
1 23

Innovations in Systems and Software
Engineering
A NASA Journal
 
ISSN 1614-5046
Volume 7
Number 3
 
Innovations Syst Softw Eng (2011)
7:191-207
DOI 10.1007/s11334-011-0159-y

An architecture process maturity model of
software product line engineering

Faheem Ahmed & Luiz Fernando
Capretz



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer-Verlag

London Limited. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your work, please use the accepted

author’s version for posting to your own

website or your institution’s repository. You

may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Innovations Syst Softw Eng (2011) 7:191–207
DOI 10.1007/s11334-011-0159-y

ORIGINAL PAPER

An architecture process maturity model of software product line
engineering

Faheem Ahmed · Luiz Fernando Capretz

Received: 17 August 2008 / Accepted: 8 September 2011 / Published online: 24 September 2011
© Springer-Verlag London Limited 2011

Abstract Software architecture has been a key research
area in the software engineering community due to its sig-
nificant role in creating high-quality software. The trend
of developing product lines rather than single products has
made the software product line a viable option in the indus-
try. Software product line architecture (SPLA) is regarded
as one of the crucial components in the product lines, since
all of the resulting products share this common architecture.
The increased popularity of software product lines demands
a process maturity evaluation methodology. Consequently,
this paper presents an architecture process maturity model
for software product line engineering to evaluate the cur-
rent maturity of the product line architecture development
process in an organization. Assessment questionnaires and a
rating methodology comprise the framework of this model.
The objective of the questionnaires is to collect information
about the SPLA development process. Thus, in general this
work contributes towards the establishment of a comprehen-
sive and unified strategy for the process maturity evaluation
of software product line engineering. Furthermore, we con-
ducted two case studies and reported the assessment results,
which show the maturity of the architecture development
process in two organizations.

Keywords Process assessment · Software architecture ·
Software product line · Domain engineering · Application
engineering

F. Ahmed (B) · L. F. Capretz
Department of Electrical and Computer Engineering,
Faculty of Engineering, University of Western Ontario,
London, ON N6A 5B9, Canada
e-mail: f.ahmed@uaeu.ac.ae

L. F. Capretz
e-mail: lcapretz@eng.uwo.ca

1 Introduction

Recently, software development trends have caused single
product development to evolve into “software product line
architecture” (SPLA), which integrates lines of resulting
products. The main objective of SPLA is to reuse the archi-
tecture for successive product development. Clements [7]
defines the term “software product line” (SPL) as a set of
software-intensive systems sharing a common, managed set
of features that satisfy the specific needs of a particular mar-
ket segment and are developed from a common set of core
assets in a prescribed way. The SPL is receiving an increas-
ing amount of attention from software development organi-
zations because of the promising results in cost reduction,
quality improvements, and reduced delivery time. Clement
et al. [8] report that SPL engineering is a growing soft-
ware engineering sub-discipline and many organizations,
including Philips�, Hewlett-Packard�, Nokia�, Raythe-
on�, and Cummins�, are using it to achieve extraordinary
gains in productivity, development time, and product quality.
European researchers present many other corresponding ter-
minologies for the SPL such as “product family”, “product
population”, and “system family”. The architecture dimen-
sion of the SPL concept has interested many researchers, and
the architectural aspects of the SPL, such as domain engi-
neering, product line architecture, and commonality and var-
iability management, have been a key area of research since
the introduction of the concept in the mid-nineties. For the
past decade, research has been conducted on the SPL process
methodology including product line architecture, common-
ality and variability management, core assets management,
business case engineering, and application and domain engi-
neering [6,9,22,42].

SPL engineering is gaining popularity in the software
industry. Some of the potential benefits of this approach

123

Author's personal copy



192 F. Ahmed, L. F. Capretz

include cost reduction, improvement in quality, and a
decrease in product development time. The increasing pop-
ularity of SPL engineering necessitates a process maturity
evaluation methodology. To date, no work has been reported
in this area apart from a few initial theoretical studies.
Accordingly, this study presents an Architecture Process
Maturity Model (APMM) of SPL engineering for evaluating
the maturity of an organization’s product line architecture
development process. The framework of this model assesses
the maturity of the SPLA development process according
to the way in which sets of various architecture development
activities are aligned with the SPL engineering methodology.
In particular, assessment questionnaires and a rating meth-
odology comprise the framework of this model. The objec-
tive of the questionnaires is to collect information about the
SPLA development process. We applied the model to two
organizations and demonstrate the assessment result in sub-
sequent sections of this paper. Apart from its general and
specific limitations, the APMM presented in this paper con-
tributes significantly to the area of SPL by addressing a topic
of immense importance.

2 Software product line engineering maturity model:
the big picture

The software product line is a relatively new concept in the
history of software development and business. A lot of effort
has been spent on the process methodology and the indus-
trialization of this paradigm. Software product line process
assessment is a relatively new area of research in which, so
far, very little work has been done. Currently, researchers
from both academia and industry are attempting to develop a
prescribed and systematic way of measuring the maturity
of a software product line process. Jones and Soule [23]
discuss the relationships between the software product line
process and the CMMI and observe that the software engi-
neering process discipline as specified in the CMMI provides
an essential foundation for the software product line process.
These researchers conclude that apart from the key process
areas of the CMMI model, the software product line requires
the mastery of many other essential practice areas. Although
Jones and Soule have compare the key process areas of the
software product line with the CMMI-model and find some
similarities, they do not discuss any procedure to evaluate
the maturity of the software product family process. More-
over, they state that there is a need to establish a compre-
hensive strategy for the process assessment of the software
product line in particular, which is what this research aims
to accomplish. As previously mentioned, the SEI proposed
the Product Line Technical Probe (PLTP) [9], which is aimed
at analyzing an organization’s ability to adapt and succeed
with the software product line approach. The framework of

PLTP is divided into three categories of product develop-
ment, core assets development, and management. However,
the framework does not clearly define any maturity levels
and the procedure to evaluate maturity of the software prod-
uct line process. Rather it identifies potential areas of concern
that require attention while carrying out that software prod-
uct line process, and it also presents a framework to set up a
software product line within an organization.

The acronym BAPO [38] (Business-Architecture-Pro-
cess-Organization) defines process concerns associated with
the SPL. The dimensions of business, architecture, process,
and organization are considered critical because they estab-
lish an infrastructure and manage the profitability of the
products resulting from a SPL. Specifically, the architectural
dimension of BAPO is important because it deals with the
technical means to build a framework that will be shared by
a number of products from the same family. van der Linden
et al. [38] propose a four-dimensional SPL maturity evalua-
tion framework based on the BAPO concept of operations.
It provides an early foundation for a systematic and com-
prehensive strategy to perform a process maturity evalua-
tion of SPL. Figure 1 illustrates the conceptual layout of
this maturity evaluation method. As previously discussed,
the four dimensions of the framework are labeled as Busi-
ness, Architecture, Process, and Organization. According to
this conceptual layout, the overall maturity assessment of
the SPL engineering comprises four separate maturity assess-
ment models for each of the BAPO dimensions. The maturity
models for each dimension of business, architecture, process,
and organization have not yet been given much attention by
the software engineering community. van der Linden et al.
[38] identify maturity scales of up to five levels in ascending
order for each dimension of BAPO, shown in the column of
“Maturity Scales” in Fig. 1. In the case of a SPL, this results
in separate values for each of the four dimensions.

Although van der Linden et al. [38] illustrates the con-
ceptual layout of the comprehensive maturity assessment of
software product line engineering and a framework to eval-
uate each dimension but did not provide the mechanism of
assessing maturity of each dimension of software product
line engineering process such as questionnaires and rating
methodology which are the core features of software engi-
neering process assessment approaches. The major contribu-
tion and further enhancement in the work of van der Linden
et al. [38] as presented in this paper is an APMM of SPL
consisting of set of questionnaires and rating methodology,
thus addressing one of the critical dimensions in the SPL
engineering process. The model provides a methodology for
evaluating the current maturity of the SPLA development
process in an organization. The maturity models that eval-
uate the other three dimensions of BAPO are beyond the
scope of this study since this work concentrates only on the
architecture dimension. Accordingly, the dotted rectangle in

123

Author's personal copy



An architecture process maturity model of software product line engineering 193

Fig. 1 Software product line engineering maturity model: the big picture (based on [38])

Fig. 1 clearly highlights the scope of the work presented in
this paper in the domain of process maturity assessment of
SPL engineering. Thus, the main objective of this research
is to contribute towards a unified strategy for the process
evaluation of SPL engineering.

