall solution and

evaluate its effectiveness. The study employs three of the most popular information retrieval models to construct

the solution. Furthermore, a real-world dataset of 212 LL records from 30 different software projects is used for

validation. Top-k and MAP well-known accuracy metrics are used as well.

Results: Our case study results confirm the effectiveness of the automatic LL recall solution. Also, the results prove

the success of using existing project artifacts to dynamically build the search query string. This is supported by a

discerning accuracy of about 70% achieved in the case of top-k.

Conclusion: The automatic LL recall solution is valid with high accuracy. It will eliminate the effort needed

to manually search the LL repository. Therefore, this will positively encourage project managers to reuse the

available LL knowledge – which will avoid old pitfalls and unleash hidden business opportunities.

1

w

m

a

d

m

h

u

S

r

L

t

g

t

I

(

o

t

s

L

h

t

c

i

i

b

p

s

o

i

t

n

h

R

A

0

. Introduction

The dynamic nature of the software industry makes it natural for soft-
are practitioners to face a lot of crucial decisions. Those decisions are
ade during the different stages of the software development lifecycle

nd on different organizational hierarchical tiers. Decisions vary from
evelopers’ implementation decisions, passing through project manage-
ent, portfolio and release management decisions, and finally reaching
igh management decisions. The decisions could be either successful or
nsuccessful, leading to success stories or failure stories, respectively.
ome organizations record those experiences as lessons learned (LL)
ecords and keep them within the organization’s repository [1] . Thus,
L repositories can be considered the organization’s memory.

The LL could be conceived of as an important part of the organiza-
ion’s memory and accumulative experience and knowledge. LL could be
uidelines, handling scenarios or tips related to what went wrong (mis-
akes) or what went right (opportunities) in certain situations or events.
n addition, LL could be a success that the organization wants to repeat,
∗ Corresponding author.

E-mail addresses: tmohame7@uwo.ca (T.M. Abdellatif), lcapretz@uwo.ca

L.F. Capretz), danny@nfa-estimation.com (D. Ho).

b

T

t

a

t

ttps://doi.org/10.1016/j.infsof.2019.07.006

eceived 23 March 2018; Received in revised form 29 June 2019; Accepted 24 July

vailable online 25 July 2019

950-5849/© 2019 Elsevier B.V. All rights reserved.
r a failure that the organization wants to avoid in the future. The need
o preserve the organization’s knowledge, which could be lost due to
everal reasons, such as expert turnover, calls for the adoption of these
L repositories. The LL concept is evolving, and multiple organizations
ave their own LL repositories [1] .

It is valuable to highlight that LL differ from best practices. In con-
rast to the best practices that capture only successful scenarios, the LL
an capture both success and failure scenarios. Also, best practices are
deas that are recommended on the industrial scope and could be local-
zed to the organization, while LL are organization-oriented and could
e globalized to the industrial scope.

LL representation should give information about the problem or op-
ortunity and how to apply the LL recommendations. This information
hould include the context, the problem/opportunity, and the LL rec-
mmendations. The context field describes the situation where the LL
s applicable. The problem/opportunity field clarifies the need to apply
he LL actions in order to avoid a problem or to leverage an opportu-
ity. Finally, the recommendations field describes the actions that can
e followed in order to avoid a problem or to leverage an opportunity.
able 1 shows an LL example in a software company. In this example,
he development team should be at the customer premises, so issuing
n entry visa for the team can cause a planning issue. For this reason,
he LL or the organization recommendation is to plan for this ahead as
2019

https://doi.org/10.1016/j.infsof.2019.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.07.006&domain=pdf
mailto:tmohame7@uwo.ca
mailto:lcapretz@uwo.ca
mailto:danny@nfa-estimation.com
https://doi.org/10.1016/j.infsof.2019.07.006

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

Table 1

Lessons learned example.

Attribute Value

Context One of our project constraints is to have the development team onsite (at the customer’s site), and our customer is in X country.

Problem/Opportunity Issuing a visitor visa for our team members takes a lot of time especially during high seasons.

Recommendations Try to make your staffing plan updated and covering 1 or 2 months ahead. Try to start the visa issuing process, for any member, 4–5

weeks ahead of the start date of the planned task at the customer’s site. Try to seek your customer’s support in getting a long-term

visa (example: 6 months) with multiple entries.

Note: Some sensitive information regarding customer’s identity and country was updated or removed due to the non-disclosure agreement.

s

t

F

o

o

e

m

c

k

t

A

r

i

r

g

l

f

r

k

s

i

c

t

m

a

v

a

i

e

r

r

b

t

I

L

t

u

p

b

f

o

W

c

t

p

e

T

s

o

t

s

d

p

t

r

t

t

p

A

r

c

m

r

t

t

e

c

m

t

f

a

i

c

m

i

t

s

t

s

c

g

t

l

t

c

S

r

v

w

hown in the LL recommendation section. It is important to highlight
hat the LL representation can differ from one organization to another.
or example, the LL record can be described as a flat text, as in the case
f the dataset employed in this paper, without using specific attributes
r fields.

The problem is that those LL repositories are rarely reviewed or could
ven be abandoned [2,3] . This could lead to the repetition of the same
istakes, and could waste the opportunity to benefit from previous suc-

ess stories. Disregarding LL repositories could be due to the lack of
nowledge of relevant LL by project managers (PMs) or due to the need
o continuously remind them of the existence of new relevant LL [2] .
lthough, this can be overcome by manually searching for relevant LL
ecords by PMs, this is effort and time costly, especially when searching
n unstructured information. Also, there could be other reasons for dis-
egarding LL repositories, such as time limitation [2] . Dulgerler and Ne-
ri [3] underlined that the current traditional LL repositories are over-
ooked by practitioners. The authors claimed that one of the reasons
or this overlooking is attributed to the difficulty of searching this LL
epository for relevant LL. This is the same reason for neglecting the LL
nowledge from NASA LL system. As reported by Li [4] , one of the rea-
ons for overlooking NASA LL system by practitioners and PMs is that it
s hard to manually query the system for relevant records [4] .

The primary objective of this research is to leverage the benefits that
an be gained from the organization’s LL knowledge. We believe that
his can be achieved by both facilitating the retrieval of relevant infor-
ation and boosting knowledge about relevant and useful LL. We aim to

chieve this by employing information retrieval (IR) techniques to pro-
ide adequate LL retrieval classifiers. To the best of our knowledge, we
re the first to employ IR techniques in mining the software LL repos-
tory; this is consistent with the literature survey conducted by Chen
t al. [5] .

Most of the current research work regarding the improvement of LL
etrieval, as per our knowledge, relies on techniques such as case-based
easoning. Case-based reasoning depends on describing the LL in a case-
ased question-answer format which, in turn, requires reformation of
he existing LL repository records. This is not the case for our proposed
R-based classifiers, as there is no reformation needed for the LL records.

In addition, we provide a technique to automatically recall relevant
L for PMs. Our proposed solution is automatic as it dynamically facili-
ates the search of the proposed LL classifiers without the need for man-
al involvement by PMs. This is achieved by linking different software
roject management artifacts to yield useful insights. This is achieved
y constructing the search queries from the already existing project arti-
acts, including project management issues and risks, instead of relying
n manual search, which has proven to be a waste of time and effort.
e have found that project management issue records and risk records

an be effectively used as search queries to recall LL records relevant to
he project at hand.

We have performed an empirical case study on real industrial
rojects’ datasets in order to evaluate our proposed solution, that is,
mploying IR models to recall LL that are relevant to these projects.
hree of the most popular IR models have been compared in our case
tudy. In addition, we have constructed 88 LL classifiers using a variety
f parameter configurations for the IR models considered to investigate
45
he impact of different classifier configurations on the performance re-
ults. Those different classifiers have been benchmarked using the same
ataset and performance measurements to guarantee a neutralized com-
arison. We have found that the classifier’s performance is very sensitive
o the configurations. In terms of LL, the relevance of the retrieved LL
ecords is affected by the different configurations. Also, we have found
hat some of the employed IR models outperform other models within
he context of our dataset and LL retrieval improvement problem.

As described, most of the available research work regarding the im-
rovement of LL awareness relies on case-based reasoning techniques.
s mentioned, these techniques require reformatting the existing LL
epositories, which is not a practical solution for practitioners, as it ne-
essitates extra effort. In this paper, we propose the employment of IR
odels in order to improve the awareness of the existing relevant LL

ecords. In our solution, we aim to automatically recall the LL relevant
o the in hand project and push them to the PM. In our research, we try
o answer three main research questions:

RQ1: Can we automatically, rather than manually, recall and push
the relevant LL to PMs using IR-based LL classifiers?

RQ2: Can project artifacts be used to construct on-the-fly queries to
recall LL records relevant to the project in hand?

RQ3: Do the configurations of the LL classifiers have an impact on
the performance results?

In order to answer these research questions, we have conducted an
mpirical case study. In this study, as will be described in detail, we
onstructed multiple LL classifiers based on different techniques using
ultiple parameter configurations. We aim to get a positive answer to

he first research question by achieving convenient performance results
rom the classifiers considered.

Also, in our case study, we used two types of the available project
rtifact records, issue records and project risk register records, to dynam-
cally construct the query string on-the-fly and search the constructed
lassifiers. It is important to clarify that by issue records we mean project
anagement issues, like cost management issues and team management

ssues, not development issues or bugs.
By using the existing artifacts, we bypassed the need of the users

o manually construct the query string, and we provided an automatic
earch process. The relevant accuracy, or the performance results, of
he lists retrieved by the LL classifiers should give us an answer to the
econd research question.

In addition, the analysis of the results of the different configured
lassifiers provides an answer to the third research question.

