
Editor: Jane Cleland-Huang
DePaul University,
jhuang@cs.depaul.edu

104 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

SOUNDING BOARD

SOFTWARE IS A byproduct of human
activities that incorporates our problem-
solving capabilities, cognitive aspects,
and social interaction. However, hu-
mans are more complicated and less pre-
dictable than software—and some of
our complexity creates intricate dynam-
ics in the software development process
that cannot be ignored. Because of its
multifaceted aspects, software develop-
ment is among the most diffi cult tasks
performed by humans today.

I’m not saying that technical skills
are less relevant to a software project’s
successful outcome; rather, the human
factor is a make-or-break issue that af-
fects most software projects. I’ve wit-
nessed software engineer “stars” un-
able to work together toward a common
goal due to personality clashes, and I’ve
seen average software engineers perform
outstanding work because they enjoyed
doing their tasks and gelled as a team.
This indicates that software engineer-
ing boils down to technical competence
and human factors. However, technical
skills and soft skills don’t receive the
same degree of attention, especially by
instructors of technical knowledge. It’s
important to understand why this oc-
curs and what can be done to remedy
the situation.

The cross-section of human and tech-
nical factors isn’t new. Two pioneers

(Gerald Weinberg and Ben Shneiderman)
astonished many programmers in the
1970s by bringing topics to light, such
as programming as human performance,
in which they examined the facets of a
good programmer. Specifi cally, they
explored programming as a social and
individual activity, defi ned egoless pro-
gramming, and looked at the personality
factors that impacted programming. Oc-
casionally, papers present quantitative
and qualitative research on related top-
ics, but we’ve only scratched the surface
on the impact of human factors in the
software development process. It’s often
overlooked by educators and practitio-
ners because human factors are usually
related to soft skills, not rocket science
or hardcore engineering.

Why Is This Happening?
Although the human factor is a topic
that attracts interest from the general
public, it’s a new venture for many tech-
nical people. They might be afraid of
making the wrong assumptions, not
have time for this type of investigation,
or undervalue the fi eld, deeming it to be
unimportant or irrelevant. Others might
think that there’s no place for the dis-
cussion of soft skills in an area that’s so

Bringing the Human
Factor to Software
Engineering
Luiz Fernando Capretz

continued on p. 102

s2sou.indd 104 2/6/14 4:02 PM

SOUNDING BOARD

102 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

driven by logic and based on a math-
ematical foundation. These miscon-
ceptions discourage educators and
researchers willing to work in this
interdisciplinary area.

From management’s perspective,
an understanding of human factors
is important in the context of the
practice of software engineering.
For example, managers need to learn
about such topics because they fre-
quently deal with negotiations and
personality conflicts among team
members, value the importance of
hiring talented software engineers
for the right job, and appreciate peo-
ple able to function within a team.
Nevertheless, for the majority of
software practitioners, human fac-
tors are still considered marginal
and treated as common sense.

That said, people sometimes
struggle to remember that we’re
dealing with creatures of logic and
emotions, not just ones and zeros. If
we open our minds to research ques-
tions on gray areas, more researchers
might be stimulated to run studies,
validated through experimentation,
to prove whether “gray claims” are
right, wrong, myths, or half-truths;
these studies can eventually converge
to provide the best answer.

What Can We Do?
Software engineering is essentially
a human activity, not just a techni-
cal matter of technology, and yet be-
cause of the emphasis placed on the
technical aspects of software pro-
duction, most software engineers
have never considered software con-
struction in this light. To evolve, we
must examine our discipline through
new lenses, from several perspec-

tives. Software pro-
fessionals should also
delve into nontechni-
cal issues and recog-
nize that the people in-
volved in the software
development process
are as important as the
processes and the tech-
nology itself.

Team members
should also recognize
that software develop-
ment is a sociotechni-
cal practice. The soft-
ware industry needs
to encourage internal
empirical experiments
to understand human
factor issues within
performance-oriented
teams, collecting data
and creating insights
to improve the overall
development process.

These studies could lead to improve-
ments in products, increases in pro-
ductivity, or decreases in production
costs, thus indirectly affecting the
company’s bottom line. Whenever I
meet senior software engineers who
lead teams, they always hint at their
need for that kind of soft skillset
among software developers.

Although software engineering
curricula vary greatly, there’s now a
common acceptance that they should
be based on the guidelines for under-
graduate degree programs in soft-
ware engineering, a joint initiative
of the IEEE CS and ACM Comput-
ing Curricula Software Engineer-
ing (http://sites.computer.org/ccse/
SE2004Volume.pdf). A quick search
for “human factors” in that guide-
line reveals that the term appears six
times in the document body; a prom-
inent sentence reinforces the impor-
tance of the topic: “Students need to
repeatedly see how software engi-
neering is not just about technology.”
But reality indicates that, at best,
human factors are squeezed into a
couple of courses, such as technical
communication, software project
management, or software process.

This won’t change until we real-
ize that the human element is pivotal
to software engineering and that it’s
worthwhile studying and teaching
this so-called soft subject. However,
few courses in any computer science
or software engineering curricula
even mention it. An entire course
on the human aspects of software
engineering (which would be ideal)
exists in very few universities, but a
much easier path might be to include
a few lecture hours about this topic
in an existing undergraduate course,
whether it’s on programming, test-
ing, design, or project management.
I introduce the topic in my senior
course on software verification and

stay connected.