2.1 Architecture dimension of software product line:
literature review

The literature survey of related SPLA studies exposes some
key architecture process activities such as domain engineer-
ing, commonality and variability management, requirements
modeling, architecture documentation, and architecture eval-
uation, all of which are currently in practice. We used these
architecture process activities in developing the SPL matu-
rity model presented in this paper. This section provides the-
oretical information and a detailed discussion of these key
architecture process activities in context of work carried out
in the domain of SPL engineering.

Software architecture has a history of evolution. Over
the past decade, the software industry has been observing
and reporting modifications and advancements in technol-
ogy. According to Garlan and Perry [18], software architec-
ture includes the structure of the components of a program
or system, their interrelationships, and the principles and

guidelines governing their design and evolution. In this mod-
ern era, software architecture is being restructured towards a
SPLA, where the focus is not on single product development
but rather on multiple product development. In a SPLA, all of
the products share the same architecture. Pronk [35] defines
SPLA as a system of reuse in which the same software is
recycled for an entire class of products, with only minimal
variations to support the diversity of individual product fam-
ily members. According to Jazayeri et al. [22] SPLA defines
the concepts, structures, and textures necessary to achieve
variation in the features of diverse products while ensur-
ing that the products share the maximum amount of parts
in the implementation. Mika and Tommi [32] explain that
SPLA can be produced in three different ways: from scratch,
from an existing product group or from a single product.
Hence, SPLA is an effective way to minimize risks and to
take advantage of opportunities such as complex customer
requirements, business constraints, and technology. Never-
theless, the success of SPLA depends on more than technical
excellence [13]. van der Linden et al. [38] identify some
main factors for evaluating the architecture dimension of
SPL. These factors include software product family archi-
tecture, product quality, reuse levels, and software variability
management. Furthermore, these authors classified the archi-
tectural maturity of the SPL into five levels. In ascending

123

Author's personal copy



194 F. Ahmed, L. F. Capretz

order, these levels include “independent product develop-
ment”, “standardized infrastructure”, “software platform”,
“software product family” and “configurable product base”.

Bayer et al. [4], at the Fraunhofer Institute of Experimen-
tal Software Engineering (IESE), developed a methodology
called PuLSE (Product Line Software Engineering) for the
purpose of enabling the conception and deployment of SPL
within a large variety of enterprise contexts. As part of the
PuLSE methodology, PuLSE-DSSA develops the reference
architecture for a SPL. Knauber et al. [26] explain that the
basic idea of PuLSE-DSSA is to incrementally develop refer-
ence architecture guided by generic scenarios that are applied
in decreasing order of architectural significance. Research-
ers at Philips� developed the Component-Oriented Platform
Architecting (CoPAM) [2] method for the SPL of electronics
products. CoPAM assumes a strong correlation among facts,
stakeholder expectations, and existing architecture. Weiss
and Lai [42] discuss the development of the Family-Oriented
Abstraction Specification and Translation (FAST) method
for the SPL process and its successful use it at Lucent Tech-
nologies�. The FAST method entails a full SPL engineer-
ing process with specific activities and targeted objects. It
divides the overall process of the SPL into three major steps
of domain qualification, domain engineering, and applica-
tion engineering. Similarly, researchers at IESE developed
a methodology called KobrA [3], which defines the objects
and activities involved in the SPL the engineering process. In
KobrA, the process of SPL engineering is divided in to frame-
work engineering and application engineering, and then it is
further classified into sub-steps of both engineering types.
These steps cover the implementation, release, inspection,
and testing aspects of the product line engineering process.
Kang et al. [24] propose a Feature-Oriented Reuse Method
(FORM) to detail the aspects of SPL; FORM is an extension
of the Feature-Oriented Domain Analysis (FODA) method.
Also, FORM provides a methodology for using feature
models in developing domain architectures and reusable
components.

Although the concepts of commonality and variability
management belong to domain engineering, they have been
increasing in popularity over time due to their extensive use in
SPLA. According to Coplien et al. [11] commonality and var-
iability analysis gives software engineers a systematic way
of conceptualizing and identifying the product family that
they are creating. Kang et al. [24] discuss the use of fea-
ture models to manage commonality and variability in SPL.
Furthermore, Lam [28] presents variability templates and a
hierarchy-based variability management process. Thompson
and Heimdah [36] propose a set-based approach to structure
commonalities and variability in SPLs, whereas Kim and
Park [25] describe the goal- and scenario-driven approach
for managing commonality and variability. Ommering [39]
observes that the commonalities are embodied in the overall

architecture of a SPL, while the differences result from spec-
ifying variation points. Researchers [26,31,42] stress that the
SPLA must address variability and commonality in product
development. Birk et al. [5] stress that an organization deal-
ing with SPLA should describe the architecture using well-
established notations such as the UML, and the architectural
description should cover all relevant views and use clearly
defined semantics. Gomma and Shin [19] describe a multiple-
view meta-modeling approach for SPLs using the UML nota-
tion. Zuo et al. [44] present the use of problem frames for
product line engineering modeling and requirements analy-
sis. Dobrica and Niemelä [13] discuss how UML standard
concepts can be extended to address the challenges of vari-
ability management in SPLA. Eriksson et al. [15] describe a
product line use case approach named PLUSS (Product Line
Use case modeling for Systems and Software engineering).
Etxeberria and Sagardui [16] highlight the issues that arise
when evaluating product line architecture as opposed to sin-
gle-system architecture. More specifically, Graaf et al. [20]
present a scenario-based SPL evaluation technique, which
provides guidelines for applying a scenario-based assessment
to a SPL context by using the qualitative technique of soft-
ware architecture evaluation. van der Hoek et al. [37] propose
service utilization metrics to assess the quality attributes of
SPLA. Similarly, Zhang et al. [43] study the impact of vari-
ants on quality attributes using a Bayesian Belief Network
(BBN), and they design a methodology applicable to SPLA
evaluation. De Lange and Kang [12] propose a product-line
architecture prototyping approach that uses a network tech-
nique to assess issues related to SPLA evaluation. Further-
more, Gannod and Lutz [17] define an approach to evaluate
the quality and functional requirements of SPLA. Niemelä
et al. [33] discuss the basic issues of product family archi-
tecture development and present an evaluation model of the
software product family in an industrial setting.

3 An architecture process maturity model of software
product line engineering

The APMM of SPL engineering aims at establishing a com-
prehensive strategy to evaluate the architecture dimension
of the SPL process. It describes the SPLA process assess-
ment methodology and determines the current maturity of the
SPLA development process in an organization. Furthermore,
it is structured to determine how various architecture pro-
cess activities are conducted in SPL development. The matu-
rity assessment of the SPLA development process assumes a
strong degree of coordination between product line engineer-
ing and architecture-related process activities. It evaluates the
maturity of the SPLA development process as a function of
how various architecture process activities are aligned with
product line engineering. The model’s functional structure

123

Author's personal copy



An architecture process maturity model of software product line engineering 195

Fig. 2 Scope of architecture
process maturity model of
software product line
engineering

consists of a set of questionnaires purposely designed for
evaluating the maturity at each of the five levels. A survey
of work carried out in the SPLA provides foundations for
designing the questionnaires, which are divided into sets of
various key architecture process activities.