This paper is organized as follows: In Section 2 , we provide a back-
round regarding IR techniques and demonstrate the state-of-the-art and
he related work of software LL retrieval. We illustrate our proposed so-
ution and the case study methodology in Section 3 . Also, in this sec-
ion, we describe in detail how we validated our proposed solution by
onducting an empirical case study, then we demonstrate our results in
ection 4 . We discuss our findings and link them together to answer our
esearch questions in Section 5 . Section 6 defines our research threats to
alidity. We conclude our research work and propose potential future
ork in Section 7 .

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

2

a

2

o

u

r

t

[

i

w

a

q

r

a

a

a

s

t

r

r

p

b

p

o

c

s

a

m

W

s

I

2

d

d

w

v

v

e

v

e

i

c

t

u

p

t

s

t

t

a

c

2

t

i

d

t

m

[

v

t

T

t

o

n

v

o

t

2

e

c

o

A

t

v

w

e

g

[

2

t

a

l
. Background

Detailed in this section is the basic background regarding IR models
nd software LL recall literature and state-of-the-art.

.1. Information retrieval models

IR refers to the process of finding a relevant document or information
f interest within a collection of documents or artifacts. In this paper, we
se the term information retrieval to refer to text IR in mining software
epositories. Usually the information within the searched collection, in
he case of IR, is in an unstructured format (i.e., natural language text)
6] . The input to the IR classifier is a query, or question, and the result
s a list of the documents relevant to this query [7] . For example, the
eb search engines, such as Google, can be considered as one of the IR
pplications where the user provides a query, describing the need or the
uestion, and the search engine tries to answer the user’s question by
eplying with a list of the most relevant web content.

There are multiple IR models that can be used to construct classifiers,
nd they vary based on their theories, such as simple keyword matching
nd statistics. There are two main factors which affect the operation
nd the accuracy of the IR classifier. The first factor is the preprocessing
teps, which are employed to process the text inputs before forwarding
hem to the IR classifier. In our case, the text inputs include both the LL
ecords, which are used to construct the IR classifier, and the issue/risk
ecords, which are used to query the constructed classifier. Different
reprocessing steps from the natural language processing literature can
e used. Later in Section 3.2.1 , we provide some details regarding the
reprocessing steps used.

The IR model parameters are the second factor. Each of the IR models
r techniques has its own specific parameters which drive the classifier
onstruction and operation. Examples of these parameters can be the
imilarity , the method to calculate the document relevance to the query,
nd the term weight .

In the following subsections, we give an introduction to three of the
ost popular IR models from the literature which we used in our study.
e aimed to consider both algebraic and probabilistic models in our

tudy. These models are: Vector Space Model (VSM), Latent Semantic
ndexing (LSI), and the Latent Dirichlet Allocation (LDA).

.1.1. Vector space model

The VSM is an algebraic IR model. VSM relies on representing the
ocuments’ corpus in a matrix format of terms versus documents (t x
 matrix). In this matrix format, each term in the corpus vocabulary,
here the vocabulary contains all the different terms, has a term weight
alue corresponding to each document in the corpus. The row dimension
alue of the matrix represents the number of the different terms, where
ach row represents a term. On the other hand, the column dimension
alue represents the number of the various documents in the corpus. In
ach term row, the term has a non-zero weight value if the term exists
n the corresponding document, and a zero value otherwise. The term
an represent a single word and its weight can be calculated using a
erm weighting method. In order to decide if two documents, or a doc-
ment from the corpus and a query, are relevant, the VSM model com-
ares these two documents’ columns or vectors from the terms versus
he documents’ matrix. This comparison is achieved using a configured
imilarity method which can be, for example, the inner product of the
wo documents’ vectors. To consider that two documents are relevant,
hey should have one or more common terms. The VSM model returns
 proportional continuous similarity value according to the number of
ommon terms between the two compared documents.

The VSM model has two main configurable parameters:

• Term weight : the term weight in a document. The basic weight
method is the Boolean method whose value is ‘1 ′ if the term appears
in the document, and ‘0 ′ otherwise. Other popular weighting meth-
ods are term frequency (tf), which is the number of times the term
46
appears in a document, and term frequency-inverse document fre-
quency (tf-idf), which is an extended version of the original tf with
the consideration of the term popularity in corpus documents [6] .
For tf-idf , the term weight for a certain document is high if it ap-
pears with high frequency in this document and, at the same time,
the term is rare and has a low frequency within the overall document
corpus.

• Similarity : the method used to calculate the similarity degree be-
tween two document vectors, or, as in our case, between a document
and a query. Popular similarity methods include cosine distance and
overlap methods [6] .

.1.2. Latent semantic indexing

The LSI model is an extension of the VSM model. Unlike VSM, LSI
akes the context or topic into consideration instead of only match-
ng the terms which can have different meanings, polysemy, within
ifferent topics. For LSI, documents sharing the same topics, even if
hey do not share the same terms, can be considered similar docu-
ents. This is very important in the case of synonymy and polysemy

7,8] . To achieve this goal, LSI employs a technique called singular
alue decomposition (SVD). SVD decomposes the term-document ma-
rix (t x d), used by VSM, into three new matrices: the term-topic or
 matrix (t x k), the diagonal eigenvalues matrix S (k x k), and the
opic-document matrix D (k x d). The k value represents the number
f topics, which is a value provided by the model user. The SVD tech-
ique works on reducing the rank of both T and D matrices to the pro-
ided k value [9] . During this decomposition, the SVD technique works
n grouping the co-occurring terms, which appear together, into one
opic.

The LSI has three parameters as follows:

• Term weight : the same as in the VSM model.
• Similarity : the same as in the VSM model.
• K or number of topics : the number of topics remaining after the SVD

reduction.

.1.3. Latent Dirichlet allocation

The LDA is a generative probabilistic model [10,11] . LDA consid-
rs the context of terms by eliciting the topics within the documents’
orpus. For the LDA model, each document can be composed of one
r more topics with a different membership degree for each topic.
lso, the topics can be constructed from one or more terms. Each

erm can belong to one or more topics with a certain membership
alue [7] .

In order to infer which topics exist in which documents, as well as
hich terms belong to which topics, LDA employs latent variable mod-

ls, such as Gibbs sampling or Bayesian inference machine learning al-
orithms [11] , in an iterative inference process.

LDA model has several parameters which can be listed as follows
7] :

• 𝛼: the document-topic smoothing parameter for the probability dis-
tribution.

• 𝛽: the term-topic smoothing parameter for the probability distribu-
tion.

• Similarity : the same as in the VSM model.
• K or number of topics : the number of topics to be created by the LDA

model.
• Number of iterations : the number of iterations considered for the in-

ference process.

.2. Related work

The literature review conducted by Abdellatif et al. [12] has shown
hat much of the available research work that tackles software project
rtifacts analysis serves the needs of developers, while it merely provides
ip-service to managers. This has been the first trigger for our research,

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

w

g

p

t

m

d

o

b

h

h

m

v

n

m

a

f

i

i

b

o

p

t

h

f

b

e

r

f

S

q

o

o

q

t

p

t

s

o

a

w

fi

f

o

s

t

c

f

t

d

t

p

[

h

[

t

c

f

w

[

t

Table 2

LL record sample.

Project ID Lesson learned description

Project < id > There is too much context switching amongst team members.

Since this is unavoidable due to attrition, separation, career

planning, etc., constant update to organization chart within

tools team is needed. Team members are to share domain

knowledge, back each other up as part of organization

planning.

3

e

P

3

w

q

p

g

d

s

i

f

C

v

c

E

l

b

p

i

d

h

a

t

i

d

p

h

t

s

s

3

s

m

t

r

i

l

3

n

a

e

c

t

s
hich targets managers in order to participate in closing this research
ap. Also, the literature review results have shown that only a small
ortion of the considered studies focused on domains that are related
o managers, including incident management and software effort esti-
ation, while the major part of work focused on domains that support
evelopers.

Most of the available LL research focuses on either the LL process
r the implementation of a standalone LL repository system [1] . To the
est of our knowledge, only a small portion of the available research
as tried to facilitate the LL retrieval process.

Harrison [13] has introduced a standalone software LL system. In
is implementation, he has tried to improve the usability of the infor-
ation retrieval by providing different search options. The system pro-

ided the ability to search based on domain, keyword, or repository
avigation. However, this does not eliminate the need of the users to
anually define the search query string. Furthermore, NASA developed

n LL repository portal and allowed practitioners to search the system
or relevant LL records [14] . Yet, NASA has reported that the system
s underutilized and ineffective due to the difficulty of manual search-
ng for relevant records, which obstructed the adoption of the system
y NASA practitioners [4] . LessonFlow system [15] is another example
f a standalone portal for LL capturing and validation with search ca-
abilities. These solutions are different from our proposed solution as
hey did not address the need of manual search by users. On the other
and, our solution makes use of the existing project artifacts to search
or relevant LL.

Sary and Mackey [16] have introduced RECALL, which is a case-
ased reasoning (CBR) system. CBR has been employed to improve rel-
vant LL retrieval by users. RECALL work differs from our proposed
esearch in significant ways. First, the employed CBR technique is dif-
erent from the proposed IR techniques that are presented in this paper.
econd, the RECALL system relies on describing the LL in a case-based
uestion-answer format. This format is difficult to follow for the existing
rganizations’ LL repositories.

To the best of our knowledge, the work of Weber et al. [17] is the
nly available work that does not require users to fully construct the
uery string. They introduced an LL retrieval tool called “ALDS, ” and
hey embedded this tool in a decision-making tool called “HICAP. ” They
rovided an implementation for ALDS within the task decomposition of
he project planning phase. However, ALDS differs from our proposed
olution in multiple ways. First, ALDS employs the CBR technique, while
ur solution employs the IR technique. IR and CBR are different in some
spects; e.g., in CBR, cases are stored in a “case representation ” format,
here additional inferred knowledge can be kept to make them better
tting for reasoning and learning in new situations [18] . The second dif-

erence is related to LL similarity evaluation; ALDS relies on the indexing
f LL in a question-answer format, where users have to go through an-
wering the questions while describing their task condition. In contrast,
his limitation is not required for our solution since it relies on automati-
ally querying the LL classifiers or the search engine using data extracted
rom the project artifacts. The queries, the issue or risk records, are ex-
racted from the existing project artifacts, which are issue/risk register
ocuments. We describe our proposed methodology in more detail in
he next section.

