
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

The Journal of Systems and Software 86 (2013) 144– 160

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Towards an early software estimation using log-linear regression
and a multilayer perceptron model

Ali Bou Nassif a,∗, Danny Hob, Luiz Fernando Capretza

a Department of ECE, Western University, London, Ontario, Canada
b NFA Estimation Inc., Richmond Hill, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 26 October 2011
Received in revised form 30 June 2012
Accepted 14 July 2012
Available online 1 August 2012

Keywords:
Use case points
Log-linear regression model
Software effort estimation
Multilayer perceptron

a b s t r a c t

Software estimation is a tedious and daunting task in project management and software development.
Software estimators are notorious in predicting software effort and they have been struggling in the past
decades to provide new models to enhance software estimation. The most critical and crucial part of
software estimation is when estimation is required in the early stages of the software life cycle where
the problem to be solved has not yet been completely revealed. This paper presents a novel log-linear
regression model based on the use case point model (UCP) to calculate the software effort based on use
case diagrams. A fuzzy logic approach is used to calibrate the productivity factor in the regression model.
Moreover, a multilayer perceptron (MLP) neural network model was developed to predict software effort
based on the software size and team productivity. Experiments show that the proposed approach out-
performs the original UCP model. Furthermore, a comparison between the MLP and log-linear regression
models was conducted based on the size of the projects. Results demonstrate that the MLP model can
surpass the regression model when small projects are used, but the log-linear regression model gives
better results when estimating larger projects.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Software project failure is one of the main challenges in the soft-
ware industry. During the last five decades, it was reported that the
percentage of project failures and incomplete projects surpassed
30% (Eck et al., 2009; Lynch, 2009). According to the International
Society of Parametric Analysis (ISPA) (Eck et al., 2009) and the Stan-
dish Group International (Lynch, 2009), the main reasons behind
project failures are:

• Lack of estimation of the staff’s skills and levels.
• Lack of understanding the requirements.
• Improper software size estimation.
• Uncertainty of system and software requirements.
• Optimism in software estimation.

In a nutshell, many software projects fail because of the
inaccuracy of software estimation and misunderstanding or incom-
pleteness of the requirements. This motivated researchers to
investigate software estimation to yield better software size and
effort assessment.

∗ Corresponding author.
E-mail addresses: abounas@uwo.ca (A.B. Nassif), danny@nfa-estimation.com

(D. Ho), lcapretz@uwo.ca (L.F. Capretz).

As software estimation became crucial to prevent or reduce
project failures, estimation in the early stages of the software life
cycle became imperative. The earlier the estimation is, the better
project management will be. The importance of the early estima-
tion reveals when it is required to bid on the project or commit
to a contract between the customer and the developer. The early
software estimation is conducted at a point when the details of
the problem are not yet divulged. This is called the size estimation
paradox (Demirors and Gencel, 2004). The software size should first
be estimated in the early stages of the software life cycle, which
is mainly the requirements stage. Several cost estimation tech-
niques exist and they can be classified under three main categories
(Mendes et al., 2002). These categories are:

1. Expert judgment: In this category, a project estimator tends to use
his or her expertise which is based on historical data and similar
projects to estimate software. This method is very subjective and
it lacks standardizations and thus, cannot be reusable. Another
drawback of this method is the lack of analytical argumentation
because of the frequent use of phrases such as “I believe that . . .”
or “I feel that . . .” (Jørgensen, 2007).

2. Algorithmic models: This is still the most popular category in
literature (Briand and Wieczorek, 2002). These models include
COCOMO (Boehm, 1981), SLIM (Putnam, 1978) and SEER-SEM
(Galorath and Evans, 2006). The main cost driver of these mod-

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.07.050

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 145

els is the software size, usually the Source Lines of Code (SLOC).
Algorithmic models either use a linear regression equation, like
the one used by Kok et al. (1990) or non-linear regression equa-
tions, those which are used by Boehm (1981).

3. Machine learning: Recently, machine learning techniques are
being used in conjunction or as alternatives to algorithmic
models. These techniques include neural networks, fuzzy logic,
neuro-fuzzy, Genetic Algorithm and regression trees. Machine
learning models can incorporate historical data and can be
trained to better predict software effort.

None of the above techniques are perfect and can fit all situations
(Boehm et al., 2000a). In this paper, machine learning techniques
(fuzzy logic and neural networks) are used with an algorithmic
model (use case point model) for better software estimation results.

As UML diagrams have become popular in the last decade,
software developers have become more interested in conducting
software estimation based on UML models, and especially the use
case diagrams. The use case diagram represents the functional
requirements of a system and it is usually included in the Software
Requirements Specification (SRS) documents.

The main purpose of this research is to propose a model to
predict software effort from use case diagrams. Our model can be
used in the early stages of the software life cycle. This is important
for project managers who wish to conduct early cost estimation
so that they can bid on projects. The accuracy of the proposed
approach can surpass the original UCP model. In this work, a
linear regression model with a logarithmic transformation (aka
log-linear) is created to calculate software effort from use case dia-
grams. In this model, software effort is a function of software size
and team productivity. The proposed model takes into considera-
tion the non-linear relationship between software size and effort.
The non-linear relationship is described in detail in Section 2. As
shown in Eq. (17), software effort is directly proportional to soft-
ware size and inversely proportional to team productivity (Galorath
and Evans, 2006). A multiple linear regression equation was gen-
erated to predict the values of the productivity factor. Moreover,
a Mamdani fuzzy logic approach (Mamdani, 1977) has been used
to adjust the productivity factor. Furthermore, a MLP model was
developed using the k-fold cross validation technique. A compar-
ison was performed between the proposed log-linear regression
model against the proposed MLP model as well as other models that
conduct software effort estimation from use case diagrams. Exper-
iments indicate that, among the existing data points, when small
projects (<3000 person-hours) are used in the evaluation process,
the MLP model exceeds other models. On the contrary, the regres-
sion model gives better results when projects of effort greater than
3000 person-hours are being used.

The remainder of the paper is organized as follows: Sections
1.1, 1.2, 1.3 and 1.4 present an overview of the use case point (UCP)
model, evaluation criteria used in this paper, fuzzy logic and neural
networks, respectively. Section 1.5 lists some related work. Sections
2 and 3 propose the novel regression and MLP models. Section 4
demonstrates an evaluation of the proposed models and provides
some comparison among the models. Section 5 lists some threats to
validity. Finally, Section 6 concludes the paper and proposes future
work.

1.1. Use case points

The use case point model was first described by Karner (1993).
This model is used for software cost estimation based on the use
case diagrams. Software size is calculated according to the number
of actors and use cases in a use case diagram multiplied by their
complexity weights. The complexity weights of use cases and actors
are presented in Tables 1 and 2, respectively.

Table 1
Complexity weights of use cases (Karner, 1993).