3.1 General scope of architecture process maturity model

The assessment of architecture dimension of software prod-
uct line engineering is an essential activity for improving
the overall software product line engineering process in an
organization. The general objective of a maturity assess-
ment model in software engineering is twofold. First, it
provides mechanism to perform assessment and second it
provides further guidelines to introduce changes in the cur-
rent process to make improvements. The software product
line engineering process like others requires improvements
over time. However, it is very difficult to develop an effi-
cient and effective improvements plan unless it is based on
the results of a comprehensive assessment exercise. Fig-
ure 2 illustrates the framework of a comprehensive archi-
tecture process assessment exercise for the organizations
dealing with software product line development. The over-
all software product line engineering process involves many
key architecture process activities. They are blended into
the software product line engineering process and can be
used as indicators for the process assessment of architec-
ture dimension of software product line engineering. For
example, if we take one of the activities of product line

engineering process such as variability management, then
this task requires some key architecture process activities
such as domain engineering and requirements management.
An improved architecture process activity further helps in
executing product line engineering process. The architecture
process maturity model presented in this work uses the key
architecture process activities in developing a comprehen-
sive framework consisting of questionnaires and maturity
levels to carry out assessment. Furthermore, architecture pro-
cess maturity assessment determines the current status of the
architectural dimension of the software product line engi-
neering process in an organization. The assessment process
yields a number of recommendations based on the identi-
fication of weaknesses in the current process for improve-
ment. Ideally, after the assessment process the improvement
guidelines highlight changes in current software product line
engineering process to introduce improvements based on the
assessment activities. However, the maturity model presented
in this work does not provide any guidelines for the improve-
ment process, which we consider as a future project for this
study.

3.2 Configuration of architecture process maturity model

The functional configuration of the APMM of a SPL con-
sists of six key architecture process activities. Specifically,
Table 1 defines the hierarchy and domains of the APMM of a
SPL. In this paper, we use the term “architecture process
activities” to refer to the practice, which, in conjunction

123

Author's personal copy



196 F. Ahmed, L. F. Capretz

Table 1 Configuration of architecture process maturity model

Dimension Activity no. Key architecture
process activities

Architecture design 1 Domain engineering

2 Requirements management
and modeling

3 Architecture analysis and
evaluation

Product line 4 Commonality management
management

5 Variability management

Documentation 6 Architecture artifact
management

with SPL engineering, contributes to the development and
management of the SPLA. The six key architecture process
activities used in this model include domain engineering,
requirements management and modeling, commonality man-
agement, variability management, architecture analysis and
evaluation, and architecture artifact management. We divided
these six architecture process activities into a set of three
dimensions that included “architecture design”, “product
line management”, and “documentation”. In comparison,
Hofmeister et al. [21] classify architecture analysis, archi-
tecture synthesis, and architecture evaluation as key activi-
ties performed during the architecture designing phase. The
dimension of “architecture design” covers domain engi-
neering, requirements management and modeling, architec-
ture analysis, and evaluation activities. The “product line
management” dimension covers the commonality and var-
iability management of product line architecture. Ahmed
and Capretz [1] conducted an empirical investigation and
found that these six architecture process activities have pos-
itive impact on the performance of software product line
development in an organization. This empirical investiga-
tion motivates the inclusion of these six architecture pro-
cess activities into this maturity model development. These
six, significantly important architecture process activities
comprise the foundation of the questionnaires, which include

“statements” regarding the effectiveness of the activities as
they contribute to the development and management of the
SPLA.

3.3 Framework of architecture process maturity model

The concept of ranking is important for defining matu-
rity levels in software process assessment methodologies.
Many popular software process assessment frameworks,
such as CMM [34] and BOOTSTRAP [27], utilize the pro-
cess of ranking in defining maturity levels. Our proposed
APMM also uses the approach of ranked maturity. van der
Linden et al. [38] defines five maturity scales for the archi-
tecture dimension of a SPL. In ascending order, these levels
include “independent product development”, “standardized
infrastructure”, “software platform”, “software product fam-
ily” and “configurable product base”. Accordingly, this study
uses van der Linden’s architecture maturity scale to develop
a framework consisting of a set of questionnaires for each
maturity level. Each questionnaire contains a number of state-
ments that are divided into six key architecture process activ-
ities. The maturity level of each organization’s SPLA process
is determined by the extent to which the organization agrees
with each statement in the questionnaire. All questionnaires
shown in this paper are designed and written specifically for
this APMM of software product line engineering.

Table 2 illustrates the framework of the APMM. Each
maturity level includes a set of statements that cover all
six architecture process activities used in this study. The
number of statements varies for each maturity level and for
each architecture process activity. Throughout the rest of
this paper, abbreviations for each key process activity will
be used. These include domain engineering (DE), require-
ments management and modeling (RMM), commonality
management (CM), variability management (VM), architec-
ture analysis and evaluation (AAE), and architecture artifact
management (AAM). The following sub-sections describe
the characteristics of an organization dealing with the SPL.
Specifically, organizations will be described in terms of the
architecture maturity scale and the measuring instrument

Table 2 Framework
of architecture process
maturity model

Maturity level Architecture process activities & number of statements
in assessment questionnaires

DE RMM CM VM AAE AAM Total

Independent product development 2 5 2 2 2 2 15

Standardized infrastructure 3 4 3 3 3 3 19

Software platform 4 5 2 4 4 3 22

Software product family 5 3 3 4 3 2 20

Configurable product base 4 3 3 4 3 2 19

123

Author's personal copy



An architecture process maturity model of software product line engineering 197

designed particularly for this APMM. In describing the mea-
suring instrument, we will use the following symbols and
abbreviations:

APA.X.Y

APA = Architecture Process Activity
X = Maturity Level (an integer)
Y = Architecture Process Activity Number (an integer)

S.I.J.K

S = Statement
I = Maturity Level (an integer)
J = Architecture Process Activity Number (an integer)
K = Statement Number (an integer)

3.3.1 Independent product development (Level 1)

The “Independent Product Development” stage of the SPLA
process indicates that an organization does not have a set of
stable and organized architecture process activities for SPL
development. In an organization at this level, there is a lack
of understanding about the significance of the SPLA pro-
cess. Furthermore, there is no evidence that the organization
performs SPL engineering activities in a coordinated way.
Instead, the organization tends to develop multiple products
independently and reuse their software assets on an ad hoc
and as-needed basis. Also, there is no defined protocol to
switch from a single product to a line of products that share
a common architecture. The organization does not have the
technological resources and skills to establish a SPLA despite
the fact that they have a growing interest in setting up an
infrastructure for a SPL. The following measuring instru-
ment illustrates the SPLA maturity of an organization when
it is at Level 1 in terms of key architecture process activities.

APA.1.1 Domain Engineering

S.1.1.1 The organization does not have an established unit
to perform domain engineering, and most of the
activities are performed solely on an ad hoc and as
needed basis.

S.1.1.2 The organization does not have sufficient knowl-
edge about the domain of SPL.

APA.1.2 Requirements Management & Modeling

S.1.2.1 SPLA requirements are not clearly defined and
identified.

S.1.2.2 The requirements are managed at individual prod-
uct levels.

S.1.2.3 There is a lack of technical understanding regarding
SPLA requirements.

S.1.2.4 The organization is not using any modeling tech-
niques to elaborate SPLA requirements.

S.1.2.5 The organization does not have the technical means
and knowledge to model SPLA requirements.

APA.1.3 Architecture Analysis and Evaluation

S.1.3.1 The organization lacks an understanding of SPLA
analysis techniques.

S.1.3.2 There is no evidence that the organization performs
a systematic analysis of SPLA.

APA.1.4 Commonality Management

S.1.4.1 The commonality among independent products
does not result from any planning.

S.1.4.2 The commonality among products results from the
ad hoc reusability of software assets.

APA.1.5 Variability Management

S.1.5.1 There is no evidence of planned variability among
successive products.

S.1.5.2 The SPLA does not define any variation points

APA.1.6 Architecture Artifact Management

S.1.6.1 SPLA artifacts are not maintained and documented.
S.1.6.2 The requirements are documented only at the indi-

vidual product level.