It is worth mentioning that IR models have been used to solve several
roblems in the software engineering domain, such as bug localization
19–21] , concept location [22] , and regression tests selection [23] , but
ave not been employed to improve the LL recall as per our knowledge
5] . Thus, to the best of our knowledge, we are the first to employ IR
echniques to solve the LL recall issue within the software engineering
ontext [5] .

Moreover, the impact of the parameter configurations on the in-
ormation retrieval classifiers’ performance was studied in other soft-
are engineering domains, other than LL recall, such as bug localization

19] and equivalent requirements [24] . This was our motive to consider
he parameter configurations impact within our study.
47
. Case study methodology

In this case study, our target is to answer our research questions by
valuating the ability of our solution to recall the LL and push them to
Ms in an automatic way.

.1. Dataset collection

One of the most challenging steps for the success of our case study
as to collect the dataset needed to evaluate and answer our research
uestions. Keeping in mind the necessity of confidentiality and com-
etitiveness within the software industry, it was not an easy task to
et access to the needed dataset, especially that we targeted real in-
ustrial records. After communicating with our industrial network, we
uccessfully received the data needed from an industrial partner, which
s a large and reputable multinational software company with a work-
orce of 800 + employees. Our industrial partner is both ISO 9001 and
MMi Level 3 certified, with more than 20 years in the global IT ser-
ices domain. The company has global branches all over the world, in-
luding North America, Canada, and Arab Gulf countries, such as the
mirates, Saudi Arabia, and Kuwait. The company provides software so-
utions within seven different industries, including telecommunications,
anking, education and government sectors, besides strategic education
rograms and partnership with multiple Arab Gulf governments, includ-
ng Dubai and Qatar governments. The data provided is under a non-
isclosure agreement. According to this agreement, the dataset records
ave been made totally anonymous by removing all sensitive data, such
s customer names and project names. The collected dataset is two-fold;
he first part is the LL repository, while the second part is the project
ssues/risks register documents.

The LL repository sample provided contains 212 LL records from 30
ifferent software projects. Each LL record is represented by both the
roject’s identification (ID) number field, identifying the project which
as reported the LL, and the description field. The description field con-
ains a description of the LL and its context in a flat text format. Table 2
hows an example of an LL record.

Regarding the project issue/risk records, we have received 55 is-
ue/risk records from five different projects that are different than the
0 projects used for the LL records. Those records acted as the query
tring for our case study.

The projects are from different domain verticals, including govern-
ental, educational, and telecommunications projects. Also, the cus-

omers of these projects are from different countries. All the dataset
ecords are written in English. Tables 3 and 4 show samples of both
ssue and risk records, respectively. In addition, a summary of the col-
ected data is shown in Table 5 .

.1.1. Gold set construction

After receiving this two-part dataset (project artifacts and LL), the
ext step was to construct our gold set. In order to be able to evaluate
ny LL classifier, the gold set should contain a mapping set of each query
xamined and the relevant results expected for this query. In order to
onstruct this map, each of the provided issue/risk records was mapped
o the relevant LL records from the LL repository. As this map could be
ubjective based on the users – practitioners and PMs in our case – of

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

Table 3

Issue records sample.

Project ID Issue description

Project < id > Delay in signing requirement and design documents by client.

Project < id > There is no availability of a technical writer.

Project < id > Additional ramp up effort and constant re-clarification of roles and responsibilities due to context switching.

Project < id > Project contract is not clear and has not been signed yet.

Table 4

Risk records sample.

Project ID Risk description

Project < id > Source code is at client side with no remote access. If no appropriate backup and labelling are processed, then an issue can happen or code

loss can occur.

Project < id > If there is delay in requirement document sign off by customer as planned on < date > , this can lead to delay of schedule and can affect

milestone dates and resources travel dates.

Project < id > If roles of different stakeholders are not set clear, then this will impact the scoping and requirements sign off.

Project < id > If there is any issue in issuing an entry Visa for the team leader, then this can lead to delay of schedule and can affect milestone dates and

resources travel dates.

Table 5

Collected data summary.

Record type Number of records collected Number of source projects

Lesson learned 212 30 different projects ∗

Issue or risk (query) 55 5 different projects ∗

∗ The 30 projects from which the LL records were collected are different than

the 5 projects from which the queries were collected.

t

m

c

g

a

e

f

p

r

r

s

a

W

a

3

c

e

3

p

a

r

t

i

s

d

v

p

r

a

u

t

he retrieval model, we adopted a procedure similar to the one recom-
ended by Kitchenham et al. [25] in performing data extraction while

onducting a systematic literature review in the case of having a sin-
le main researcher. So, the initial mapping was conducted by the main
uthor, the single main researcher in our case who is a subject matter
xpert (SME). Then, a review meeting was scheduled with another SME
rom the partner software company. In the review meeting, the com-
any SME reviewed the mapping of the issues/risks to the relevant LL
ecords. In the case of disagreement, the two SMEs held discussions till
eaching consensus. After finalizing and agreeing on the whole mapping
et, it was baselined. This final mapping set was used for the evaluation
nd benchmarking of the different LL classifiers within our case study.
e summarize the gold set construction process in Fig. 1 . In addition,

n example of mapping relevant LL to a query is shown in Table 6 .
Fig. 1. Gold set const

48
.2. Case study design

The following subsections describe our case study design, in-
luding the constructed LL classifiers, and the performance metrics
mployed.

.2.1. Lessons learned classifiers

In our study, we have relied on the IR-based classifiers. We have em-
loyed three popular IR models from the literature, namely: LSI, LDA,
nd VSM. We have had to define three types of configurations: data rep-
esentation, preprocessing steps and model-based parameter configura-
ions. A summary of the parameter configurations considered is shown
n Table 7 .

Data representation configuration

Both the search query, which is formed of project artifacts (is-
ues/risks), and the LL records have been represented using their full
escription field values. We have only relied on the description field
alue as other fields, such as “title, ” were not defined for the dataset
rovided. Regarding the queries, we used the text of the issue or risk
ecord as it is, then applied to it the preprocessing steps considered. In
ddition, for our case study, each considered issue or risk record text is
sed separately to construct a query that is used to query the LL classifier
o retrieve the most relevant LL records to this query.
ruction process.

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

Table 6

Mapping relevant lessons learned to a query example.

Query Relevant lessons learned

Additional ramp up effort and constant

re-clarification of roles and responsibilities

due to context switching.

There is too much context switching amongst team members. Since this is unavoidable due to attrition,

separation, career planning, etc., constant update to organization chart within tools team is needed. Team

members are to share domain knowledge, back each other up as part of organization planning.

Table 7

Parameter configurations.

Parameter Value

Common parameters

Preprocessing steps None

Stemming

Stopping

Stemming and

stopping

VSM model parameters

Term weight tf-idf

Sublinear tf-idf

Boolean

Similarity Cosine

Overlap

LSI model parameters

Term weight tf-idf

Sublinear tf-idf

Boolean

Number of topics 32

64

128

256

Similarity Cosine

LDA model parameters

Number of topics 32

64

128

256

Number of iterations Until model

convergence

Similarity Conditional probability

Note: Since LDA smoothing parameters are automatically

configured by the tool used, these parameters are not men-

tioned in this table.

q

b

c

s

r

g

d

f

t

a

f

w

i

s

p

e

t

n

t

t

t

d

fi

o

o

[

v

[

t

F

i

F

t

v

t

m

o

l

t

t

a

o

s

s

t

m

p

a

c

c

c

t

∗

fi

∗

Preprocessing steps configuration

Since both the documents’ corpus, LL repository in our case, and the
uery comprise unstructured information, they are preprocessed before
eing forwarded to construct or query the LL classifiers. The prepro-
essing has a key role in reducing any information noise which can be a
ource of confusion to the LL classifiers. It is a common practice from IR
esearch to apply one or more preprocessing steps from the natural lan-
uage processing (NLP) literature [7] . The preprocessing configuration
escribes how data (project artifacts and LL records) is preprocessed be-
ore being forwarded to the IR algorithm to build the LL classifier. Since
he selection of the appropriate preprocessing steps is an open research
rea [7] , we have chosen to employ two of the most common techniques
rom the literature, namely: stopping and stemming.

The following is a brief description of the two preprocessing steps
hich we applied in our study:

• Stopping step: removing the common stop words from the English
language, such as “the ” and “an. ” Such words are very common and
have high appearance frequency within the document, which can
impact the relevance score while not representing a real relevance
of the document to the query.

• Stemming step: reducing the words to their morphological roots
or stems. For example, “stem ” is the root for both “stemming ”
and “stems. ” In the experiments, we exploit the Porter’s algorithm
49
[26] to perform the stemming step. Since the documents, i.e., LL,
issue and risks records, within the dataset considered are not long
(see Tables 2–4), stemming was employed in order to address the
data sparseness.

There is no existence of multi-part identifiers or compound terms
n our validation dataset. Thus, there has been no need for other steps
uch as splitting, which is frequently used in the case of source code
reprocessing [7] . Also, other quality check steps, such as abbreviation
xtension and spelling checks, are performed by the quality assurance
eam before storing the LL records and project artifacts within the orga-
ization’s repositories.

In order to apply these two preprocessing steps, we have used the
ool provided by Thomas [27] . We have considered the four combina-
ions of applying these two preprocessing steps: not applying any of the
wo steps (none), applying stemming individually, applying stopping in-
ividually and applying both stemming and stopping .