Use case
complexity

Number of transactions Weight

Simple Less than 4 (should be realized by less than
5 classes)

5

Average Between 4 and 7 (should be realized
between 5 and 10 classes)

10

Complex More than 7 (should be realized by more
than 10 classes)

15

Table 2
Complexity weights of actors (Karner, 1993).

Actor complexity Description Weight

Simple Through an API 1
Average Through a text-based user interface 2
Complex Through a graphical user interface 3

As shown in Table 1, the complexity of a use case is determined
by the number of its transactions as shown in the use case descrip-
tion of each use case. The software size is calculated through two
stages. These include the Unadjusted Use Case Points (UUCP) and
the Adjusted Use Case Points (UCP). UUCP is achieved through the
summation of the Unadjusted Use Case Weight (UUCW) and Unad-
justed Actor Weight (UAW). UUCW is represented in Eq. (1).

UUCW =
3∑

i=1

ni × Wi. (1)

where ni is the number of items of variety i of the use cases and Wi
is the complexity weight of the corresponding use case. Similarly,
UAW is represented as follows:

UAW =
3∑

j=1

mj × Cj. (2)

where mj is the number of items of variety j of the actors and Cj is
the complexity weight of the corresponding actor. Consequently,
UUCP can be defined as follows:

UUCP = UUCW + UAW. (3)

After calculating the UUCP, the Adjusted Use Case Points (UCP)
is calculated. UCP is achieved by multiplying UUCP by the technical
factors (TFs) and the environmental factors (EFs). TF contributes to
the complexity of the project while EF contributes to the team effi-
ciency and productivity. The technical and environmental factors

Table 3
Technical factors (Karner, 1993).

Ti Complexity factors Wi

T1 Easy installation 0.5
T2 Portability 2
T3 End user efficiency 1
T4 Reusability 1
T5 Complex internal processing 1
T6 Special security features 1
T7 Usability 0.5
T8 Application performance objectives 1
T9 Special user training facilities 1
T10 Concurrency 1
T11 Distributed systems 2
T12 Provide direct access for third parties 1
T13 Changeability 1

Author's personal copy

146 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

Table 4
Environmental factors (Karner, 1993).

Ei Efficiency and productivity factors Wi

E1 Familiar with objectory 1.5
E2 Object oriented experience 1
E3 Analyst capability 0.5
E4 Stable requirements 2
E5 Application experience 0.5
E6 Motivation 1
E7 Part-time workers −1
E8 Difficult programming language −1

are depicted in Tables 3 and 4, respectively. The technical factor is
detailed as follows:

TF = 0.6 + 0.01
13∑
i=1

Ti

i

× Wi. (4)

where Ti is a factor that takes values between 0 and 5. The value “0”
indicates that the factor is unrelated while the value “5” indicates
that the factor is indispensable. The value “3” specifies that the
technical factor is not very important, nor irrelevant (average). Wi
represents the weight of technical factors (Table 3).

On the other hand, the environmental factor (EF) can be
described as follows:

EF = 1.4 − 0.03
8∑

i=1

Ei × Wi. (5)

where Ei is the environmental factor (which is similar to Ti in Eq.
(4), taking values between 0 and 5. Finally, the Adjusted Use Case
Points (UCP) can be defined as follows:

UCP = UUCP × TF × EF. (6)

By incorporating TF and EF, the value of UCP will be more or less
than the value of UUCP by 30%. For effort estimation, the UCP model
proposed 20 person-hours to develop each UCP. This is expressed
in Eq. (7):

Effort = Size × 20. (7)

where Effort is measured in person-hours and Size is measured in
UCP.

Schneider and Winters (2001) mentioned that when calculating
software effort, instead of multiplying the size by 20, environmen-
tal factors should be evaluated because these factors contribute
to the efficiency of the team developing the project. If the effi-
ciency is fair, then 20 person-hours per UCP should be used. If the
efficiency is low, then 28 person-hours per UCP should be used. If
the efficiency is very low, then the project team should be recon-
structed because very low efficiency indicates that the project is
at significant risk of failure with this team. Another approach can
be considered when the efficiency is very low by taking 36 person-
hours for 1 UCP. The main limitation of Schneider’s approach is that
the effort required to develop one UCP is either 20, 28 or 36 person-
hours.

In this research, the Unadjusted Actor Weight (UAW) is
neglected as suggested by Ochodek et al. (2011) since the estima-
tion accuracy will not be affected.

1.2. Evaluation criteria

Several methods exist to evaluate cost estimation models. In this
research, the evaluation criteria used include the Mean of Mag-
nitude of Error Relative to the estimate (MMER), the Root Mean
Squared Error (RMSE), the Mean Absolute Error (MAE), the standard
deviation (SD) of the mean error and prediction level (PRED).

• MMER: MMER is one of the criteria used for cost estimation mod-
els evaluation (Kitchenham et al., 2001). Foss et al. (2003) argued
that MMER can sometimes be more accurate than the Mean of
the Magnitude of Relative Error (MMRE). MMER is the mean of
MER as shown in Eqs. (8) and (9).

MERi = |Actual Efforti − Predicted Efforti|
Predicted Efforti

. (8)

MMER = 1
N

N∑
1

MERi. (9)

• PRED(x): PRED can be described as the average of the MRE’s (or
MER’s) off by no more than x as defined by Jorgensen (1995):

PRED(x) = 1
N

N∑
i=1

{
1 if MERi ≤ x

0 otherwise
. (10)

The estimation accuracy is directly proportional to PRED(x) and
inversely proportional to MMER.

• MAE: The Mean Absolute Error (MAE) is the average of the abso-
lute errors between the actual and the predicted effort as shown
in Eq. (11).

MAE = 1
N

N∑
i=1

|Actual Efforti − Predicted Efforti|. (11)

• Standard deviation: The equation of the standard deviation can
be seen as:

SD =

√√√√ 1
N

N∑
i=1

(xi − x̄)2. (12)

where xi is the error of the observation “i” such that: xi = (Actual
Efforti − Predicted Efforti) and x̄ is the mean error for N observa-
tions.

• RMSE: The Root Mean Squared Error (RMSE) is the square root of
the mean of the square of the differences between the actual and
the predicted efforts as shown in Eq. (13).

RMSE =

√∑N
i=1(Eai

− EPi)
2

N
. (13)

where Ea and Ep are the actual and predicted efforts respectively,
N is the number of observations.

1.3. Fuzzy logic

Fuzzy logic is derived from the fuzzy set theory that was pro-
posed by Zadeh (1965). As a contrary to the conventional binary
(bivalent) logic that can only handle two values True or False (1 or
0), fuzzy logic can have a truth value which is ranging between 0
and 1. This means that in the binary logic, a member completely
belongs to or does not belong to a certain set, however in the fuzzy
logic, a member can partially belong to a certain set. Mathemat-
ically, a fuzzy set A is represented by a membership function as
follows:

Fz[x ∈ A] = �A(x) : R → [0, 1]. (14)

where �A is the degree of the membership of element x in the fuzzy
set A.