3.3.2 Standardized infrastructure (Level 2)

The next architectural maturity level of the SPL is Level
2, also known as “Standardized Infrastructure”. The organi-
zations at this level aim to develop a SPLA and encourage
employees to acquire and share knowledge and skills for SPL
engineering. At this earlier stage, the organization is concen-
trating their efforts on creating a domain engineering unit to
initiate the development of an infrastructure for their SPLA.
The organization understands the significance of modeling
architectural structures and patterns and is currently develop-
ing its expertise to manage and model SPLA requirements.
Furthermore, the organization understands the importance
of commonality and variability management in SPLA, but
there is a lack of systematic and planned management of the
commonality and variability among products. Also, there are
no clear guidelines or methodologies to evaluate the SPLA.

123

Author's personal copy



198 F. Ahmed, L. F. Capretz

The organization is not maintaining the appropriate docu-
mentation for their SPLA. Overall, the organization under-
stands the importance of a SPLA and they are in the process
of establishing an infrastructure for the SPL. The measuring
instrument below illustrates the set of statements that must
be satisfied for an organization to achieve Level 2.

APA.2.1 Domain Engineering

S.2.1.1 The organizational structure clearly defines and
supports the presence of a domain-engineering unit.

S.2.1.2 The roles and responsibilities in the domain-engi-
neering units are not yet explicitly defined.

S.2.1.3 The organization is acquiring knowledge about the
domain of the SPL.

APA.2.2 Requirements Management & Modeling

S.2.2.1 The organization is making an effort to acquire tech-
nical knowledge and to understand the managing of
SPLA requirements

S.2.2.2 The organization collects and analyzes data from
the consumer market in order to identify the poten-
tial requirements of SPLA.

S.2.2.3 The organization is using a notation language to
model SPLA requirements.

S.2.2.4 The organization understands that requirement
models facilitate the understanding of SPLA
Requirements, but there is a lack of technical
knowledge for developing architectural models.

APA.2.3 Architecture Analysis and Evaluation

S.2.3.1 The organization is acquiring knowledge and skills
to analyze the SPLA.

S.2.3.2 The organization has not yet established clear
guidelines or a well-documented methodology to
evaluate the SPLA.

S.2.3.3 The quality and functional attributes necessary for
evaluating the SPLA are not yet defined.

APA.2.4 Commonality Management

S.2.4.1 The organization understands the importance of
commonality among successive products.

S.2.4.2 There is a lack of systematic and planned manage-
ment of the commonality among products.

S.2.4.3 The organization is continuously learning to man-
age commonality among products and to avoid
making mistakes in this endeavor.

APA.2.5 Variability Management

S.2.5.1 There is a lack of systematic and planned manage-
ment of the variability among products.

S.2.5.2 The uncontrolled variability among products is a
response to the actions of competitors.

S.2.5.3 The organization is acquiring knowledge and skills
to handle the variability among products.

APA.2.6 Architecture Artifact Management

S.2.6.1 The significant architectural requirements are iden-
tified but the organization does not systematically
document these requirements.

S.2.6.2 The architectural structure is identified but the orga-
nization is not using any architectural description
language to document the structure, the sub-units,
or the connection among them.

S.2.6.3 The component description, interface requirements,
interconnection hierarchy, and variation mecha-
nisms are not documented.

3.3.3 Software platform (Level 3)

An organization at Level 3, or the “Software Platform”, is
able to establish an infrastructure of SPLA by completing
a comprehensive domain engineering activity. The strategic
plans show the organizational commitment to developing a
SPLA. SPLA requirements are identified and documented as
a result of sufficient knowledge about the domain. The orga-
nization prepares and manages requirement models, which
represent the structural layout and the interconnection among
various architectural sub-units. Subsequently, the organiza-
tion employs the use of architecture description language
to document components, interfaces, classes, and objects.
The domain engineering activities in the organization iden-
tify commonality and variability among a set of envisioned
product line applications. Specifically, the commonality and
variability among products are explicitly identified in the
models of the SPLA. The organization has established clear
guidelines and a well-documented methodology to evaluate
the SPLA. Accordingly, the employees are trained with the
required knowledge of a SPLA methodology. Overall, the
organization understands the process methodology of SPLA
and is able to streamline activities for SPL engineering from
the architectural aspects. The subsequent measuring instru-
ment illustrates the set of statements designed for Level 3.

APA.3.1 Domain Engineering

S.3.1.1 The roles and responsibilities of individuals and
groups are well defined and documented in the orga-
nization’s domain and engineering units.

123

Author's personal copy



An architecture process maturity model of software product line engineering 199

S.3.1.2 The domain requirements of the SPL are clearly
defined, stated, and documented.

S.3.1.3 The organization has sufficient knowledge of the
SPL domain.

S.3.1.4 The domain engineering activity for the product line
identifies the potential market segment.

APA.3.2 Requirements Management & Modeling

S.3.2.1 The organization has acquired sufficient knowl-
edge and technical ability to manage SPLA require-
ments.

S.3.2.2 The requirements of the SPLA are clearly identified
and well documented.

S.3.2.3 The requirements model explicitly shows the struc-
tural layout of the product line architecture.

S.3.2.4 The requirements model envisions the development
of product lines.

S.3.2.5 The requirements model helps in visualizing the
inter-connection of various architectural sub-units.

APA.3.3 Architecture Analysis and Evaluation

S.3.3.1 The organization has established clear guidelines
and a well-documented methodology to evaluate
the SPLA.

S.3.3.2 The simulations and prototyping activities are used
to analyze the structure of and interconnection
among the SPLA components.

S.3.3.3 The organization is using standard industry prac-
tices to evaluate SPLA.

S.3.3.4 The organization has acquired sufficient knowledge
and technical abilities to evaluate their SPLA.

APA.3.4 Commonality Management

S.3.4.1 The domain engineering activities in the organiza-
tion identify commonalities among a set of envi-
sioned product line applications.

S.3.4.2 The commonality among products is explicitly
identified in the SPLA.

APA.3.5 Variability Management

S.3.5.1 The domain engineering activities in the organiza-
tion identify variability among a set of envisioned
product line applications.

S.3.5.2 The organization identifies the variability among
products by showing the areas of variation in the
SPLA.

S.3.5.3 The organization documents the variability in com-
ponents, interfaces, classes, and objects, and their
design documents highlight the areas of variation.

S.3.5.4 The variability information is available to the appli-
cation-engineering unit when necessary.

APA.3.6 Architecture Artifact Management

S.3.6.1 The organization is using an architectural descrip-
tion language to describe and document architec-
tural structure and textures.

S.3.6.2 Significant architectural requirements are well doc-
umented and traceable.

S.3.6.3 The architectural layers and design decisions are
well documented and traceable.

3.3.4 Software product family (Level 4)

Level 4 of the SPLA maturity is known as the “Software
Product Family. The organization at this level is able to
establish a SPLA. Specifically, the scope of the SPLA is
clearly defined and documented and it details the product
line requirements. The organization develops and manages
variability and commonality models to introduce controlled
variability and to maximize the commonality among suc-
cessive products. Furthermore, the organization explicitly
defines and utilizes the quality and functional attributes to
evaluate the SPLA. The components description, interface
requirements, interconnection hierarchy, and variation mech-
anisms are explicitly documented and traceable. Effective
communication channels are present in the organization in
order to resolve architecture-related issues. The organization
is committed to learning and to improving their knowledge in
the area of SPLA. The organizational structure supports SPL
engineering and there is evidence of strong communication
between the domain and application engineering units. Also,
the process activities among various departments and sub
units are synchronized. The resulting measuring instrument
illustrates the set of statements that apply to an organization
at Level 4.

APA.4.1 Domain Engineering

S.4.1.1 The SPL scope is well defined and documented as a
result of comprehensive domain engineering activ-
ities.

S.4.1.2 Domain analysis identifies a potential set of prod-
ucts for the SPL.

S.4.1.3 The domain-engineering unit generates new ideas
and innovations and they take the initiative to exper-
iment with new ideas.

S.4.1.4 The domain-engineering unit works in a collabora-
tive way and provides feedback to other units within
the organization.

S.4.1.5 Business plans are based on comprehensive domain
engineering activities.