Model-based parameter configuration

For the LSI model, there are three parameters which should be con-
gured: number of topics, term weight, and similarity . Since there is no
ptimal selection method for the number of topics , and since it is still an
pen research topic, we have considered four values from the literature
19] for the number of topics ; “32, ” “64, ” “128 ” and “256 ”. Those chosen
alues should cover the different ranges of the number of topics values
28] . Regarding the term weight , we have considered three methods from
he literature [6] , namely: Boolean, tf-idf , and sublinear tf-idf methods.
or the similarity , the cosine similarity method has been employed, as it
s the most suitable method from the literature for the LSI model [6,19] .
or the LSI model implementation, we employed the gensim open source
ool [29] .

For the LDA model, we have considered the same number of topics

alues as in LSI. Other parameters, including sampling iterations number,

opic-word smoothing, document-topic smoothing , and similarity , are auto-
atically optimized by the MALLET tool [30] , which we have used for

ur case study experiments. Also, for our query execution, we used the
ucene-lda tool, which is implemented by Thomas [31] . The lucene-lda

ool employs the conditional probability method for the similarity , as it is
he most appropriate similarity method for IR applications [19,32] .

Regarding the VSM model, there are two parameters: the term weight

nd the similarity . For the term weight , we have employed the same meth-
ds as in the LSI model. For the similarity , we have considered both co-

ine and overlap methods from the literature [6] . In the case of VSM, the
ame lucene-lda tool used with LDA is employed to construct and query
he LL classifiers.

Overall considered configurations

We apply a fully factorial design [19] for our experiment, which
eans that for our study we consider all the combinations of selected
arameter values. So for each parameter, every value considered is ex-
mined against all values of all other parameters.

As we have followed a fully factorial experiment design, we have
onsidered all the combinations of the parameter values examined in our
ase study. This experiment design has yielded 88 LL classifiers; 48 LSI
lassifiers ((1 project artifacts representation) ∗ (1 LL records represen-
ation) ∗ (4 preprocessing combinations) ∗ (4 number of topics values)
 (3 term weighting methods) ∗ (1 similarity method)), 16 LDA classi-
ers ((1 project artifacts representation) ∗ (1 LL records representation)
 (4 preprocessing combinations) ∗ (4 number of topics values)), and

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

Fig. 2. LL classifiers construction.

Fig. 3. LL classifier evaluation process and performance results calculation. This process is repeated for each classifier, and is calculated for each of the 55 query

results. Then, the average top-20 and MAP are calculated for each classifier.

2

r

m

t

3

m

a

b

d

w

i

“

t

b

t

t
s

u

a

s

r

a

r

t

o

w

t

i

a

a

d

p

u

r

p

4 VSM classifiers ((1 project artifacts representation) ∗ (1 LL records
epresentation) ∗ (4 preprocessing combinations) ∗ (3 term weighting
ethods) ∗ (2 similarity methods)). We have tested and evaluated all of

hese classifiers.

.2.2. Evaluation process

For our evaluation process, we followed the Cranfield evaluation
ethodology [33] . This methodology is suitable for the empirical evalu-

tion of IR models. For this evaluation method, we relied on the gold set
uilt to evaluate multiple LL classifiers. The evaluation process is con-
ucted based on defined performance metrics. In the next subsection,
e introduce the performance metrics selected.

We pursued our evaluation process by applying the data preprocess-
ng steps, following the preprocessing combinations, as described in the
Preprocessing steps configuration ” section, to the LL repository in order
o get different preprocessed versions of the LL repository. After that, we
uilt the LL classifiers based on each of the LL repository versions, and
hen we repeated this for each of the IR model configuration combina-
ions that we considered in the “Model-based parameter configuration ”
ection (see Fig. 2). It is worth mentioning that only the LL records are
50
sed to build the LL classifiers, i.e., the query records (issues and risks)
re not used to build the LL classifiers.

After building the classifiers, we executed each of the queries con-
idered, i.e., issues or risks, using each of these classifiers, and then we
ecorded the results list. Then, we calculated the performance metrics,
s described in the next sections, for each classifier by comparing the
esults list to the gold set (see Fig. 3).

In addition, we planned to study the impact of the different parame-
er value configurations, i.e., preprocessing steps and parameter values
f models, on the classifiers’ performance. In order to conduct this study,
e have applied the Tukey’s Honestly Significant Difference (HSD) sta-

istical test [34–36] . The HSD test is a statistical test which has the abil-
ty to perform a comparison between different groups in one step. The
dvantage of the Tukey’s HSD test is that it can significantly differenti-
te between more than two groups based on the statistically significant
ifference between the groups’ mean. The HSD test achieves that by em-
loying the studentized range distribution [34–36] . For our study, we
sed the HSD test to statistically compare the impact of the different pa-
ameter configurations on the classifier performance. We studied that
arameter by parameter.

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

p

t

r

v

p

d

t

e

t

A

3

c

m

e

p

L

i

L

v

u

t

l

s

l

o

i

[

𝑡

w

i

u

i

f

t

t

𝑇

r

s

c

e

a

m

i

a

T

l

𝑀

𝑎

w

i

p

b

r

t

o

r

q

d

F

r

4

s

o

i

d

t

t

o

4

t

a

c

b

w

a

w

[

L

t

q

h

L

L

e

s

L

c

p

c

s

T

p

o

t

u

r

t

r

t

c

i

i

t

4

d

m

t

s
So, for each parameter (e.g., term weight), we compared the different
erformance results of each parameter value (e.g., tf-idf versus sublinear

f-idf versus Boolean). While studying a certain parameter, the other pa-
ameters may vary. The HSD test examines the difference in the mean
alue between the results of the parameter value pairs. For each of these
airs, if the difference between their mean exceeds the expected stan-
ard deviation, then HSD can report these two parameter values as sta-
istically different groups. Therefore, any two parameter values can be
ither statistically different, i.e., reported as different groups, or not sta-
istically different, i.e., the same group, based on the mean difference.
lso, any parameter value can belong to one or more groups.

.2.3. Performance metrics

To benchmark the performance results for each of the LL classifiers
onsidered, we have employed two of the most popular performance
etrics from the literature [6,7,19] , namely: top-K and MAP (Mean Av-

rage Precision).
The top-K accuracy metric calculates the percentage of queries,

roject issues/risks, in whose top k result records there is at least one
L record relevant to this query, based on the gold set. The top- K value
s significant for our case study because it measures the ability of the
L classifier to provide users with at least one relevant result in an ad-
anced position in the results list, which is important to encouraging
sers to use the new searching tool; this can lead to improvements in
he organization’s LL recall – our main goal. In our study, we follow the
iterature by setting the k to 20 in order to measure the accuracy con-
idering the top 20 records from the relevant records retrieved. In the
iterature [19,20] , the value of 20 was justified as a convenient number
f result records through which the user can scroll down before reject-
ng the search results. Top-K calculations can be formulated as follows
19,20] :

𝑜𝑝 − 𝐾(𝐶 𝑖) =

1
|𝑄 |

|𝑄 |∑
𝑗=1

𝐼(Re 𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 (𝑞 𝑗) , 𝑇 𝑜𝑝𝐾 Re 𝑐𝑜𝑟𝑑𝑠 (𝐶 𝑖 , 𝑞 𝑗 , 𝑘)) ,

here C i is the classifier i, | Q | is the total number of the queries exam-
ned, Re 𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 (𝑞 𝑗) is a function that returns all of the relevant doc-
ments to the j th query based on the gold set, 𝑇 𝑜𝑝𝐾 Re 𝑐𝑜𝑟𝑑𝑠 (𝐶 𝑖 , 𝑞 𝑗 , 𝑘)
s a function that returns the top k result records from the retrieved list
or the q j by the i th classifier C i , and finally I is the intersection func-
ion which returns ‘1 ′ if there is at least one common document between
he two document lists returned by the two functions, Re 𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 and
 𝑜𝑝𝐾 Re 𝑐𝑜𝑟𝑑𝑠 , and returns ‘0 ′ otherwise.

In our case study, the queries can have more than one relevant LL
ecord, so it is important to measure the ability of the LL classifiers con-
tructed to recall all possible relevant records, as well as evaluate the
lassifier retrieval precision. In order to fulfill this measurement, we
mployed the MAP metric, which is one of the most popular and most
ppropriate metrics, from the literature [6,33] for this kind of measure-
ent, especially when comparing multiple IR models and with the ex-

stence of multiple query sets. The MAP metric can be calculated as the
verage of the aggregated average precision of each individual query.
he MAP equations are formalized by Zhai and Massung [33] as fol-

ows:

𝐴𝑃 (𝐿) =

1
𝑚

𝑚 ∑
𝑖 =1

𝑎𝑣𝑝 (𝐿 𝑖) ,

𝑣𝑝 (𝐿 𝑖) =

1
|Re 𝑙|

𝑛 ∑
𝑗=1

𝑝 (𝑗) ,

here L i is the ranked results list returned by the classifier to answer the
 th query from the different m queries considered; avp (L i) is the average
recision for the ranked list L i . The avp is calculated for each query,
ased on the above equation where p (j) is the precision at the ranked
ecord j within the results list L i , Re 𝑙 is the set of all documents relevant
o this query based on the mapping set, the gold set, and n is the count
51
f the records of the results list L i . p (j) is ‘0 ′ if the j th document is not
elevant to the query. Conversely, if the document is relevant to the
uery, then p (j) will be calculated by dividing the number of relevant
ocuments, identified relevant so far, by the document rank, i.e., j value.
or example, if the seventh document within the results list is the fourth
elevant document retrieved, then 𝑝 (7) =

4
7 .

. Results

In this section, we describe the results of all the LL classifiers con-
idered. To make it easy to follow, we will discuss the results based
n each of the chosen performance metrics, top-K and MAP, separately
n the following two subsections. Each subsection starts with the overall
iscussion of the performance results, then it demonstrates the statistical
est results regarding the significant effect of the parameter configura-
ions on the classifier results. Also, we shared the results of all classifiers
nline as a reference for interested practitioners and researchers [37] .