A fuzzy set is represented by a membership function. Each ele-
ment will have a grade of membership that represents the degree
to which a specific element belongs to the set. Membership func-
tions include Triangular, Trapezoidal and S-Shaped. In fuzzy logic,

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 147

linguistic variables are used to express a rule or fact. For exam-
ple, “the temperature is thirty degrees” is expressed in fuzzy logic
by “the temperature is low” or “the temperature is high” where
the words low and high are linguistic variables. In fuzzy logic, the
knowledge base is represented by If–Then rules. For example, if
the temperature is high, then turn on the fan. The fuzzy system is
mainly composed of three parts. These include Fuzzification, Fuzzy
Rule Application and Defuzzification. Fuzzification means applying
fuzzy membership functions to inputs. Fuzzy Rule Application is
to make inferences and associations among members in different
groups. The third step in the fuzzy system is to defuzzify the infer-
ences and associations, make a decision and provide an output that
can be understood. In this paper, fuzzy logic is used to calibrate the
productivity factor of the regression model.

1.4. Neural network

An artificial neural network (ANN) is a network composed of
artificial neurons or nodes which emulate the biological neurons
(Lippman, 1987). ANN can be trained to be used to approximate
a non-linear function, to map an input to an output or to classify
outputs. There are several algorithms available to train a neural
network but this depends on the type and topology of the neural
network. The most prominent topology of ANN is the feed-forward
networks. In a feed-forward network, the information always flows
in one direction (from input to output) and never goes backwards.
An ANN is composed of nodes organized into layers and connected
through weight elements. At each node, the weighted inputs are
aggregated, thresholded and inputted to an activation function to
generate an output of that node. Mathematically, this can be rep-
resented by:

y(t) = f

[
n∑

i=1

wixi − w0

]
. (15)

where xi are neuron inputs, wi are the weights and f[.] is the acti-
vation function.

Feed-forward ANN layers are usually represented as input, hid-
den and output layers. If the hidden layer does not exist, then
this type of the ANN is called perceptron. The perceptron is a lin-
ear classifier that maps an input to an output. If the relationship
between the input and output is not linear, one or more hidden
layers should exist between the input and output layers to accom-
modate the non-linear properties. Several types of feed-forward
neural networks with hidden layers exist. These include Multilayer
Perceptron (MLP), Radial Basis Function Neural Network (RBFNN)
and General Regression Neural Network (GRNN). A MLP contains
at least one hidden layer and each input vector is represented by a
neuron. The number of hidden neurons varies and can be deter-
mined by trial and error so that the error is minimal. MLPs are
usually trained using the backpropagation algorithm. In this paper,
an MLP model is used to predict software effort from use case dia-
grams.

1.5. Related work

Some issues related to the UCP model have been addressed in
previous work. Authors in (Diev, 2006) and (Anda et al., 2001)
worked on adjustment factors, while others in (Anda et al., 2001)
and (Arnold and Pedross, 1998) highlighted the discrepancies in
designing use case models. Researchers in (Robiolo and Orosco,
2008), (Robiolo et al., 2009) and (Ochodek and Nawrocki, 2008)
proposed different size metrics such as transactions, TTPoints and
paths, while others (Periyasamy and Ghode, 2009; Wang et al.,
2009; Schneider and Winters, 2001; Braz and Vergilio, 2006; Nassif
et al., 2011a,b; Mohagheghi et al., 2005; Ochodek et al., 2011) went

further to extend the UCP model by providing new complexity
weights or by modifying the method used to predict effort.

Regarding software effort prediction models based on machine
leaning techniques, Azzeh et al. (2010) and Azzeh et al. (2011) pro-
posed two models for software effort estimation. The first one is
an estimation-by-analogy model based on the integration of fuzzy
set theory with grey relational analysis and fuzzy numbers. How-
ever, the second model is based on analogy estimation with fuzzy
numbers and can be used in the early stages of the software life
cycle. Both models were evaluated using five different datasets such
as International Software Benchmarking Standards Group (ISBSG),
Desharnais, Kemerer, Albrecht & Gaffney and COCOMO 81. MMRE,
MdMRE, MMER and PRED(25) were used as evaluation criteria.
Results proved that the proposed models are competitive when
compared with other models such as case-based reasoning, mul-
tiple linear regression, stepwise regression and artificial neural
networks.

Pendharkar et al. (2005) developed a Bayesian network to
predict software development effort. The proposed model can
incorporate decision making risks. The model was evaluated using
33 industrial projects and was compared with other neural net-
work and regression tree forecasting models. The authors proved
that their model can be a competitive model for software effort
prediction based on the absolute error criterion.

Papatheocharous et al. (2010) used feature selection technique
on the Desharnais and ISBSG datasets to reduce the number of
cost drivers that are used as inputs to cost prediction models
without deteriorating the performance of the model. The exper-
iments show that reducing the number of cost drivers leads to
reducing the complexity, learning time and eliminating needless
calculations.

Andreou and Papatheocharous (2008) used fuzzy decision trees
to predict software effort. The authors used the decision trees algo-
rithms CHAID and CART to evaluate their model using the ISBSG
dataset. The evaluation criteria used include the Mean Relative
Error (MRE), Normalized Root Mean Squared Error (NRMSE), and
the correlation coefficient (CC). The experiments showed that the
proposed approach can be used for software effort estimation at
highly accurate levels.

Papatheocharous and Andreou (2007) used artificial neural
networks (ANN) with Input Sensitivity Analysis (ISN) to develop
software cost prediction model. Several ANN topologies were cre-
ated and trained using the Desharnais and ISBSG datasets. The
evaluation criteria used include NRMSE, CC, MSE, RMAE, MAE and
PRED. The results show that the number of inputs of a cost predic-
tion model can be reduced to a number between 3 and 5 to reduce
the complexity of using many input parameters.

Huang and Chiu (2006) used Genetic Algorithm to determine
the appropriate weighted similarity measures of effort drivers in
analogy-based software effort estimation models. The authors used
three weighted analogy methods. These include the unequally
weighted, the linearly weighted and the nonlinearly weighted
methods. The experiments were conducted using the ISBSG dataset
and proved that the proposed approach can enhance the accuracy
of software effort estimation.

Kumar et al. (2008) proposed a Wavelet Neural Network (WNN)
for software cost prediction using Morlet and Gaussian functions as
transfer functions. The proposed approach was evaluated using the
Canadian Financial and IBM data processing services datasets using
the MMRE criteria. The WNN model outperformed other models
such as MLP, RBFNN, multiple linear regression, dynamic evolving
neuro-fuzzy inference system and support vector machine.

de Barcelos Tronto et al. (2008) investigated a stepwise regres-
sion model and a neural network model for software cost
prediction. The proposed models were evaluated using COCOMO’81
dataset using the MMRE and R2 criteria. The results showed that the

Author's personal copy

148 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

proposed models can compete with other models such as COCOMO
and SLIM.