Keep up with the latest IEEE Computer Society
publications and activities wherever you are.

| IEEE Computer Society
| Computing Now

| facebook.com/IEEEComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

| youtube.com/ieeecomputersociety

continued from p. 104

s2sou.indd 102 2/6/14 4:02 PM

SOUNDING BOARD

 MARCH/APRIL 2014 | IEEE SOFTWARE 103

validation in a lecture-discussion
format; the feedback from students
is phenomenal. I also borrow ideas
from Carl Jung’s theory on person-
ality types when coordinating a cap-
stone project course (Software En-
gineering Design II). This broadens
students’ horizons and ensures that
they become more practice-ready
when they enter the profession; iron-
ically, students are able to fully un-
derstand the rationale behind these
topics when they start working in
the software industry.

A graduate course also offers the
opportunity to teach these concepts
in a seminar format that requires
students to read about specific topics
in advance and then engage in dis-
cussions. Graduate students are more
mature and those with experience in
the industry can easily relate their
daily work experience to such topics.
In my graduate course (Advanced
Topics in Software Engineering), I go
one step further and ask students to
write short papers on related topics.
A longer course could require them
to run simple experiments with hu-
man subjects and report results.

More master’s and PhD students
can be stimulated to conduct re-
search in this interdisciplinary area.

Critical human-technical issues in
software engineering can be inves-
tigated and students can be guided
in designing, executing, and analyz-
ing controlled empirical studies in a
novel fashion. However, any serious
scientific work would require some
background in behavioral science
experimentation, a strong founda-
tion in empirical research methods,
knowledge of statistical analysis,
and approval from an ethics board
to conduct pilot experiments in cases
where sensitive information on hu-
man subjects is collected.

A holistic approach would involve
getting some like-minded people to-
gether and starting tracks and spe-
cial issues within well-known soft-
ware engineering conferences and
journals, encouraging researchers
and software professionals to sub-
mit papers on human-centered topics.
Concurrently, materials about men-
tal processes, team interaction, ap-
praisal and motivation, techno stress,
personality, and sociotechnical issues
could be inserted into undergraduate
and graduate courses, and behavioral
science topics could be slowly intro-
duced under the umbrella of HCI
and software management courses.
Justifying the need for such top-

ics shouldn’t be too difficult—they
would receive positive feedback from
those involved in the industry.

A s many software manag-
ers can attest, major fail-
ures in software projects

eventually come down to people; in
spite of this fact, the human aspects
of software engineering don’t receive
the attention they deserve. Although
the study of human factors in soft-
ware engineering won’t be a silver
bullet that solves all problems, it will
offer different insights and fresh ap-
proaches to answering many open
questions in software engineering.
Diversity of people and ideas are
good for our field. Try it out!

LUIZ FERNANDO CAPRETZ is a professor
of software engineering and assistant dean (IT
& e-Learning) at Western University in Canada,
where he also directed a fully accredited
software engineering program. He has vast
experience in the engineering of software and
is a licensed professional engineer in Ontario.
Contact him at lcapretz@uwo.ca or via www.
eng.uwo.ca/people/lcapretz.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer
Society. IEEE headquarters: Three Park Ave., 17th Floor, New York, NY 10016-
5997. IEEE Computer Society Publications Office: 10662 Los Vaqueros Cir., Los
Alamitos, CA 90720; +1 714 821 8380; fax +1 714 821 4010. IEEE Computer Soci-
ety headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscription rates:
IEEE Computer Society members get the lowest rate of US$59 per year, which in-
cludes printed issues plus online access to all issues published since 1984. Go to
www.computer.org/subscribe to order and for more information on other subscrip-
tion prices. Back issues: $20 for members, $216.17 for nonmembers (plus shipping
and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Mem-
bership Processing Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ
08854-4141. Periodicals Postage Paid at New York, NY, and at additional mail-
ing offices. Canadian GST #125634188. Canada Post Publications Mail Agreement
Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Ni-
agara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of this material
is permitted without fee, provided such use: 1) is not made for profit; 2) includes this

notice and a full citation to the original work on the first page of the copy; and 3)
does not imply IEEE endorsement of any third-party products or services. Authors
and their companies are permitted to post the accepted version of IEEE-copyrighted
material on their own webservers without permission, provided that the IEEE copy-
right notice and a full citation to the original work appear on the first screen of the
posted copy. An accepted manuscript is a version which has been revised by the au-
thor to incorporate review suggestions, but not the published version with copyedit-
ing, proofreading, and formatting added by IEEE. For more information, please go
to: http://www.ieee.org/publications_standards/publications/rights/paperversion-
policy.html. Permission to reprint/republish this material for commercial, advertis-
ing, or promotional purposes or for creating new collective works for resale or redis-
tribution must be obtained from IEEE by writing to the IEEE Intellectual Property
Rights Office, 445 Hoes Lane, Piscataway, NJ 08854-4141 or pubs-permissions@
ieee.org. Copyright © 2014 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Li-
braries are permitted to photocopy for private use of patrons, provided the per-copy
fee indicated in the code at the bottom of the first page is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s2sou.indd 103 2/6/14 4:02 PM