.1. Top-K results

The top-20 performance results regarding the best four classifiers and
he worst four classifiers for each of the IR models considered, VSM, LSI,
nd LDA, are listed in Table 8 . When observing the highest performing
lassifier in each technique, the best top-20 results of 70% were recorded
y the VSM and LSI top two classifiers, while the lowest performance
as recorded by the LDA top classifier with only 52%. So, the top VSM
nd LSI models outperformed the top LDA classifier, which is consistent
ith the literature results for similar problems, such as bug localization

19,21] . An observation regarding the best two classifiers of VSM and
SI was that both classifiers missed the relevant LL records for almost
he same queries (issues/risks) except for only one query. All the missed
ueries had only three or fewer relevant LL records, which made them
ard queries, except for only one missed query which had seven relevant
L records according to the gold set. This indicates that the VSM and
SI best classifiers can be considered good retrieval classifiers for the
valuation dataset in hand.

In addition, the descriptive statistics of the top-20 performance re-
ults, in Table 9 , demonstrate that the parameter configurations of the
L classifiers had a significant effect on the results. In the case of VSM
lassifiers, there was a significant difference, about 50% relative im-
rovement (calculated as 70−46 46 %), in the performance between the best
lassifier, 70%, and the worst classifier, 46%, and this could also be ob-
erved between the best classifier, 70%, and the median classifier 54%.
he same observation was true for the LSI and LDA classifiers, as de-
icted in Table 9 .

In order to statistically study the impact of the configuration values
n the performance results, we applied the Tukey’s HSD statistical test
o the performance results of each of the parameter configuration val-
es. The results of the Tukey’s test, regarding the top-20 performance
esults, illustrated in Table 10 (A), are demonstrated in the following
wo subsections, in which we use the short term “performance results ” to
efer to the top-20 performance.

In addition to studying the parameter configuration impact, we ex-
ended the statistical test by employing the Wilcoxon statistical test to
ompare the top performer classifier using the preprocessing methods,
.e., stemming and stopping, to the top performer classifier without us-
ng any of the preprocessing methods. This was conducted for each of
he models considered. The results are discussed later in this section.

.1.1. Lessons learned classifier parameters

For the VSM classifiers, the HSD test results showed a significant
ifference in the performance results when using the cosine similarity
ethod versus the results of using the overlap method. This means that

he similarity method employed had an impact on the performance re-
ults for the dataset considered in this case study. The cosine similarity

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

Table 8

Lessons learned classifiers performance results (best four and worst four classifiers).

VSM LSI LDA

Rank Parameter values Top-20 Rank Parameter values Top-20 Rank Parameter values Top-20

1 Stemming + tf-idf + cosine 70% 1 None + tf-idf + cosine + 128

topics

70% 1 Stemming and stopping + 32

topic

52%

2 Stemming + sublinear

tf-idf + cosine

69% 2 None + sublinear tf-idf

+ cosine + 128 topic

69% 2 Stopping + 32 topic 46%

3 None + sublinear tf-idf + cosine 61% 3 Stemming + sublinear tf-idf +
cosine + 256 topic

69% 3 Stemming and stopping + 64

topic

46%

4 Stemming and

stopping + sublinear tf-

idf + cosine

61% 4 None + tf-idf + cosine + 256 topic 69% 4 None + 32 topic 41%

21 Stemming + tf-idf + overlap 52% 45 Stemming + boolean +
cosine + 64 topic

50% 13 Stemming and stopping + 128

topic

26%

22 Stemming + boolean + overlap 50% 46 None + boolean + cosine + 128

topic

48% 14 Stemming + 256 topic 22%

23 None + boolean + cosine 46% 47 None + boolean + cosine + 64

topic

44% 15 None + 256 topic 19%

24 None + boolean + overlap 46% 48 None + boolean + cosine + 32

topic

43% 16 Stemming and stopping + 256

topic

19%

Rank Parameter values MAP Rank Parameter values MAP Rank Parameter values MAP

1 Stemming and stopping +
sublinear tf-idf + cosine

0.189 1 Stemming and stopping +
sublinear tf-idf + cosine + 128

topic

0.198 1 Stemming + 32 topic 0.096

2 Stemming and stopping +
tf-idf + cosine

0.188 2 Stemming and stopping +
tf-idf + cosine + 128 topic

0.198 2 Stemming and stopping + 32

topic

0.089

3 Stemming + tf-idf + cosine 0.156 3 Stopping + tf-idf + cosine + 64

topic

0.194 3 None + 32 topic 0.082

4 Stemming + sublinear

tf-idf + cosine

0.153 4 Stopping + sublinear

tf-idf + cosine + 64 topic

0.194 4 Stopping + 32 topic 0.075

21 None + tf-idf + overlap 0.099 45 None + boolean + cosine + 128

topic

0.107 13 Stemming and stopping + 128

topic

0.040

22 None + sublinear tf-idf + overlap 0.095 46 None + boolean + cosine + 64

topic

0.096 14 Stopping + 64 topic 0.036

23 None + boolean + cosine 0.082 47 Stemming + boolean +
cosine + 32 topic

0.086 15 None + 256 topic 0.031

24 None + boolean + overlap 0.081 48 None + boolean + cosine + 32

topic

0.085 16 Stemming and stopping + 256

topic

0.030

Table 9

Information retrieval classifiers performance results descriptive statistics.

VSM LSI LDA

Top-20 (%) MAP Top-20 (%) MAP Top-20 (%) MAP

Minimum 46 0.081 Minimum 43 0.085 Minimum 19 0.030

1st Quartile 52 0.111 1st Quartile 55 0.132 1st Quartile 26 0.043

Mean 56 0.126 Mean 59 0.153 Mean 33 0.058

Median 54 0.122 Median 59 0.163 Median 35 0.057

3rd Quartile 58 0.142 3rd Quartile 65 0.172 3rd Quartile 41 0.065

Maximum 70 0.189 Maximum 70 0.198 Maximum 52 0.096

Note: Top-20 results are rounded to two digits, while MAP results are rounded to three decimal points.

m

O

w

p

m

p

s

t

B

p

t

s

m

s

s

t

m

c

a

“

t

t

b

4

p

t
ethod showed the best performance results and came in the top group.
n the other hand, the overlap method results came in the bottom group.

Regarding the VSM classifiers, the test results showed that there
as no statistically significant difference when changing the term weight

arameter value between tf-idf, sublinear tf-idf , and Boolean weighting
ethods.

For the LSI classifiers, the statistical test showed that the term weight

arameter had a statistically significant impact on the performance re-
ults. Both the tf-idf and sublinear tf-idf weighting methods came in the
op group and had the highest top-20 performance results, while the
oolean weighting method came in the bottom group with the lowest
erformance results.

An overall observation, regarding the term weight parameter, was that
he tf-idf weighting method always showed the highest performance re-
ults for both the VSM and LSI models, followed by the sublinear tf-idf

ethod, although there was no statistical significance for VSM as de-
52
cribed, which is consistent with the results from other IR application
tudies [19] .

The HSD test revealed that the number of topic s parameter had a sta-
istically significant impact on the classifiers’ performance results. This
eans that the performance results differed when the classifiers were

onfigured with different topic numbers. This applied for both the LSI
nd LDA classifiers. However, for LSI, the largest numbers of topics,
128 ” and “256, ” came in the top group. This indicates that the more
opics used, the better the performance results. On the other hand, for
he LDA classifiers, the situation was different, where the smallest num-
ers of topics, “32 ” and “64, ” came in the top groups.

.1.2. Preprocessing steps

Table 10 (A) illustrates the HSD test results of applying the four pre-
rocessing combinations on the classifiers’ top-20 performance, where
here was no statistically significant difference in the results when

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

Table 10

Tukey’s HSD statistical test results.

VSM LSI LDA

Group Mean (%)

Preprocessing

steps Group Mean (%)

Preprocessing

steps Group Mean (%)

Preprocessing

steps

A 59 Stemming and

stopping

A 60 Stopping A 36 Stemming and

stopping

A 58 Stemming A 60 Stemming and

stopping

A 34 Stopping

A 53 None A 60 Stemming A 32 None

A 53 Stopping A 58 None A 32 Stemming

Group Mean (%) Similarity Group Mean (%)

Number of

topics Group Mean (%)

Number of

topics

A 58 Cosine A 63 128 A 45 32

B 53 Overlap A 61 256 AB 37 64

AB 60 64 B 28 128

B 54 32 B 24 256

Group Mean (%) Term weight Group Mean (%) Term weight

A 58 tf-idf A 63 tf-idf

A 57 Sublinear tf-idf A 63 Sublinear tf-idf

A 52 Boolean B 53 Boolean

(A) Top-20 results

VSM LSI LDA

Group Mean

Preprocessing

steps Group Mean

Preprocessing

steps Group Mean Preprocessing steps

A 0.159 Stemming and

stopping

A 0.170 Stemming and

stopping

A 0.067 Stemming

B 0.126 Stemming A 0.164 Stopping A 0.056 Stemming and

stopping

B 0.117 Stopping AB 0.147 Stemming A 0.055 None

B 0.102 None B 0.132 None A 0.053 Stopping

Group Mean Similarity Group Mean

Number of

topics Group Mean

Number of

topics

A 0.135 Cosine A 0.161 128 A 0.085 32

A 0.117 Overlap A 0.161 64 B 0.053 64

A 0.158 256 B 0.051 128

A 0.133 32 B 0.042 256

Group Mean Term weight Group Mean Term weight

A 0.136 tf-idf A 0.167 Sublinear tf-idf

A 0.134 Sublinear tf-idf A 0.166 tf-idf

A 0.109 Boolean B 0.127 Boolean

(B) MAP results

Table 11

Top performer classifiers statistical test results (Top-20).