123

Author's personal copy



200 F. Ahmed, L. F. Capretz

APA.4.2 Requirements Management & Modeling

S.4.2.1 The SPLA requirements comprise the scope of the
SPL.

S.4.2.2 The organization has an established and defined
inter-communication protocol among external and
internal entities for analyzing and identifying SPLA
requirements.

S.4.2.3 The organization develops and manages variability
models to introduce controlled variability among
successive products.

APA.4.3 Architecture Analysis and Evaluation

S.4.3.1 The quality and functional attributes that evaluate
the SPLA are explicitly defined.

S.4.3.2 The organization has defined specific qualitative
metrics to evaluate the performance of the SPLA.

S.4.3.3 The organization is committed to learning and
improving their knowledge in the area of SPLA
evaluation.

APA.4.4 Commonality Management

S.4.4.1 The management encourages as much commonal-
ity as possible and developers concentrate more on
product specific issues rather than on issues com-
mon to all products.

S.4.4.2 SPL requirements clearly identify, model and doc-
ument commonality in products.

S.4.4.3 A well-defined organizational unit with a clear
set of guidelines handles the management of core
SPL assets, which increase the commonality among
products.

APA.4.5 Variability Management

S.4.5.1 Variability among products is within the scope of
the SPL.

S.4.5.2 Market requirements and customer expectations
influence the design decisions for creating variabil-
ity among products.

S.4.5.3 Requirement models clearly illustrate variability
among products by explicitly showing the areas of
variation.

S.4.5.4 The variability among products helps to retain cur-
rent customers.

APA.4.6 Architecture Artifact Management

S.4.6.1 The components description, interface require-
ments, interconnection hierarchy and variation

mechanisms are explicitly documented and trace-
able.

S.4.6.2 A well-established configuration management sys-
tem keeps track of all architecture objects.

3.3.5 Configurable product base (Level 5)

The highest architecture maturity level is called the “Configu-
rable Product Base”. At this level, the SPLA plays an integral
role in the business of the organization. There is strong evi-
dence that various sub-units of the organization work collab-
oratively to develop and manage the SPLA. Cross-functional
teams are established, which oversee the entire SPL pro-
cess and support the management in decision-making. The
organization learns from their experiments in improving the
SPLA process methodology and avoids making future mis-
takes. Hence, learning and acquiring new knowledge about
the SPLA is a continuous process in the organization. Domain
and application engineering units cooperatively supervise
the synchronization of activities in both departments. The
SPLA requirements are regularly reviewed and updated when
necessary. Furthermore, the effective commonality manage-
ment allows maximum software reuse in the organization.
The organization regularly conducts market reviews and uses
customer feedback to manage variability in successive prod-
uct development. They also support innovation in the SPLA
and promote research and development. The organization
is continuously improving their process for evaluating the
SPLA and experimenting with innovative methods. The fol-
lowing measuring instrument illustrates the set of statements
designed for Level 5.

APA.5.1 Domain Engineering

S.5.1.1 The domain engineering unit has access to informa-
tion from internal and external resources and uses
both formal and informal mechanisms to dissemi-
nate learning and knowledge within the organiza-
tion.

S.5.1.2 A joint team from the domain and application
engineering units supervise the synchronization of
activities in both departments.

S.5.1.3 The business and domain engineering units coordi-
nate the supervision of marketing plans and strate-
gies.

S.5.1.4 The domain-engineering activities support the exe-
cution of strategic organizational plans.

APA.5.2 Requirements Management & Modeling

S.5.2.1 The requirements of the SPLA include the targeted
market segment.

123

Author's personal copy



An architecture process maturity model of software product line engineering 201

Table 3 Performance scale
Scale Linguistic expression expression Linguistic expression Rating

of performance scale of BOOTSTRAP threshold (%)

4 Completely agree Completely satisfied ≥80

3 Largely agree Largely satisfied 66.7–79.9

2 Partially agree Partially satisfied 33.3–66.6

1 Not agree Absent/poor ≤33.2

0 Doesn’t apply Doesn’t apply –

S.5.2.2 The requirements of the SPLA are regularly
reviewed and updated when necessary.

S.5.2.3 The requirements accommodate the quality attri-
butes of the SPLA.

APA.5.3 Architecture Analysis and Evaluation

S.5.3.1 The organization is continuously improving the
process of evaluating the SPLA and is experiment-
ing with innovative methods.

S.5.3.2 The roles and responsibilities of individuals and
groups in analyzing the SPLA are well defined and
documented.

S.5.3.3 The organization learns from its experience and
avoids repeating mistakes in their evaluation of the
SPLA.

APA.5.4 Commonality Management

S.5.4.1 The commonality management allows the maxi-
mum amount of software reuse in the organization.

S.5.4.2 The organization regularly conducts market reviews
and uses customer feedback to update commonali-
ties among successive products.

S.5.4.3 All of the resulting products share a common SPLA.

APA.5.5 Variability Management

S.5.5.1 The organization is continuously improving the
process of managing variability among products.

S.5.5.2 The variable requirements of the product line are
well defined and documented.

S.5.5.3 The organization regularly conducts market reviews
and uses customer feedback to introduce variable
features in successive product development.

S.5.5.4 The variability among products helps to retain reg-
ular customers and has a tendency to attract new
clients.

APA.5.6 Architecture Artifact Management

S.5.6.1 The architectural objects are regularly reviewed,
updated, and communicated to the developers.

S.5.6.2 The organization has a well-established change
management plan to introduce and manage changes
in the architectural objects.

3.4 Performance scale

The maturity level of an organization’s SPLA process
is determined by measuring their ability to perform key
architecture process activities. The qualitative ratings, in
descending order, include the statements “Completely Agree
(4)”, “Largely Agree (3)”, “Partially Agree (2)”, and “Not
Agree (1)”. These statements and their numerical value,
as described in Table 3, are used to measure each key
architecture process activity Overall; these ratings reflect the
agreement of the organization with each statement in the
questionnaire. The rating of 0 and its corresponding state-
ment, “Doesn’t Apply”, is designed to increase the flexibility
of the model, and it is treated as a rating of 4 in the algorithm.
As illustrated in Table 3, the performance scales are similar to
the BOOTSTRAP methodology [41]. We intentionally based
our performance scale on BOOTSTRAP in order to model
the architecture dimension of the SPL assessment process on
existing popular scales that are already in use and that have
been validated and widely accepted in the industry. Conse-
quently, the rating threshold values of the performance scales
are also similar to those of BOOTSTRAP. However, we have
introduced some changes in the linguistic expressions of the
performance scales in order to maintain consistency with the
questionnaire design. Specifically, our questionnaires take a
self-assessment approach into account, whereby an organi-
zation is able to evaluate the maturity of the SPLA develop-
ment process by expressing their extent of agreement with
the statements.

3.5 Rating method

The rating method adopted in this APMM drives its foun-
dations partially from the BOOTSTRAP algorithm [41] of
software process assessment. The structure of the rating
method contains different terms such as Performance Rating
(PRAPA), Number of Agreed upon Statements (NAAPA),

Pass Threshold (PTAPA), Number of Agreed upon State-
ments of Variability Management (NA_VMAPA), Pass

123

Author's personal copy



202 F. Ahmed, L. F. Capretz

Table 4 Rating threshold

All values are calculated to the
nearest hundred

Maturity level Total statements Overall pass Variability Variability
threshold 80% management management

statements threshold 80%

Independent product development 15 12 2 2

Standardized infrastructure 19 15 3 2

Software platform 22 18 4 3

Software product family 20 16 4 3

Configurable product base 19 15 4 3

Threshold of Variability Management (PT_VMAPA), and
architecture maturity level (AML). Each of these terms is
discussed in detail below.

Let PRAPA [I, J] be a rating of the Ith architecture process
activity at the Jth maturity level. Using the performance scale
defined in Table 3, PRAPA [I, J] can be rated in the following
manner:

PRAPA[I, J] = 4, if the extent of agreement to the statement

is at least 80%.

= 3, if the extent of agreement to the statement

is between 66.7 and 79.9%.

= 2, if the extent of agreement to the statement

is between33.3 and 66.6%.