Idri and Abran (2000) applied fuzzy logic on the COCOMO’81
model. Fuzzy sets with Trapezoidal membership function were
defined for each cost driver. The evaluation was performed using
the COCOMO’81 dataset using the RE and PRED. The results show
that COCOMO’81 used with fuzzy logic tackles the imprecision
caused by the crisp inputs (cost drivers) and generates more grad-
uate output.

Ahmed et al. (2005) proposed an adaptive fuzzy logic framework
for software effort prediction. This framework incorporates expert
knowledge to improve the accuracy of software effort estimation.
The framework was evaluated using an artificial datasets as well as
the COCOMO database.

Jiang et al. (2007) and Xia et al. (2008) built linear regression
models with a logarithmic transformation based on function points
using ISBSG data. Xia et al. used the regression model as an activa-
tion function in a neural network to calibrate the weights of the
function point model. However, Jiang et al. used the regression
model to study the effect of software size on development effort
and software quality. The main concern of these models is that
they ignore the influence of the non-functional requirements on
estimation.

Park and Baek (2008) proposed a neural network for software
effort estimation. This model takes six inputs and the accuracy of
the proposed model was compared with the accuracy of human
expert judgments and two traditional regression models. The eval-
uation was conducted on 148 IT projects and results proved that the
proposed neural network gives better results than existing regres-
sion models based on the MRE criterion.

Huang et al. (2007) used a neuro-fuzzy approach to calibrate the
parameters of the COCOMO model. The proposed model has some
characteristics such as learning ability and good interpretability,
while maintaining the merits of the COCOMO model. The model
deals effectively with imprecise and uncertain input and enhances
the reliability of software cost estimates. In addition, it allows input
to have continuous rating values and linguistic values, thus avoid-
ing the problem of similar projects having large different estimated
costs. The results showed that PRED(20%) and PRED(30%) were
improved by more than 15% and 11%, respectively in comparison
with that of COCOMO 81.

Attarzadeh and Ow (2011) proposed a neural network model
that incorporates COCOMO for software development cost and time
forecasting. The COCOMO and NASA datasets were used for evalu-
ation based on the MMRE and PRED criteria.

Idri et al. (2010) proposed two Radial Based Function Neu-
ral Network (RBFNN) model for software effort estimation. One
model uses the C algorithm where the other model uses the Apc-
III algorithm. Each of the RBFNN models uses different formula to
calculate the width of the RBF functions. The model was trained
using COCOMO 81 and Tukutuku datasets and evaluated based on
MMRE and PRED criteria. The results show that the accuracy of the
estimation generated by the RBFNN model is affected by the type
of the width formula used in the model.

Idri et al. (2008) investigated the use of the RBFNN models in
software estimation and especially the role of the hidden layer. In
their paper, the authors use two clustering techniques; the C-means
and the APC-III. A comparison between these techniques was con-
ducted using COCOMO 81 and Tukutuku datasets. The results show
that the C-means algorithm performs better than the APC-III algo-
rithm.

Reddy et al. (2008) proposed a RBFNN model for software effort
estimation. The model was trained based on the k-mean clustering
algorithm and was evaluated using the COCOMO 81 dataset.

Shin and Goel (2000) presented an objective modeling method-
ology to determine the RBFNN model parameters using their SG

algorithm. The model was then used to predict software effort using
the NASA dataset.

Heiat (2002) compared a neural network model with regression
models. The evaluation was conducted on 67 projects from three
different sources. The author concluded that the neural network
model was competitive to regression models when third gener-
ation language was used. However, regression models gave better
results when combinations of third and fourth generation language
projects were used. The evaluation criterion used was the mean
absolute percentage error (MAPE).

Tan et al. (2009) proposed a new LOC estimation method
for information systems based on their conceptual data models
through a multiple linear regression model. The authors evaluated
their work using open source and industrial projects.

Anvik and Murphy (2011) used machine learning techniques to
create recommenders to triage bug reports that can be useful to
streamline the development process.

Lopez-Martín (2011a,b) and Lopez-Martín et al. (2008, 2011)
created regression models from short scale programs and from
ISBSG repository. The authors also developed fuzzy logic and neu-
ral network models such as Feed-Forward and General Regression
Neural Networks. The authors proved that these models can be used
as alternatives to regression models to predict software effort. The
evaluation criteria used were MMRE and MMER.

Li et al. (2010) proposed a holistic problem-solving approach
which uses a ridge regression technique and multi-objective
optimization. The experiments showed that adaptive regression
models outperform machine learning models when multi-collinear
datasets are used. In this research, Albrecht and Desharnais datasets
were used and the evaluation was based on the MMRE, MdMRE and
PRED(0.25).

References in the first paragraph of Section 1.5 focused on
enhancing the UCP model; however, they did not tackle the main
problems that exist in software estimation such as the non-linear
relationship between software size and effort. Additionally, none
of the previous work used neural network models to predict soft-
ware effort from use case diagrams. On the other hand, References
(Pendharkar et al., 2005; Papatheocharous and Andreou, 2007;
Kumar et al., 2008; de Barcelos Tronto et al., 2008; Park and Baek,
2008; Attarzadeh and Ow, 2011; Idri et al., 2008, 2010; Reddy
et al., 2008; Shin and Goel, 2000) used neural network models
such as MLP and RBFNN to predict software estimation. Refer-
ences (Azzeh et al., 2010, 2011; Huang and Chiu, 2006) used soft
computing techniques with analogy based estimation, whereas
References (Idri and Abran, 2000; Huang et al., 2007) used soft com-
puting with algorithmic models. References (Ahmed et al., 2005;
Papatheocharous et al., 2010) used fuzzy logic and fuzzy decision
tree, respectively for software effort estimation. Other works such
as (Heiat, 2002; Lopez-Martín, 2011a,b; Lopez-Martín et al., 2008,
2011) developed neural network models and compared their works
with regression models. Regression models such as linear, non-
linear, stepwise and ridge have been used to predict software effort
as shown in (Jiang et al., 2007; Xia et al., 2008; Tan et al., 2009; Li
et al., 2010). Other work such as (Papatheocharous et al., 2010)
was to make software estimation easier by reducing the num-
ber of the model’s inputs without deteriorating the performance
of the model.

The main distinguishing aspect of this work from the existing
ones is that we propose a novel log-linear regression model
to estimate software effort from use case diagrams that takes
into consideration the non-linearity in the software size-effort
relationship. Furthermore, none of the existing work proposed a
MLP model to predict software effort from use case diagrams. In
this paper, not only new regression and MLP models are proposed
for software effort prediction, but also a thorough comparison
between the proposed log-linear regression and MLP model was

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 149

conducted based on how large the software size is being used as
an input to the models.