VSM LSI LDA

Top performer classifier p -value Top performer classifier p -value Top performer classifier p -value

Stemming vs none 0.025 Stemming vs none 0.655 Stemming vs none 1

Stopping vs none 0.046 Stopping vs none 0.317 Stopping vs none 0.366

Stemming + stopping vs none 1 Stemming + stopping vs none 0.705 Stemming + stopping vs none 0.083

a

m

i

c

g

4

p

f

t

u

s

c

p

i

r

e
pplying any of the preprocessing steps. This was the case for all the IR
odels considered, VSM, LSI, and LDA, within the context of the dataset

n hand. However, applying both stemming and stopping together, in the
ase of VSM and LDA, and applying only stopping , in the case of LSI,
ave the highest top-20 performance.

.1.3. Top performer classifiers

As clarified, the Wilcoxon test was employed to compare the top
erformer classifier using the preprocessing methods to the top per-
53
ormer using no preprocessing. This was conducted in three pairs: (1)
he top performer using the stemming method versus the top performer
sing none of the preprocessing steps, (2) the top performer using the
topping method versus the top performer using none of the prepro-
essing steps, (3) the top performer using both stemming and stop-
ing methods versus the top performer using none of the preprocess-
ng steps. This was conducted for the three models considered and the
esults are shown in Table 11 . The results showed significant differ-
nce, i.e., p -value < 0.05, only in two cases for the VSM model where

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

Table 12

Top performer classifiers statistical test results (MAP).

VSM LSI LDA

Top performer classifier p -value Top performer classifier p -value Top performer classifier p -value

Stemming vs none 0.469 Stemming vs none 0.158 Stemming vs none 0.303

Stopping vs none 0.025 Stopping vs none 0.008 Stopping vs none 0.889

Stemming + stopping vs none 0.034 Stemming + stopping vs none 0.145 Stemming + stopping vs none 0.196

t

d

c

4

c

s

i

p

w

w

s

A

e

V

c

t

a

t

L

[

m

u

f

o

r

d

V

s

r

L

W

p

s

4

s

v

t

t

f

c

t

i

s

c

n

p

p

c

t

“

4

m

r

m

M

c

s

t

p

t

s

b

p

s

t

c

r

4

u

o

s

o

u

L

d

v

t

5

o

a

o

a

s

he stemming or stopping methods were employed, while no significant
ifference was recorded in the other cases including the LSI and LDA
lassifiers.

.2. MAP results

Table 8 lists the MAP performance results regarding the best four
lassifiers and the worst four classifiers for each of the IR models con-
idered. After analyzing the MAP results, we concluded that some of the
nsights from the top-20 results still applied. When looking at the top
erforming classifiers in each model, the highest MAP result of 0.198
as recorded by the top classifier in LSI, followed by 0.189 in VSM,
hich is similar to the top-20 results. These MAP performance results are

atisfactory when compared to other studies from the literature [21,38] .
lso, as in the top-20 results, the LDA top classifier achieved the low-
st performance of 0.096, compared to the top performing classifiers in
SM and LSI. In addition, the worst results for both the VSM and LSI
lassifiers, 0.081 and 0.085, respectively, were slightly different from
he LDA top classifier result of 0.096. So, again, our MAP results came
ligned with both the top-20 results, from our case study, and the litera-
ure results, which provides evidence of the superiority of both VSM and
SI classifiers results over LDA classifiers in different empirical studies
21] .

Similar to the top-20 results, the descriptive analysis of MAP perfor-
ance results, presented in Table 9 , indicates that the classifier config-
ration had a remarkable impact on the performance. This could be in-
erred from the difference between the VSM best classifier performance
f 0.189 and the VSM worst classifier performance of 0.081, which rep-
esented more than 100% relative improvement. Also, there was a high
ifference between the median VSM classifier, 0.122, and the minimum
SM classifier. The same insight applied for both the LSI and LDA re-
ults.

In the following subsections, we demonstrate the HSD statistical test
esults, listed in Table 10 (B), regarding the significant effect of the
L classifiers’ configuration on the MAP performance results. Also, the
ilcoxon statistical test results are demonstrated. We refer to the MAP

erformance results as “performance results ” in the following two sub-
ections.

.2.1. Lessons learned classifier parameters

In the case of the VSM classifiers, the Tukey’s test results demon-
trated that there was no significant impact of the classifier parameter
alues on the performance results. This means that, within both the con-
ext of our case study dataset and the conducted experiments, neither
he similarity parameter nor the term weight parameter affected the per-
ormance of the VSM classifiers.

This is not exactly the same for the LSI classifiers, where the statisti-
al test results revealed the significant impact of the term weight parame-
er on the classifier performance results. The sublinear tf-idf term weight-
ng method recorded the highest mean performance value, 0.167, and
hared the top group with the tf-idf method, while the Boolean method
ame in the bottom group. On the other hand, the statistical test of the
umber of topics parameter demonstrated no significant difference in the
erformance results.

For the LDA classifiers, a significant difference in the number of topics

arameter results was reported by the statistical test. The top group
54
omprised the performance results of the “32 ” topic classifiers, while
he bottom group involved the performance results corresponding to
64, ” “128 ” and “256 ” topic configuration values.

.2.2. Preprocessing steps

Regarding the preprocessing steps parameter’s impact on the perfor-
ance results, the HSD test showed the significant impact of this pa-

ameter on both the VSM and LSI classifiers. Applying both the stem-

ing and stopping steps together showed the highest mean value for the
AP performance and came in the top groups for both the VSM and LSI

lassifiers. On the other hand, applying none of the preprocessing steps
howed the lowest mean value and came in the bottom groups for both
he VSM and LSI classifiers.

In the case of the VSM classifiers, the statistical test classified ap-
lying both the stemming and stopping together in the top group, while
he application of other preprocessing steps, including stemming alone,
topping alone, and using none of the preprocessing steps, came in the
ottom group.

For the LSI classifiers, both preprocessing steps configurations of ap-
lying the stemming and stopping steps together, and just the stopping

tep were ranked in the top groups. The stemming step was ranked in
he middle, and not applying any step came in the bottom group.

Regarding the LDA classifiers, the statistical test inferred no signifi-
ant impact for the preprocessing steps on the classifiers’ performance
esults.

.2.3. Top performer classifiers

As in the case of top-20, we compared the top performer classifier
sing the preprocessing steps to the top performer classifier using none
f the preprocessing methods. The Wilcoxon statistical test results are
hown in Table 12 . The results showed significant difference in the case
f VSM while using both stemming and stopping together, and also while
sing only stopping. Also, there was a significant difference in the case of
SI while using the stopping method. The results showed no significant
ifference for the rest of the cases.

In the following section, we elaborate on our results analysis and pro-
ide our overall findings and observations. Also, we link these findings
o our original research questions.

. Discussion

In this section, we provide an overall discussion and demonstrate
ur overall findings from the results of our case study. Also, we provide
dditional insights by conducting an extension study of the performance
f Document to Vector (doc2vec) state-of-the-art model.

Regarding our research questions, the conclusions are based on the
nalysis of the performance results of the 88 different LL classifiers con-
idered in our case study. We sum up our conclusions as follows:

• In order to have clearer interpretation of the achieved performance
results, 70% for top-20 and 0.198 for MAP, an additional investi-
gation of both the precision and recall measurements was done for
the top performing models. For the top performer model based on
top-20, the precision@10 was 9% and recall@10 was 23%. For the
top performer model based on MAP, the precision@10 was 11% and
recall@10 was 28%. For the LL retrieval context, users or PMs are
more interested in getting relevant results, i.e., recall, which can

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

f

l

L

s

s

c

f

a

A

t

t

b

I

r

c

5

t

t

n

t

d

a

i

o

P

i

r

s

g

d

w

f

e

t

w

D

o

a

w

t

h

o

p

d

f

c

a

c

S

f

m

A

i

6

a

d

m

t

t

t

l

r

i

b

c

w

c

t

a

o

w

w

t

r

b

g

c

e

d
support their decision making rather than the precision of the items
within the retrieved list. Given that fact, the average recall@10 of
28%, even though not a high number relatively, can be considered
an adequate result to convince PMs to adopt an LL retrieval model
which can provide them with an average of 28% of relevant histor-
ical experiences, i.e., LL, within the first 10 retrieved items, which
can save them the cost of repeating past mistakes or missing oppor-
tunities in the case of overlooking the LL repository. This confirms
the effectiveness of employing IR techniques in order to automati-
cally push the relevant LL information to the PMs within organiza-
tions. With this convenient level of performance, practitioners can
be encouraged to rely on the LL IR-based classifiers to automatically
search, within the existing organization’s LL repositories, for rele-
vant solutions regarding their in hand issues/risks; this answers our
first research question RQ1 .

• Relying on the available artifacts, such as project management issue
and risk registers, that are associated with software development
and project management processes, to replace the manual querying
of the organization’s repositories can be significant. This is a positive
answer to our second research question RQ2 , which is supported by
our case study results. Since there is no manual querying needed,
the practitioners can explore the organization’s repositories without
worrying about the burden of manually searching the unstructured
data, which can be time and effort consuming. This search process
can even be automated.

• Regarding the hypothesis of the impact of the classifier configura-
tion on performance, this was generally found to be significant. The
same IR technique showed different performance results considering
different configurations, and this provided an answer to our third re-
search question RQ3 .

• For our study, VSM and LSI IR techniques achieved the best top-20
and MAP performance, followed by LDA.

• Our statistical test of the impact of applying different preprocessing
steps showed no significant difference for the top-20 performance
results. This can be attributed to our dataset and models. However,
since the statistical tests of the impact of applying different prepro-
cessing steps showed significance in our MAP results, for VSM and
LSI, and in other cases from the literature, such as bug localization
[19] , we advise considering those different preprocessing steps in
future studies.