= 1, if the extent of agreement to the statement

is less than 33.2%.

An Ith statement at the Jth maturity level is considered to
be agreed upon if PRAPA [I, J] ≥ 3 or PRAPA [I, J] is equal
to 0. If the number of statements agreed upon at maturity
level “J” is NAAPA, [J] then it is defined by the following
expression:

NAAPA[J] = Number of {PRAPA[I, J]|Agreed upon}
= Number of {PRAPA[I, J]|PRAPA[I, J]
≥ 3orPRAPA[I, J] = 0}

Table 4 illustrates the pass threshold of 80% at each matu-
rity level. In this table, the values are calculated to the nearest
hundred. The maturity level is considered as a pass if 80% of
the statements in the questionnaire are agreed upon. If NAPA

[J] is the total number of statements at the Jth maturity level,
then the pass threshold (PTAPA) at the Jth maturity level is
defined as

PTAPA[J] = NAPA[J] ∗ 80%

Variability management is considered as a key character-
istic of the product line architecture development process.
If the architecture has not been developed with a focus on
variability, then there is little chance for successful prod-
uct line architecture. Consequently, the rating methodology

highlights the significance of this factor by assigning impor-
tance to variability management in the overall calculation of
the architecture process maturity.

If the number of statements agreed upon for “variability
management” at maturity level “J” is NA_VMAPA [J] then it
is defined by the following expression:

NA_VMAPA[J ]={Number of PRAPA[I=5,J]|Agreed upon}
= {Number of PRAPA[I=5, J]|PRAPA

×[I = 5, J] ≥ 3orPRAPA[I = 5, J] = 0}
If N_VMAPA [J] is the total number of “variability man-

agement” statements at the Jth maturity level, then the pass
threshold (PT_VMAPA) at the Jth maturity level for “vari-
ability management” is defined as

PT_VMAPA[J] = N_VMAPA[J] ∗ 80%

The architecture maturity level (AML) is defined as the
highest maturity level at which the number of statements
agreed upon is greater than or equal to the pass threshold
(PTAPA [J]) and PT_VMAPA [J], defined by

AML = max{J|NAAPA[J] ≥ PTAPA[J]&&NA_VMAPA[J]
≥ PT_VMAPA[J]}

4 Case studies

We applied the APMM presented in this work to two orga-
nizations currently involved in SPL engineering. In doing
so, we performed a maturity assessment on their architecture
development process. The two organizations, whose names
are kept confidential, agreed to participate in our study. For
experimental purposes, the organizations are named “A” and
“B”. Organization “A” is one of the largest companies in the
automobile industry and has been using the concept of SPL
engineering in developing embedded systems for various
parts of automobiles. Organization “B” is a software devel-
opment firm that has software development sites worldwide.
Table 5 shows detailed assessment results for Organization
“A.” The numerical values entered in each cell represent

123

Author's personal copy



An architecture process maturity model of software product line engineering 203

Table 5 Details of assessment
result of case study “A” Level 1 Level 2 Level 3 Level 4 Level 5

Statement # Value Statement # Value Statement # Value Statement # Value Statement # Value

S1.1.1 2 S.2.1.1 1 S.3.1.1 4 S.4.1.1 4 S.5.1.1 3

S1.1.2 2 S.2.1.2 2 S.3.1.2 4 S.4.1.2 2 S.5.1.2 2

S1.2.1 2 S.2.1.3 2 S.3.1.3 4 S.4.1.3 4 S.5.1.3 2

S1.2.2 2 S.2.2.1 2 S.3.1.4 4 S.4.1.4 4 S.5.1.4 2

S1.2.3 1 S.2.2.2 1 S.3.2.1 3 S.4.1.5 4 S.5.2.1 3

S1.2.4 1 S.2.2.3 1 S.3.2.2 3 S.4.2.1 4 S.5.2.2 3

S1.2.5 2 S.2.2.4 1 S.3.2.3 4 S.4.2.2 4 S.5.2.3 2

S1.3.1 1 S.2.3.1 3 S.3.2.4 4 S.4.2.3 4 S.5.3.1 3

S1.3.2 1 S.2.3.2 4 S.3.2.5 4 S.4.3.1 3 S.5.3.2 3

S1.4.1 1 S.2.3.3 3 S.3.3.1 4 S.4.3.2 2 S.5.3.3 3

S1.4.2 1 S.2.4.1 1 S.3.3.2 4 S.4.3.3 3 S.5.4.1 3

S1.5.1 1 S.2.4.2 1 S.3.3.3 4 S.4.4.1 4 S.5.4.2 2

S1.5.2 1 S.2.4.3 1 S.3.3.4 4 S.4.4.2 4 S.5.4.3 2

S1.6.1 1 S.2.5.1 3 S.3.4.1 4 S.4.4.3 4 S.5.5.1 3

S1.6.2 1 S.2.5.2 4 S.3.4.2 4 S.4.5.1 4 S.5.5.2 2

S.2.5.3 4 S.3.5.1 3 S.4.5.2 3 S.5.5.3 3

S.2.6.1 4 S.3.5.2 3 S.4.5.3 3 S.5.5.4 3

S.2.6.2 4 S.3.5.3 4 S.4.5.4 3 S.5.6.1 2

S.2.6.3 3 S.3.5.4 4 S.4.6.1 2 S.5.6.2 2

S.3.6.1 4 S.4.6.2 3

S.3.6.2 4

S.3.6.3 4

Table 6 Summary of
assessment results of case
studies

NAAPA = total number of
agreed upon statements
NA_VMAPA = total number of
agreed upon statements of
variability management

Maturity Total Pass Organization Organization Organization Organization
level statements threshold 80% “A” NAAPA “A” NA_VMAPA “B”NAAPA “B” NA_VMAPA

Level 1 15 12 0 0 9 0

Level 2 19 15 9 3 18 3

Level 3 22 18 22 4 10 2

Level 4 20 16 17 4 3 2

Level 5 19 15 10 3 0 1

the organization’s extent of agreement with the question-
naire statements for each maturity level. Table 6 reports the
summary of the assessment results. According to the rating
method discussed in Sect. 2, Part “D”, a statement is consid-
ered to be agreed upon if the performance rating shown in
Table 3 is either greater than or equal to 3, or at 0. Thus, based
on the results in Table 4, Organization “A” is at the architec-
ture maturity level of “Software Product Family”, which is
Level 4, whereas Organization “B” is at Level 2 and is con-
sidered “Standardized Infrastructure”. The following section
further highlights the assessment methodology that was used
in this study.

4.1 Assessment methodology

• The two participating organizations are from North
America. Based on the assumption that a large orga-
nization has more than 3,000 employees in various
departments, these two organizations are considered to
be large-scale.

• In the first stage of the study, we established contacts with
individuals in the two organizations in order to request
their participation in this study. In particular, we sent
personal emails to the individuals, stating the scope and
objectives of the study. The individuals were working in

123

Author's personal copy



204 F. Ahmed, L. F. Capretz

the area of SPL engineering, which assured us of their
competence. Finally, we guaranteed the participants that
the assessment conducted for this work was part of a
Ph.D. research study and that neither the identity of an
individual nor of an organization would be disclosed in
the Ph.D. thesis or in any subsequent research publica-
tion.

• The questionnaires for each maturity level are designed
to serve as a way of learning about the performance of the
architectural dimension of SPL engineering. The individ-
uals participating in the study were requested to provide
their extent of agreement to each statement by using the
performance scale shown in Table 3, which ranges from
0 to 4.

• Our assessment methodology uses a top-down approach,
where each organization has to start by completing the
questionnaire for Level 1 and then progress in increasing
order to Level 5. The design of the questionnaire state-
ments are also based on the top-down approach, where
more enhanced characteristics are present when moving
from a lower to a higher level.

• All of the participants in this study were volunteers and
no compensation in any form was offered or paid. We
also informed the respondents that they had the option
of leaving any statement blank that they did not wish to
answer.