2. Regression model

This section presents the proposed regression model, the inputs
to the model as well as the calibration of the productivity factor
using fuzzy logic approach. This work is an extension to the work
proposed in (Nassif et al., 2011a).

In statistics, regression analysis focuses on generating a relation-
ship between a dependent variable (aka response) and one or more
independent variables (aka predictors) (Allison, 1984). Regression
analysis studies show how the dependent variable responds to a
change in the independent variables and it identifies which inde-
pendent variable is related to the dependent variable. Legendre
(1805) and Gauss (1809) were among the first people who worked
with regression models 200 years ago. There are many types of
regression analysis. These include simple linear regression, multi-
ple linear regression and non-linear regression. Regression analysis
has been widely used in software estimation. Software developers
and project managers use historical data to build regression models.
The regression models are then evaluated and compared with alter-
native models such as soft computing models as shown in (Heiat,
2002).

Eq. (7) shows how software effort is calculated from software
size based on the UCP model. As shown in the equation, the relation-
ship between software effort and size is linear and this assumption
does not reflect the actual situation in the software industry as
explained by McConnell (2006). McConnell states that “People nat-
urally assume that a system that is 10 times as large as another
system will require something like 10 times as much effort to build.
But the effort for a 1,000,000 LOC system is more than 10 times as
large as the effort for a 100,000 LOC system. Using software indus-
try productivity averages, the 10,000 LOC system would require
13.5 staff months. If effort increased linearly, a 100,000 LOC system
would require 135 staff months. But it actually requires 170 staff
months”. Secondly, Longstreet (2008) reported that when estima-
tion is based on the Function Points method, the effort required
to develop one Function Point is between 0.5 and 5 h for small
projects (less than 100 function points) and between 20 and 60 h
for large projects (greater than 7000 function points). Thirdly, the
equation used by Boehm et al. (2000b) for software effort estima-
tion is Effort = a(SLOC)b. SLOC is the size in Source Lines of Code.
Boehm’s equation shows that the relationship between software
size and effort in non-linear. Fourthly, Pendharkar and Rodger
(2009) mentioned that the larger the project is, the larger the team
is required. When the number of the team members increases, the
number of the communication paths among this team will dra-
matically increase as shown in Eq. (16), and consequently, this
requires more effort for the team communication and project
management.

Communication Paths = N(N − 1)
2

. (16)

where “N” is the number of people. Based on the above references,
we conclude that when software size increases, software effort
would increase but with a non-linear relationship. In this research
investigation, a novel regression analysis is applied to generate a
new equation to calculate software effort. The proposed regres-
sion model takes into account the non-linear relationship between
software effort and size as well as the productivity factor of the
team. Furthermore, the value of the productivity factor is pro-
posed using a multiple linear regression model of two independent
variables.

Fig. 1. Histogram of size.

The general equation of software effort can be represented as
(Galorath and Evans, 2006):

Effort = Complexity

Productivity
× Size. (17)

where Complexity is the complexity factor of a project and Produc-
tivity is the productivity factor of the team that is developing this
project. To find the non-linear relationship between software size
and software effort, regression analysis was applied on projects
used in previous work (Nassif et al., 2011a) that have similar com-
plexity and team productivity. Thus, at this point, complexity and
productivity factors are ignored and software effort is a function of
software size only. To obtain accurate results in regression analysis,
data should be normally distributed (Cameron and Trivedi, 1998).
If data were normally distributed, the regression equation would
be:

Effort = a × Size + b. (18)

where a and b are constants.
The histograms of software size (Fig. 1) and software effort

(Fig. 2) show that data are not normally distributed. Generating
regression models from data based on Figs. 1 and 2 is possible but
this will lead to poor results. For this reason, data were normalized
using logarithmic transformation. After normalization, data (ln Size
and ln Effort) became more normally distributed (Figs. 3 and 4). In
this case, the linear regression is applied on ln(Size) and ln(Effort)
instead as shown in Eq. (19). This is also called a log-linear regres-
sion.

ln(Effort) = c × ln(Size) + d. (19)

Fig. 2. Histogram of effort.

Author's personal copy

150 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

Fig. 3. Histogram of ln(size).

where c and d are constants. Eq. (19) can be rewritten as:

Effort = A × SizeB. (20)

Using Minitab, the values of A and B are 8.16 and 1.17 respec-
tively. The values of A and B were determined based on the dataset
used for training the regression model. When new datasets become
available, the model can be calibrated. The method used for cal-
ibrations varies based on the source and the importance of the
new dataset. For instance, more weight can be given for the new
datasets. Furthermore, older projects (e.g. more than 5 years) can
be deleted or given less weight. The Effort-Size relationship is rep-
resented as follows:

Effort = 8.16 × Size1.17. (21)

where Size is the software size in UCP and Effort is the software
effort in person-hours. For instance, Eq. (21) shows the non-linear
relationship between Effort and Size and ignores the Complex-
ity and Productivity factors. The main equation of the proposed
regression model is expressed in Eq. (23).

Fig. 5 shows the relationship between software size and effort
based on the UCP model as expressed in Eq. (7) (solid line) and
the proposed log-linear regression model as expressed in Eq. (21)
(marked by circles). This comparison shows that the non-linear
relationship is not significant for small projects (less than 200 UCP).
On the other hand, the non-linear relationship stands out for mid-
size and large projects. The proposed regression model also shows
that when software size becomes larger and larger, software effort
is exponentially increasing. For instance, when software size is
1000 UCP, software effort based on the log-linear regression model

Fig. 4. Histogram of ln(effort).

Fig. 5. Comparison between software size and software effort.

is larger than the software effort based on the original UCP model
by 30%.

It is very important to test and validate the proposed regres-
sion equation (Eq. (21)) because this equation will be the core of
the regression model. To thoroughly validate this equation, several
techniques were used. These include the coefficient of determi-
nation R2, Spearman and Pearson coefficients and the Analysis
of Variance (ANOVA). R2 is the percentage of variation in Effort
explained by the variable Size. An acceptable value of R2 ≥ 0.5
(Humphrey, 1995).The value R2 reported for Eq. (21) is 0.972.
Approximately 97% of the variation in Effort can be explained by
the variable Size. This shows a strong relationship between Size
and Effort. To thoroughly test the regression model, Spearman
(Lehmann, 1998) and Pearson (Edwards, 1976) coefficients were
determined to measure the correlation strength between the Effort
and Size. The coefficients range of both Spearman and Pearson is
between [−1,1]. The value 0 means that these two variables are
not correlated. A positive value represents a positive correlation.
Larger coefficient values correspond to stronger correlations. On
the contrast, negative values mean negative correlations. In our
experiments, the Spearman and Pearson coefficients are 0.98 and
0.97, respectively. This shows that the two variables Effort and
Size have a strong positive relationship. The Analysis of Variance
(ANOVA) of Eq. (21) shows that the “P” value of the model as well
as the predictors is 0.000. The P value is a probability with a value
ranging between 0 and 1. In statistics, a P value of less than 0.05 indi-
cates that the results are statistically significant at 95% confidence
level. Since the p values of the model and the predictors are less
than 0.05, we deduce that all independent variables (predictors)
are significant at the 95% confidence level.