An overall observation is that the worst VSM and LSI classifiers’ per-
ormance results, 46% and 43%, respectively, for the top-20, are slightly
ower than the best LDA classifier’s performance of 52%. Also, the worst
DA classifier performance, 19%, is significantly far from the worst clas-
ifiers in the case of VSM and LSI of 46% and 43%, respectively. The
ame insight can be inferred from the MAP performance results. This
an be considered an indication that the LDA technique is not suitable
or the LL recall problem. This indication can be useful for practitioners
nd researchers who plan to work on similar problems in the future.
lso, we advise the consideration of employing the tf-idf or sublinear

f-idf weighting method together with the cosine similarity method, as
his combination showed the best classifiers’ top-20 and MAP results for
oth the VSM and LSI techniques.

Since our results indicated that the configurations and the selected
R techniques do matter, we recommend considering different configu-
ations and IR techniques, and to be careful when deciding on the LL
lassifier to be applied to the problem and dataset in hand.

.1. Document to vector (Doc2vec) extension study

Document to Vector (doc2vec), as named in the gensim implemen-
ation [29] , is a new state-of-the-art algorithm, which was initially in-
roduced by Le and Mikolov [39] . doc2vec overcomes part of the weak-
esses of bag-of-words (BOW), the most common text vector represen-
ation that is used by some of topic model algorithms such as VSM.
55
oc2vec has two main advantages over BOW, which are both consider-
tion of the words order and the words semantics. doc2vec can operate
n one of two model versions, namely the Distributed Memory Model
f Paragraph Vectors (PV-DM) and Distributed Bag of Words version of
aragraph Vector (PV-DBOW). The PV-DM model relies on concatenat-
ng the paragraph (i.e., document) vector representation and the vector
epresentation of the words to predict the following word within the
ame context. On the other hand, PV-DBOW relies only on the para-
raph vector to predict the next word. doc2vec employs the gradient
escent and backpropagation (same algorithms used for the neural net-
ork training) in both paragraph and words vectors training [39] .

Since doc2vec has shown promising results for similar problems
rom the software engineering literature [39] , extending our primary
xperiments with the doc2vec experiments within the LL retrieval con-
ext could provide useful insights and valuable information to the soft-
are engineering research community. For this extension, both DM and
BOW were considered. In addition, we tried to cover different ranges
f window sizes, i.e., the distance considered between the current word
nd predicted word, of 2, 5, 10, 20, 30 and 40. Also, the experiments
ere repeated for each of the considered preprocessing steps combina-

ion shown in Section 3.2 .
The DBOW results are very low for both top-20 and MAP with the

ighest achieved results of 13% top-20, in the case of no preprocessing
r applying the stemming method, and 0.046 MAP in the case of no
reprocessing. This could be attributed to the short size of the dataset
ocuments. On the other hand, the DM results are better, but not satis-
actory, with a maximum achieved performance of 52% top-20, in the
ases of applying the stemming preprocessing step with 30 window size
nd applying the stopping step with 5 window size, and 0.1 MAP in the
ase of applying the stemming preprocessing step with 10 window size.
ince doc2vec shows better results, from the literature, than the results
rom this extension study, a profounder study of the doc2vec perfor-
ance in the LL retrieval context could be considered for future work.
lso, we shared the results of all classifiers online as a reference for

nterested practitioners and researchers [37] .

. Threats to validity

In this section, we discuss two validity threats regarding the gold set,
s well as the dataset representation or context.

Gold set validity . In our study, we have relied in our classifier vali-
ation on the collection constructed of the queries-relevant LL records
apping. As this mapping collection can be subjective and may cause a

hreat to the validity of our case study and conclusions, we have taken
wo mitigation steps. First, as a trial to eliminate any bias, we involved
wo practitioners in the discussion and construction of this mapping col-
ection. Second, after reaching a consensus from the two practitioners
egarding this mapping collection, the collection was baselined. So, even
f the collection has any flaw, such as positive or negative falses, the
aseline guarantees that the same collection is used to evaluate all the
lassifiers considered using all the three IR techniques. So, the classifiers
ere evaluated under the same comparison factors and within the same

ontext.
Dataset representation. Although in our empirical study we were keen

o consider a significant dataset, including both significant LL records
nd query records, the dataset considered does not represent the whole
f the LL records in the world or even the organization. In addition, we
ere limited to the dataset provided by our industrial partner, which
as out of our control because of data confidentiality restrictions. As

his is a common challenge in the context of empirical studies seeking
eal industrial data, we did our best to come up with solid conclusions
y including LL and queries from a variety of projects, domains, and re-
ions. Due to this limitation in the dataset representation, the results and
onclusions are not necessarily valid for other contexts. Although our
xperiment cannot be reproducible, since we cannot share our dataset
ue to the non-disclosure agreement limitation, we provided the details

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

o

p

f

7

r

a

c

e

g

L

t

s

c

s

L

a

u

c

s

r

s

w

m

t

r

g

t

t

p

c

a

[

t

w

t

a

t

p

m

e

t

t

f

t

u

D

i

t

A

t

A

i

b

C

fi

a

s

S

t

R

[

[

[

[

[

[

[

f our case study design to encourage researchers and practitioners to
roceed with similar methodologies and case studies regarding their dif-
erent datasets.

. Conclusion

Improving the awareness of software organizations’ LL records can
eform decision making and project management processes. Providing
n automatic process to support PMs in obtaining relevant LL records
an improve the PMs’ awareness of the organization historical experi-
nces. This is crucial to leverage any potential opportunities or to miti-
ate any previous mistakes. In our paper, we proposed a new automatic
L recall solution. In our solution, we employed the IR techniques for
he first time within the software LL retrieval context.

In order to evaluate the effectiveness of our proposed solution, we
ought for answers to our research questions by conducting an empirical
ase study on a real dataset of industrial software projects. In our case
tudy, we considered three state-of-the-art IR techniques, VSM, LSI and
DA, as well as the existing project artifacts, including the project issue
nd risk records. In addition, we have statistically tested and studied,
sing the Tukey’s statistical test, the impact of considering different LL
lassifier parameter configurations on the classifiers’ performance re-
ults. The impact of applying different preprocessing steps on the data
ecords before constructing the LL classifiers was studied as well.

The case study results confirmed the effectiveness of the proposed
olution and its ability to provide PMs with relevant LL in an automatic
ay and, thus, to eliminate the burden of time and effort required to
anually get LL. The summary of our main findings is as follows:

• The best top-20 performance result of 70% and MAP performance
result of 0.198 were recorded for VSM and LSI classifiers, while LDA
classifiers came next.

• Regarding the top-20, the best performance was recorded in the case
of the VSM classifier configured using tf-idf for the term weight , cosine

for the similarity , and stemming for the preprocessing steps of the LL
and the queries. For the best LSI classifier, the configuration was the
same for both term weight and similarity parameters, there was no

preprocessing steps for the data records, and the number of topics was
set to “128. ”

• Regarding the MAP performance results, the best classifiers for both
VSM and LSI were achieved using sublinear tf-idf for the term weight ,
cosine for the similarity , stemming and stopping for the preprocessing

steps , as well as setting the number of topics to “128 ” for the LSI clas-
sifier.

• The statistical analysis of the different classifier configurations indi-
cated the high impact of the configurations on the classifiers’ perfor-
mance. This was elicited from the significant difference between the
performance of the best configured classifiers and the worst classi-
fiers. As an example, for the VSM classifiers, the relative improve-
ment between the best and worst classifiers was about 50% for the
top-20 and more than 100% for MAP.

As this is the first empirical study to consider applying IR techniques
o tackle the automatic retrieval of software LL records, our results rep-
esent a value added to the state-of–the-art knowledge, and they can
uide interested researchers, practitioners and organizations through
he context of LL automatic pushing to PMs.

Since our work is the first, to the best of our knowledge, to apply IR
echniques within the context of software LL retrieval, there are many
romising opportunities to extend our research. This can be achieved by
onsidering other state-of-the-art IR ranking functions and models, such
s Pivoted Length Normalization VSM [40] , BM25F [41,42] , and BM25 +
43] . Furthermore, other weighting and preprocessing techniques from
he software literature can be employed, such as assigning different
eights for different Part of Speech (POS) tags as in [24] , and employing

he lemmatization technique to perform the data preprocessing. We can
56
lso analyze the natural language patterns within the LL and project ar-
ifacts, and examine if the patterns can be used to improve the matching
erformance. Moreover, optimizing the selection of the appropriate IR
odel configurations, based on the dataset and problem at hand, can be

xamined. Arguably, this is an open research topic, especially regarding
he optimization of the LDA model configurations [44] .

In addition, the impact of combining multiple LL classifiers on
he performance can be investigated. Different combination techniques
rom the literature, such as Borda Count [45] and classifier scores addi-
ion [46] , can also be evaluated.

Finally, we can consider a utility study of the system usage to eval-
ate the adoption of practitioners for our LL recall solution.

eclaration of Competing Interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

cknowledgments

The authors would like to thank their industrial partner for providing
he dataset, which is necessary for the evaluation process of this work.
lso, they thank the practitioner who helped in constructing, review-

ng, and baselining the gold set. This research has been partially funded
y the Natural Sciences and Engineering Research Council (NSERC) of
anada through grant 1033906 within the Discovery Program. Also, the
rst author was awarded an Ontario Graduate Scholarship (OGS). The
uthors are solely responsible for the results, opinions, and methods pre-
ented in the paper, thus they represent neither NSERC nor OGS.

upplementary material

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.infsof.2019.07.006 .

eferences

[1] P. Audebert , R. Weber , D.W. Aha , I. Becerra-Fernandez , Intelligent lessons learned
systems, Expert Syst. Appl. 20 (1) (2001) 17–34 .

[2] R. Weber , D. Aha , Intelligent delivery of military lessons learned, Decis. Support
Syst. 34 (3) (2002) 287–304 .

[3] M. Dülgerler , M. Negri , Lessons (Really) learned? How to retain project knowledge
and avoid recurring nightmares: knowledge management and lessons learned, PMI
Global Congress 2016 —EMEA, Project Management Institute, 2016 .