• The respondents of this study, on average, had been
associated with their respective organization for the past
three years. The minimum educational qualification of
the respondents was an undergraduate university degree
and the maximum was a Ph.D. degree. Most of the
respondents belonged to middle or senior technical man-
agement and were associated with the software develop-
ment process. However, some of the participants were
from marketing, sales, or business development depart-
ments. Several of the participants had roles in making
policies or implementing organizational strategies from
top to bottom.

• We informed the participants of some major sources of
data, such as documents, plans, models, and actors. This
was done in order to reduce the chances of overestimation
or underestimation due to poor judgment and to increase
the reliability of the approach.

• We did not visit the organizations in person; thus we
did not conduct the case studies in the usual way of
performing an on-site assessment. Rather, our major
source of contact and communication with the partici-
pants was email.

• We received more than one response from each orga-
nization. Since multiple respondents within one organi-
zation may result in conflicting opinions, we performed
inter-rater agreement analysis and reported the results
in the subsequent section. But receiving more then one

response from each organization has also increased the
reliability of the assessment methodology by reducing
bias up to certain extent.

4.2 Inter-rater agreement analysis

Since multiple respondents within a single organization may
create conflicting opinions about the practice of architec-
tural factors within that organization, we performed and
reported inter-rater agreement analysis. Inter-rater agree-
ment corresponds to reproducibility in the evaluation of
the same process according to the same evaluation spec-
ification [29]. According to El Emam [14] the inter-rater
agreement is concerned with the extent of agreement in the
ratings given by independent assessors to the same soft-
ware engineering practices. Thus, in our study, we wanted
to discern the extent of agreement among the participants
from one organization. In the case of ordinal data, the
Kendall coefficient of concordance (W ) [40] is often pre-
ferred to evaluate inter-rater agreement, especially in com-
parison with other methods such as Cohen’s Kappa [10].
“W” measures the divergence of the actual agreement shown
in the data from perfect agreement. Accordingly, we con-
ducted and reported the inter-rater agreement analysis using
Kendall and Kappa statistics. Table 7 reports the Kendall and
Kappa statistics for Organization “A”. Values of Kendall’s
W and the Fleiss Kappa coefficient can range from 0 to
1, with 0 indicating complete disagreement, and 1 indicat-
ing perfect agreement [30]. The standard for Kappa [14]
includes four level scales: <0.44 indicates poor agreement,
0.44–0.62 means moderate agreement, 0.62–0.78 indicates
substantial agreement, and >0.78 entails excellent agree-
ment. In this study, the Kappa coefficient observed ranges
from 0.62 to 0.69 and is therefore in the category of
substantial.

4.3 Limitations of the assessment methodology

Certain limitations are implicit in questionnaire-based matu-
rity models, of which our study was a part. Some of the

Table 7 Inter-rater agreement analysis

Maturity
level

Kendall statistics Kappa statistics

Kendall’s coefficient χ2 Fleiss kappa Z
of concordance (W ) coefficient

Level 1 0.72 58.20∗ 0.68 8.20∗

Level 2 0.65 52.90∗ 0.63 7.98∗∗

Level 3 0.71 57.42∗ 0.67 8.04∗

Level 4 0.63 51.32∗ 0.62 7.54∗

Level 5 0.74 60.14∗∗ 0.69 9.01∗∗

∗ Significant at P < 0.01; ∗∗ significant at P < 0.05

123

Author's personal copy



An architecture process maturity model of software product line engineering 205

limitations associated with this APMM of SPL engineering
are as follows:

• Although we used six factors in each of the five matu-
rity levels, there may be other factors that influence the
architecture development process, such as organization
size as well as economic and political conditions, neither
of which is considered in this model.

• Our methodology was limited to subjective assessment.
While the statistical techniques that we used to ensure
the reliability and validity are commonly used in soft-
ware engineering, our measurement is still largely based
on the subjective assessment of an individual.

• Although we used multiple respondents within the same
organization to reduce bias, bias still is a core issue in
decision-making. SPL engineering is a relatively new
concept in software development, and not many of the
organizations in the software industry have institution-
alized and launched this concept, so the data collected
during this pilot study was limited to a smaller number
of individuals, and thus, more susceptible to bias.

• The possibility of participant error and unreliability was
present in our study. We asked the respondents to consult
major sources of data in their organization, such as docu-
ments, plans, models, and actors, before responding to a
particular item in order to reduce the human tendency to
estimate their organization’s activities incorrectly. How-
ever, this was largely dependent on individual efforts to
collect the required information before responding to the
statements in the questionnaire.

• Our assessment methodology does not take the role of
the independent assessor into account. In most maturity
models, the independent assessors are integral in defining
the coordination of the assessor with the internal assess-
ment team performing the evaluation. However, our cur-
rent case studies are based on self assessment

• The methodology evaluates and provides numerical
data about the maturity of the architecture factors and
the overall maturity of the architecture dimension, but the
maturity model does not provide any guidelines for the
improvement process, which we consider as a future
work for this study.

Although the APMM presented in this paper has some
general and specific limitations, it nevertheless provides a
comprehensive approach to evaluating the maturity for the
architecture dimension of the SPL engineering process and
it provides foundations for future research in this area.

4.4 Utilization of the architecture process maturity
assessment model

One of the advantages of using maturity models in soft-
ware engineering is to obtain inside information about

the current maturity of the different process-related activ-
ities in an organization. Ideally, this information provides
a basis for improvement plans and activities. Further-
more, maturity models are also advantageous to individ-
ual organizations because companies with high ratings are
attractive to potential customers. We summarized the advan-
tages of the architecture process maturity model from dif-
ferent perspectives such as software engineering research,
organizational aspects, product development, and process
improvements.

• Overall, the maturity model presented in this work pro-
vides information in the form of maturity assessment
that can be used to improve the process methodology
and complements product development activity in the
organization using the concept of software product line
engineering.

• The overall performance of an organization depends on
the success of managing its core architecture and there
are number of critical factors that facilitate the devel-
opment of product line architecture. Since technologies
and business requirements are evolving rapidly, com-
panies must monitor the activities affecting the perfor-
mance software architecture. The maturity assessment
model presented in this work helps companies to monitor
and evaluate the activities leads to product line software
architecture development in the organization.

• The model presented in this work highlights a meth-
odology to evaluate some of the key architecture pro-
cess activities in a company. This evaluation provides
inside information about the activities that can be
improved upon by development team and management.
For example, if development team discovered that vari-
ability management is at a lower maturity level then they
can introduce changes in the variability management pro-
tocols to improve it. This improvement will subsequently
help in the product development process, which is the
ultimate goal of the organization.

• The software product line is gaining popularity and many
organizations around the world are currently involved
in applying this concept. Our model provides an early
conceptual framework for the maturity assessment of
software product line engineering. Consequently, this
area still requires future contributions from software
engineering researchers.

5 Final remarks

The engineering efforts for SPL development and manage-
ment have been divided into the four dimensions of busi-
ness, architecture, software engineering, and organization.

123

Author's personal copy



206 F. Ahmed, L. F. Capretz

SPL process assessment is an area of immense importance
from the perspective of software engineering, especially the
SPL. Currently, no work has been done in the area of SPL
process maturity assessment apart from a few initial theo-
retical studies. The conceptual layouts of the SPL process
assessment envision the overall methodology as a set of four
maturity evaluation frameworks for business, architecture,
software engineering, and organization. Subsequently, this
research contributes towards establishing a comprehensive
and unified strategy for the process assessment of SPL by
addressing the architecture dimension. As a result, our work
presents an architecture process maturity model for evalu-
ating this dimension of the SPL process methodology. The
model provides a methodology to evaluate the current matu-
rity for the architecture dimension of the SPL in an organi-
zation. Furthermore, the framework of the model consists of
assessment questionnaires for the five maturity levels, per-
formance scales, and a rating method. The case studies con-
ducted in this research show the maturity of the SPLA process
in two organizations.