Based on the above experiments and results, the regression
equation represents the non-linear relationship between software
size and effort with high percentage of accuracy. By taking into
consideration Eq. (21) and Eq. (17), the main equation for software
effort in the proposed model can be expressed as follows:

Effort = 8.16 × Complexity

Productivity
× (Size)1.17. (22)

The second step of the proposed model is to calculate the
values of project Complexity and Productivity. Table 3 presents
some technical factors that represent the complexity of a project.
We will assume that the UCP model’s technical factor TF can
represent the project complexity factor during the estimation of
UCP and consequently, the Complexity factor in Eq. (22) can be

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 151

ignored. The main effort equation of the proposed regression model
becomes:

Effort = 8.16
Productivity

× (Size)1.17. (23)

With respect to productivity, Table 4 lists some productivity
attributes represented by the environmental factors. In the original
UCP model, productivity factor is only included when estimating
the UCP size. Schneider and Winters (2001) included the produc-
tivity factor while calculating software effort as discussed in Section
1.5. We believe that the productivity factor should be included in
the software effort equation. Based on Table 4, the highest pro-
ductivity factor is achieved when the value of the factors E1–E6 is
5 and the value of the factors E7 and E8 is 0. If we assume that
prod sum = (

∑8
i=1Ei × Wi), this implies that the value of prod sum

is 32.5. On the other hand, the lowest productivity factor is achieved
when the value of F1–F6 is set to 0 and the value of F7 and F8 is set
to 5. This implies that the value of prod sum is −10. In the proposed
model, the productivity factor in Eq. (23) is determined based on
the value of prod sum. To discover the influence of prod sum on soft-
ware effort, a multiple linear regression equation was generated
with two predictors (Size and prod sum) as shown in Eq. (24).

Effort = 409 + (24.9 × Size) − (52.8 × prod sum). (24)

This equation shows that when software size increases, soft-
ware effort increases. However, when the productivity of the team
(prod sum) increases, software effort decreases. This interpretation
is compatible with Eq. (23).

The value of the coefficient of determination R2 of Eq. (24) is
0.861. This indicates that 86% of the variation in Effort can be
explained by the independent variables size and prod sum. The
ANOVA of Eq. (24) shows that the “P” value of the model is 0.000
and the “P” value of each of the predictors is 0.000. This indicates
that all independent variables are significant at the 95% confidence
level.

From the above results, we deduce that the proposed multiple
linear regression equation is valid and it will be used to determine
the productivity factor in Eq. (23) based on the value of the variable
prod sum. Since the value of prod sum varies between [−10, 32.5],
it is difficult to predict the value of productivity in Eq. (23) based
on each value of prod sum. For this reason, the productivity variable
will be depicted based on four main ranges of prod sum. Since the
prod sum variable falls between [−10, 32.5], the main four regions
of this variable will be selected as between [−10,0], between [1,10],
between [11,20] and between [21, 32.5]. To find the influence of
prod sum on the dependent variable Effort in Eq. (24), four values of
prod sum will be selected such that each value belongs to each of
the aforementioned main regions. To minimize the influence of the
size variable on Effort and only focus on the influence of prod sum,
the value of the size variable will be the same for each value of
¬prod sum. The selected value of size is 80 UCP because the value
“80” is considered as a medium-size project with respect to the pool
of the projects used to generate the regression equation. Based on
this information and according to Eq. (24), the following rules can
be deduced:

• If size is 80 and prod sum is −7 then Effort is 2770 (−7 falls between
[−10,0]).

• If size is 80 and prod sum is 5 then Effort is 2137 (5 falls between
[1,10]).

• If size is 80 and prod sum is 16 then Effort is 1556 (16 falls between
[11,20]).

• If size is 80 and prod sum is 26 then Effort is 1028 (26 falls between
[21, 32.5]).

Table 5
Productivity factor.

prod sum = (
∑8

i=1
Ei × Wi) Productivity description Productivity factor

Less than 0 Very low 0.4
Between 1 and 10 Low 0.7
Between 11 and 20 Average 1
Greater than 20 High 1.3

If we substitute the values of size and Effort of the aforemen-
tioned four rules in Eq. (23), the value of the productivity variable
will be 0.4, 0.7, 1 and 1.3, respectively as shown in Table 5.

2.1. Productivity factor calibration

Usually in any project, the productivity factor is determined
prior to the development of the project. For example, in COCOMO
cost drivers, a productivity factor can be described as Very
Low, Low, Nominal and High. Schneider and Winters (2001) also
assigned values to productivity such as 1 for normal productivity
(Effort = size × 20), 1.4 for low productivity (Effort = size × 28) and
1.8 for very low productivity (Effort = size × 36). In this research
we followed the same approach as COCOMO and Schneider and we
propose 4 levels of productivity as shown in Table 5. This makes the
use of the productivity factor simpler. However, the main drawback
of this approach is the abrupt change in productivity levels where
previous work such as (Idri and Abran, 2000) and (Huang et al.,
2007) tackled this issue in COCOMO. In this work, to resolve the
drawback of the abrupt change in productivity levels and provide
more accurate results, a fuzzy logic approach has been used.

A fuzzy logic approach is applied on the proposed regression
model to adjust the values of the productivity factor. In the pro-
posed approach, the fuzzy system type is Mamdani (1977), the
input membership of the fuzzy logic system used is Trapezoidal
because the input is represented by a range (e.g. between 1 and 10)
and Trapezoidal memberships can handle that by representing a
range through the upper base of the Trapezoid. On the other hand,
the output membership is Triangular because the output is a num-
ber and not a range and it can be represented as the triangle’s vertex.
The method used in the defuzzification stage is the centroid because
this is the default and most used method. Matlab version 2010b
was used to conduct the experiments of the fuzzy logic approach.
Figs. 6 and 7 show the input and the output memberships, respec-
tively. In Fig. 6, there are four membership functions which include
mf1, mf2, mf3 and mf4. Each function represents the “If” part of
the “If–Then” rule (aka the antecedent or premise). For instance,
input membership mf2 represents the “If” part of the second rule
which is “If prod sum is between 0 and 10”. On the other hand, the
four output membership functions (mf1, mf2, mf3 and mf4) repre-
sent the “Then” part of the “If–Then” rule (aka the consequent or
conclusion). For instance, the output membership mf2 represents
“then productivity factor = 0.7) which corresponds to the vertex of
the second triangle mf2.