[4] A. Li , NASA: Better Mechanisms Needed for Sharing Lessons Learned, Government
Accountability Office, Washington, DC: U.S, 2002 .

[5] T.H. Chen , S.W. Thomas , A.E. Hassan , A survey on the use of topic models when
mining software repositories, Empir. Softw. Eng. 21 (5) (2016) 1843–1919 .

[6] C.D. Manning , P. Raghavan , H. Schutze , Introduction to Information Retrieval, 1,
Cambridge Univ. Press, Cambridge, 2008 .

[7] S.W. Thomas , A.E. Hassan , D. Blostein , Mining unstructured software repositories,
in: T. Mens, A. Serebrenik, A. Cleve (Eds.), Evolving Software Systems, Springer-Ver-
lag, Berlin Heidelberg, 2014, pp. 139–162 .

[8] R. Baeza-Yates , B. Ribeiro-Neto , Modern Information Retrieval, 463, ACM Press,
1999 .

[9] S. Deerwester , S.T. Dumais , G.W. Furnas , T.K. Landauer , R. Harshman , Indexing by
latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (6) (1990) 391–407 .

10] D.M. Blei , J.D. Lafferty , Topic models, in: Text Mining: Classification, Clustering,
and Applications, Chapman & Hall, 2009, pp. 71–94 .

11] D.M. Blei , A.Y. Ng , M.I. Jordan , Latent Dirichlet allocation, J. Mach. Learn. Res. 3
(2003) 993–1022 .

12] T.M. Abdellatif , L.F. Capretz , D. Ho , Software analytics to software practice: a sys-
tematic literature review, in: Proc. First Int’l Workshop on BIG Data Softw. Eng.
(BIGDSE’15), 2015, pp. 30–36 .

13] W. Harrison , A software engineering lessons learned repository, in: Proc. 27th Ann.
NASA Goddard/IEEE Softw. Eng. Workshop, 2002, pp. 139–143 .

14] NASA, “Lessons learned information system, ” Last accessed on January 2019
https://appel.nasa.gov/lessons-learned .

15] Lessons Learned Solutions, “LessonFlow, ” Last accessed on January 2019
https://www.lessonslearnedsolutions.com .

16] C. Sary , W. Mackey , A case-based reasoning approach for the access and reuse of
lessons learned, in: Proc. 5th Ann. Int’l Symp Nat’l Council on Syst. Eng., 1995,
pp. 249–256 .

https://doi.org/10.13039/501100000038
https://doi.org/10.1016/j.infsof.2019.07.006
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0013
https://appel.nasa.gov/lessons-learned
https://www.lessonslearnedsolutions.com
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0014

T.M. Abdellatif, L.F. Capretz and D. Ho Information and Software Technology 115 (2019) 44–57

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
17] R. Weber , D.W. Aha , L.K. Branting , J.R. Lucas , I. Fernandez , Active case-based rea-
soning for lessons delivery systems, in: Proc. 13th Ann. Conf. Int’l Florida Artificial
Intelligence Research Soc., 2000, pp. 170–174 .

18] M.M. Richter , R.O. Weber , Case-Based Reasoning, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013 .

19] S.W. Thomas , M. Nagappan , D. Blostein , A.E. Hassan , The impact of classifier con-
figuration and classifier combination on bug localization, IEEE Trans. Softw. Eng.
39 (Oct (10)) (2013) 1427–1443 .

20] A.T. Nguyen , T.T. Nguyen , J. Al-Kofahi , H.V. Nguyen , T.N. Nguyen , A topic-based
approach for narrowing the search space of buggy files from a bug report, in: Proc.
26th Int’l Conf. Automated Softw. Eng., 2011, pp. 263–272 .

21] S. Rao , A. Kak , Retrieval from software libraries for bug localization: a comparative
study of generic and composite text models, in: Proc. Eighth Working Conf. Mining
Software Repositories (MSR), 2011, pp. 43–52 .

22] M. Petrenko , V. Rajlich , Concept location using program dependencies and informa-
tion retrieval (DepIR), Inf. Softw. Technol. 55 (4) (2013) 651–659 .

23] S. Romano , G. Scanniello , G. Antoniol , A. Marchetto , SPIRITuS: a simple informa-
tion retrieval regression test selection approach, Inf. Softw. Technol. 99 (July 2018)
62–80 .

24] D. Falessi , G. Cantone , G. Canfora , Empirical principles and an industrial case study
in retrieving equivalent requirements via natural language processing techniques,
IEEE Trans. Softw. Eng. 39 (Jan (1)) (2013) 18–44 .

25] B. Kitchenham , S. Charters , Guidelines for Performing Systematic Literature Reviews
in Software Engineering, Keele University and University of Durham, UK, 2007 Tech-
nical Report EBSE-2007-01, ver. 2.3 .

26] M. Porter , An algorithm for suffix stripping, Program J. 14 (3) (1980) 130–137 MCB
University Press Limited .

27] S.W. Thomas, “LSCP: a lightweight source code preprocessor, ” 2012 https://github.
com/doofuslarge/lscp .

28] S.W. Thomas , Mining Software Repositories with Topic Models, School of Comput-
ing, Queen’s Univ., 2012 Technical Report 2012-586 .

29] R. Rehurek , P. Sojka , Software framework for topic modelling with large corpora,
in: Proc. LREC 2010 Workshop on New Challenges for NLP Frameworks, 2010,
pp. 45–50 .

30] A.K. McCallum, “Mallet: a machine learning for language toolkit, ” 2002
http://mallet.cs.umass.edu .

31] S.W. Thomas, “Lucene-lda: use latent Dirichlet allocation (LDA) in apache lucene, ”
2012 https://github.com/stepthom/lucene-lda .
57
32] X. Wei , W.B. Croft , LDA-based document models for ad-hoc retrieval, in: Proc. 29th
Int’l ACM SIGIR Conf. Research and Development in Information Retrieval, 2006,
pp. 178–185 .

33] C. Zhai , S. Massung , Text Data Management and Analysis: a practical introduction
to information retrieval and text mining, Morgan & Claypool, 2016 .

34] J.W. Tukey , Comparing individual means in the analysis of variance, Int. Biom. Soc.
5 (2) (1949) 99–114 .

35] J.W. Tukey , The philosophy of multiple comparisons, Stat. Sci. 6 (1) (1991) 100–116 .
36] J.W. Tukey , H. Braun , in: The Collected Works of John W. Tukey: Multiple Compar-

isons, 8, Chapman & Hall/CRC, 1994, pp. 1948–1983 .
37] T.M. Abdellatif, “Case study’s 88 classifiers performance results, ” 2018

https://docs.google.com/spreadsheets/d/1UMDBD67ohaFn3I11hDVCfNQadN7
AbvzS23nDkv0T8T0 .

38] B. Cleary , C. Exton , J. Buckley , M. English , An empirical analysis of information re-
trieval based concept location techniques in software comprehension, Empir. Softw.
Eng. 14 (1) (2008) 93–130 .

39] Q. Le , T. Mikolov , Distributed representations of sentences and documents, in: Proc.
Int‘l Conference on Machine Learning, 2014, pp. 1188–1196 .

40] A. Singhal , C. Buckley , M. Mitra , Pivoted document length normalization, in: Proc.
19th Ann. Int’l ACM SIGIR Conf. Research and Development in Information Re-
trieval, 1996, pp. 21–29 .

41] S. Robertson , H. Zaragoza , M. Taylor , Simple BM25 extension to multiple weighted
fields, in: Proc. 13th Int’l Conf. Information and Knowledge Management, 2004,
pp. 42–49 .

42] S. Robertson , H. Zaragoza , The probabilistic relevance framework: BM25 and be-
yond, Found. Trends® Inf. Retr. 3 (4) (2009) 333–389 .

43] Y. Lv , C. Zhai , Lower-bounding term frequency normalization, in: Proc. 20th ACM
Int’l Conf. Information and Knowledge Management, 2011, pp. 7–16 .

44] A. Agrawal , W. Fu , T. Menzies , What is wrong with topic modeling? And how to
fix it using search-based software engineering, Inf. Softw. Technol. 98 (June 2018)
74–88 .

45] M. Van Erp , L. Schomaker , Variants of the borda count method for combining ranked
classifier hypotheses, in: Proc. Seventh Int’l Workshop Frontiers in Handwriting
Recognition, 2000, pp. 443–452 .

46] M.P. Robillard , W. Maalej , R.J. Walker , T. Zimmermann , Recommendation Systems
in Software Engineering, Springer Science & Business, 2014 .

http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0024
https://github.com/doofuslarge/lscp
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0026
http://mallet.cs.umass.edu
https://github.com/stepthom/lucene-lda
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0031
https://docs.google.com/spreadsheets/d/1UMDBD67ohaFn3I11hDVCfNQadN7AbvzS23nDkv0T8T0
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30161-2/sbref0040

	Automatic recall of software lessons learned for software project managers
	1 Introduction
	2 Background
	2.1 Information retrieval models
	2.1.1 Vector space model
	2.1.2 Latent semantic indexing
	2.1.3 Latent Dirichlet allocation

	2.2 Related work

	3 Case study methodology
	3.1 Dataset collection
	3.1.1 Gold set construction

	3.2 Case study design
	3.2.1 Lessons learned classifiers
	3.2.2 Evaluation process
	3.2.3 Performance metrics

	4 Results
	4.1 Top-K results
	4.1.1 Lessons learned classifier parameters
	4.1.2 Preprocessing steps
	4.1.3 Top performer classifiers

	4.2 MAP results
	4.2.1 Lessons learned classifier parameters
	4.2.2 Preprocessing steps
	4.2.3 Top performer classifiers

	5 Discussion
	5.1 Document to vector (Doc2vec) extension study

	6 Threats to validity
	7 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References