References

1. Ahmed F, Capretz LF (2008) The software product line architec-
ture: an empirical investigation of key architecture process activi-
ties. Inf Softw Technol 50(11):1098–1113

2. America P, Obbink H, van Ommering R, van der Linden F (2000)
COPA: a component-oriented platform architecting method family
for product family engineering. In: Proceedings of the 1st software
product line engineering conference, pp 167–180

3. Atkinson C, Bayer J, Muthig D (2000) Component-based product
line development. The KobrA approach. In: Proceedings of the 1st
software product lines conference, pp 289–309

4. Bayer J, Flege O, Knauber P, Laqua R, Muthig D, Schmid K, Widen
T, DeBaud JM (1999) PuLSE: a methodology to develop software
product lines. In: Proceedings of the 5th ACM SIGSOFT sympo-
sium on software reusability, pp 122–131

5. Birk GH, John I, Schmid K, von der Massen T, Muller K (2003)
Product line engineering, the state of the practice. IEEE Softw
20(6):52–60

6. Bosch J (2000) Design and use of software architectures: adopting
and evolving a product-line approach. Addison Wesley

7. Clements PC (2001) On the importance of product line scope. In:
Proceedings of the 4th international workshop on software product
family engineering, pp 69–77

8. Clements PC, Jones LG, Northrop LM, McGregor JD (2005) Pro-
ject management in a software product line organization. IEEE
Softw 22(5):54–62

9. Clements PC, Northrop LM (2002) Software product lines prac-
tices and pattern. Addison Wesley (2002)

10. Cohen J (1960) A coefficient of agreement for nominal scales.
Educ Psychol Meas 20:37–46

11. Coplien J, Hoffman D, Weiss D (1998) Commonality and variabil-
ity in software engineering. IEEE Softw 15(6):37–45

12. De Lange F, Kang J (2004) Architecture true prototyping of prod-
uct lines. In: Proceedings of the 5th international workshop on
software product family engineering, pp 445–453

13. Dobrica L, Niemelä E (2004) UML notation extensions for product
line architectures modeling. In: Proceedings of the 5th Australasian
workshop on software and system architectures, pp 44–51

14. El Emam K (1999) Benchmarking kappa: inter-rater agreement in
software process assessments. Empirical Softw Eng 4(2):113–133

15. Eriksson M, Börstler J, Borg K (2005) The PLUSS approach—
domain modeling with features, use cases and use case realizations.
In: Proceedings of the 9th international conference on software
product lines, pp 33–44

16. Etxeberria L, Sagardui G (2005) Product line architecture: new
issues for evaluation. In: Proceedings of the 9th international con-
ference on software product lines, pp 174–185

17. Gannod GC, Lutz RR (2000) An approach to architectural analysis
of product lines. In: Proceedings of the 22nd international confer-
ence on software engineering, pp 548–557

18. Garlan D, Perry D (1995) Introduction to the special issue on soft-
ware architecture. IEEE Trans Softw Eng 21(4):269–274

19. Gomaa H, Shin ME (2002) Multiple-view meta modeling of soft-
ware product lines. In: Proceedings of the 8th IEEE interna-
tional conference on engineering of complex computer systems,
pp 238–246

20. Graaf B, Van Kijk H, Van Deursen A (2005) Evaluating an embed-
ded software reference architecture—industrial experience report.
In: Proceedings of the 9th European conference on software main-
tenance and reengineering, pp 354–363

21. Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America
P (2007) A general model of software architecture design derived
from five industrial approaches. J Syst Softw 80:106–126

22. Jazayeri M, Ran A, van der Linden F (2000) Software architecture
for product families: principles and practice. Addison Wesley

23. Jones L, Soule A (2002) Software process improvement and prod-
uct line practice: CMMI and the framework for software prod-
uct line practice, SEI. http://www.sei.cmu.edu/pub/documents/02.
reports/pdf/02tn012.pdf

24. Kang KC, Kim S, Lee J, Kim K, Shin E, Huh M (1998) FORM:
a feature-oriented reuse method with domain specific reference
architectures. Ann Softw Eng 5:143–168

25. Kim M, Park S (2004) Goal and scenario driven product line devel-
opment. In: Proceedings of the 11th Asia-Pacific conference on
software engineering, pp 584–585

26. Knauber P, Muthig D, Schmid K, Wide T (2000) Applying product
line concepts in small and medium-sized companies. IEEE Softw
17(5):88–95

27. Kuvaja PJ, Simila J, Krzanik L, Bicego A, Saukkonen S, Koch
G (1994) Software process assessment and improvement—the
bootstrap approach. Blackwell, Oxford

28. Lam W (1997) Creating reusable architectures: an experience
report. ACM Softw Eng Notes 22(4):39–43

29. Landis J, Koch GG (1977) The measurement of observer agree-
ment for categorical data. Biometrics 33:159–174

30. Lee HY, Jung HW, Chung CS, Lee JM, Lee KW, Jeong HJ (2001)
Analysis of inter-rater agreement in ISO/IEC 15504-based soft-
ware process assessment. In: Proceedings of the 2nd Asia-Pacific
conference on quality software, pp 341–348

31. Macala RR, Stuckey LDJr, Gross DC (1996) Managing domain-
specific, product-line development. IEEE Softw 13(3):57–67

32. Mika K, Tommi M (2004) Assessing systems adaptability to a
product family. J Syst Architect 50:383–392

33. Niemelä E, Matinlassi M, Taulavuori A (2004) Practical evalua-
tion of software product family architectures. In: Proceedings of
the 3rd international conference on software product lines, pp 130–
145 (2004)

34. Paulk MC, Curtis B, Chrissis MB, Weber CV (1993) Capability
maturity model version 1.1. IEEE Softw 10(4):18–27

35. Pronk BJ (2000) An interface-based platform approach. In: Pro-
ceedings of the 1st software product lines conference, pp 331–352

123

Author's personal copy

http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tn012.pdf
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tn012.pdf


An architecture process maturity model of software product line engineering 207

36. Thompson JM, Heimdahl MPE (2003) Structuring product fam-
ily requirements for n-dimensional and hierarchical product lines.
Requir Eng J 8(1):42–54

37. van der Hoek A, Dincel E, Medvidovic N (2003) Using service uti-
lization metrics to assess the structure of product line architectures.
In: Proceedings of the 9th international software metrics sympo-
sium, pp 298–308

38. van der Linden F, Bosch J, Kamsties E, Känsälä K, Obbink H
(2004) Software product family evaluation. In: Proceedings of the
3rd international conference on software product lines, pp 110–129

39. van Ommering R (2005) Software reuse in product populations.
IEEE Trans Softw Eng 31(7):537–550

40. von Eye A, Mun EY (2005) Analyzing rater agreement manifest
variable methods. LEA Publishers, London

41. Wang Y, King G (2000) Software engineering processes: princi-
ples and application. CRC Press, New York

42. Weiss DM, Lai CTR (1999) Software product line engineering: a
family based software development process. Addison Wesley

43. Zhang H, Jarzabek S, Yang B (2003) Quality prediction and
assessment for product lines. In: Proceedings of the 15th interna-
tional conference on advanced information systems engineering, pp
681–695

44. Zuo H, Mannion M, Sellier D, Foley R (2005) An extension of
problem frame notation for software product lines. In: Proceed-
ings of the 12th Asia Pacific conference on software engineering,
pp 499–505

123

Author's personal copy


	An architecture process maturity model of software product line engineering
	Abstract
	1 Introduction
	2 Software product line engineering maturity model: the big picture
	2.1 Architecture dimension of software product line: literature review

	3 An architecture process maturity model of software product line engineering
	3.1 General scope of architecture process maturity model
	3.2 Configuration of architecture process maturity model
	3.3 Framework of architecture process maturity model
	3.3.1 Independent product development (Level 1)
	3.3.2 Standardized infrastructure (Level 2)
	3.3.3 Software platform (Level 3)
	3.3.4 Software product family (Level 4)
	3.3.5 Configurable product base (Level 5)

	3.4 Performance scale
	3.5 Rating method

	4 Case studies
	4.1 Assessment methodology
	4.2 Inter-rater agreement analysis
	4.3 Limitations of the assessment methodology
	4.4 Utilization of the architecture process maturity assessment model

	5 Final remarks
	References