Fig. 6. Input membership.

Author's personal copy

152 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

Fig. 7. Output membership.

There are two main approaches to elicit fuzzy rules (Xu and
Khoshgoftaar, 2004). These include:

1. The If–Then rules are known. A structured model can be used to
incorporate these rules. Membership functions and weights of
rules can be calibrated using input and output data.

2. No prior knowledge about the system is initially used. A fuzzy
model is constructed based on a certain algorithm. Fuzzy rules
and membership functions are expected to describe the system
behavior. An expert can modify the rules and the membership
functions.

In this paper, the first approach is used.
There are four fuzzy rules in the proposed approach. These

include:

1- If prod sum is less than 0, then productivity factor = 0.4.
2- If prod sum is between 0 and 10, then productivity factor = 0.7.
3- If prod sum is between 10 and 20, then productivity factor = 1.
4- If prod sum is greater than 20, then productivity factor = 1.3.

The fuzzy inference system shown in Fig. 8 can take any input
within the input boundary (from −10 to 32.5). Based on the input
value, two or more input membership function will be interpolated.
The output value is determined based on the center of gravity of
the output surface. For instance, Fig. 8 shows that when the input
(productivity) is 9, the output is 0.817. After applying the fuzzy
logic approach, the productivity factor has a specific value for each
value of prod sum. Table 6 shows some samples of the new values
of the productivity factors. The labels IN, PO and PN correspond
to prod sum, old productivity factor and new productivity factor,
respectively.

As seen in Table 6, the values of the new productivity factor
(PN) are not as crisp as the values of the old productivity factor
(PO). This leads to more accurate estimation values. For instance,
a complete list of the productivity factor values can be obtained
using the proposed fuzzy logic inference system.

Fig. 8. Fuzzy inference system.

Table 6
New productivy factor.

IN PO PN IN PO PN

−10 0.4 0.4 8 0.7 0.78
−9 0.4 0.44 9 0.7 0.81
−8 0.4 0.47 10 0.7 0.85
−7 0.4 0.493 11 1 0.88
−6 0.4 0.511 12 1 0.91

0 0.4 0.55 20 1 1.15
1 0.7 0.583 21 1.3 1.15

Fig. 9. MLP model.

3. Multilayer perceptron (MLP) model

This section presents the MLP neural network model. The main
inputs to the proposed MLP model are software size and team pro-
ductivity represented by the eight environmental factors (E1–E8 as
shown in Table 4). The output of the model is software effort. The
structure of the proposed neural network is depicted in Fig. 9. The
MLP training parameters are listed in Table 7. The network will
stop training when the number of epochs reaches 250 or when the
Mean Squared Error (MSE) becomes zero or when the mu value
exceeds 1e + 10. The time was set to “infinity” which indicates
that the training time does not have a control on when the train-
ing should stop. The algorithm used to train the MLP model was
Levenberg–Marquardt backpropagation. Ninety data points were
used in developing the MLP model (data sets are explained in Sec-
tion 4.1). Among the 90 data points, 60% were randomly used for
training, 20% were used for validation and 20% were used for test-
ing. The training data points were used in the training process and
the model was adjusted according to their error. The validation data
points were used to measure the network generalization and this
cause the training to stop when generalization stops improving to
prevent overfitting. Overfitting occurs when the model gives good
results in training but bad results in the validation process. The
testing data points have no effect on the training process and they

Table 7
MLP training parameters.

Parameter Default value Description

Epochs 250 Maximum number of epochs to train
Goal 0 Performance goal based on MSE
Min grad 1e − 10 Minimum performance gradient
mu 0.001 Initial learning rate (mu)
mu dec 0.1 mu decrease factor
mu inc 10 mu increase factor
mu max 1e + 10 Maximum mu
time Inf Maximum time to train in seconds

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 153

were used to measure the model performance during the train-
ing. Please note that the term “testing” used here is different from
the model’s evaluation conducted in Section 4. Testing in this con-
text is used during the development (training) of the model. When
the process of developing the model has finished, the model will
be evaluated using 70 data points that were not included in the
training process.

One of the important steps in developing the MLP model is to
determine the number of nodes in the hidden layer. This problem
is highly controversial and there is no straightforward answer to
it. If the number of hidden nodes is too few, there will be high
training error and high generalization error due to underfitting. On
the other hand, if the number of hidden nodes is too high, we may
get low training error but still have high generalization error due
to overfitting. Blum (1992) and Linoff and Berry (2011) argued that
the number of nodes in the hidden layer should be between the
number of nodes in the input layer and double that number. In our
case, the number of hidden nodes falls between 10 and 18 since
the number of inputs is 9. Within the data points used to develop
the model, the size, environmental factors (E1–E8) and the actual
effort of each project are known. In the training process, the k-fold
(k = 10) cross-validation technique is used. This means that the 90
data points will be divided into 10 equal sets. The process will be
repeated 10 times. In each time, 9 sets will be used for training
and validation, and 1 set for testing. After the complete process has
finished, all the sets will have been used in the training, validation
and testing processes. The round with minimal testing error will
be selected. After the MLP has been developed, it will be evaluated
on 70 data points that were not included in the training stage. To
demystify the process of training the neural network model, the
following algorithm is used:

1- Assign the data (90 projects) to be used in developing the MLP
model.

2- The remaining 70 projects will be used to evaluate the MLP
model (Section 4).

3- Randomly divide the 90 data points into 10 equal sets (S1 to
S10).

4- Set the number of nodes in the hidden layer to 10 (“nh” = 10).
5- Set the number of training rounds (i) to 1 (“i” = 1)
6- In Round “i” (“i” is a number between 1 and 10), use 9 sets

for training and validation and 1 set for testing (for each value
of “i”, 9 different sets are used for training/validation and the
remaining set for testing)

7- Record the testing error Vi-nh (“i” represents the number of
the round, and “nh” the number of nodes in the hidden layer.
For instance, the first testing error will be V1-10).

8- Increment the value of “i” by 1.
9- If the value of “i” is 11, then increment the value of “nh” by 1

and set the value of “i” to 1.
10- If the value of “nh” = 19, then stop training process and exit.
11- Go to step “6”

Ten rounds of training/validation and testing were performed
for each value of the number of hidden nodes “nh”. The values of
“nh” were chosen between 10 and 18. The value 10 represents the
number of the input nodes plus 1. The value 18 represents the num-
ber of hidden nodes multiplied by 2. Experiments showed that the
minimal value of the testing error occurred when the number of
the hidden nodes is 16.

Fig. 10 shows the performance graph of the training process. The
training curve is represented in blue (lower curve) and it shows
that the training error (based on MSE) decreases when the number
of epochs increases. Nonetheless, the best performance is not set
when the number of epochs is 250 because the validation error
(green curve) starts to increase after epoch 0. This means that

Fig. 10. Performance graph.

generalization stopped improving after epoch 0 and the training
process was stopped at this stage to prevent overfitting. The testing
curve (red color) also indicates that the error increases after epoch
0 and thus stopping the training at epoch 0 is a valid approach.
Fig. 11 shows that regression graph of training, validation and
testing. The best results are achieved when each of the training,
validation and testing points represents a straight line. This means
that the value of the correlation coefficient R is 1. The correlation
coefficient measures the strength and the direction between two
variables which are in this case the actual effort (x axis) and the
estimated effort from the model (y axis). The values of R in training,
validation and testing are 0.99, 0.82 and 0.76, respectively. These
values show that there is a positive and strong relationship between
the actual and estimated efforts in each of the training, validation
and testing.

3.1. Testing the robustness of the MLP model

After the model has been developed, it was tested to see how
stable and robust the model is. This is to study how the output of the
MLP model varies when a change in the input occurs. The output of
the model is a function of software size and team productivity. If we
ignore the team productivity at this moment, the output (software
effort) will be a function of software size. For the model to be sta-
ble and robust, we have two constraints. First, if the software size
increases, software effort should increase. Second, the average out-
put error of the model should fall within an acceptable error range.
Twelve projects of size between 30 and 40 UCP (incremented by
10) were used to test the robustness. We found that output of the
MLP model increases when the size increases and the error based
on the log-linear regression model is acceptable.

4. Models’ evaluation and comparison among models

This section presents the evaluation of the proposed MLP
and log-linear regression models. A comparison was conducted
between the proposed models and two other models that predict
software effort from use cases which are the UCP and Schneider’s
models. Ninety data points were used in training the models and 70
data points were used for evaluation. The evaluation process was
based on the MMER, PRED, RMSE, MAE and the standard deviation
(SD) of the mean error (difference between actual and estimated
effort).

Author's personal copy

154 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

Fig. 11. Regression graph.

4.1. Project datasets

This research is based on software effort prediction from use
case diagrams. We have encountered many difficulties in acquir-
ing industrial projects because revealing UML diagrams of projects
is considered confidential to many companies. Public published
datasets such as Desharnais, COCOMO, Albrecht and NASA cannot
be used in our work because the unit of size in these datasets is
either SLOC or function points. For this reason, we have prepared
a questionnaire that could help us obtain industrial data without
actually having UML diagrams. In this questionnaire, we asked for
example, the quantity of use cases in each project, the number of
transactions in the Main Success Scenario and in the Extension Sce-
nario, actual software size and effort as well as some non-functional
requirements such as factors contributing to productivity and

complexity. One hundred and sixty industrial and educational
projects were collected from three main sources. A statistical pro-
file of these datasets is depicted in Table 8. The three datasets
include:

• ISBSG: The default ISBSG repository does not contain projects
that have required information about UML diagrams. We have
requested special projects from ISBSG that contain information
about the use case diagrams. As for our request, we have received
223 projects prepared specifically for us. These projects were fil-
tered since many of them do not contain the information required
in our research. Out of the 223 projects, 50 projects were selected
to be used in the evaluation process that satisfy our requirements.
FP size was converted to UCP using the rules proposed by Koirala
(2009).

Table 8
Statistical profile of datasets.

Dataset Mean StDev Minimum Median Maximum Skewness Kurtosis

Western 1672.4 414.3 696 1653 2444 −0.05 −0.82
CompuTop 20,573 47,327 570 3248 224,890 3.26 10.69
ISBSG 6081 9667 167 2554 57,156 3.78 16.94

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 155

Fig. 12. MMER main dataset.

• Western University, Canada: Sixty five projects were collected
from the fourth year software engineering students and from
Master’s students in the Computer Science department. The
projects were developed and implemented using UML and object
oriented languages. IBM Rational software was used as a CASE
tool. Among these 65 projects, 55 projects were used in devel-
oping the models and 10 projects were used in the evaluation
process.

• CompuTop: This is a medium-sized company overseas that
employs 14 people to develop several projects such as informa-
tion systems for chains of hotels, multi-branch universities and
multi-warehouses book stores. The architectures used to develop
these projects are 2-tier desktop application and 3-tier web archi-
tecture. The CASE tool used is Sybase PowerDesigner 12.5 and 15.
Forty five projects were collected. Among these 45 projects, 35
projects were used in developing the models and 10 projects were
used in the evaluation process.

4.2. Evaluation of MLP and log-linear regression models

Among the 160 projects in the three datasets, 90 projects were
used to train the MLP model and 70 projects were used to eval-
uate (test) the model. Three main experiments were conducted
to evaluate the MLP and Regression models. First, the proposed
models were evaluated using the main dataset that contains the
whole evaluating data points (70 projects). These 70 projects are
different from the 90 projects used to train the model. In the sec-
ond experiment, the models were evaluated using a dataset, named
“small”, that contains 38 projects of efforts less than 3000 person-
hours. In the third experiment, the models were evaluated using a
dataset, named “large”, that contains 32 projects of efforts larger
than 3000 person-hours. The main purpose of conducting three
experiments is to study the performance of the MLP and log-
linear regression models based on the size of the projects used
in the evaluation (small versus large projects). Table 9 shows
the evaluation results for the main, small and large datasets. The
columns Reg, MLP, UCP and Sch correspond to the log-linear
regression model, MLP model, UCP model and Schneider’s model,
respectively. Figs. 12–14 show the MMER Interval plots at 95% con-
fidence level of the main, small and large datasets, respectively.
Figs. 15–17 show the MAE Interval plots at 95% confidence level
of the main, small and large datasets, respectively. Additionally,
Figs. 18–29 depict the actual versus predict effort relationship
of the regression model, MLP model, UCP model and Schnei-
der’s model based on the main, small and large datasets. Section
4.3 demonstrates a detailed explanation of Table 9 as well as
Figs. 12–29.

Fig. 13. MMER small dataset.

Fig. 14. MMER large dataset.

4.3. Comparison among models

Table 9 shows the evaluation results of the proposed log-linear
regression and MLP models, as well as the UCP and Schneider’s
models. The evaluation was conducted on five different criteria.
These include the MMER, PRED, RMSE, MAE and SD of the mean
error. Low values of MMER, RMSE, MAE and SD indicate good
results. On the contrary, high PRED values indicate good results.
Based on the main dataset (when all evaluation projects were used),
the log-linear regression model and the MLP model have similar
MMER and PRED values. However, RMSE, MAE and SD values show

Fig. 15. MAE main dataset.

Author's personal copy

156 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

Table 9
Models evaluation.

Criteria Main dataset Small dataset Large dataset

Reg MLP UCP Sch Reg MLP UCP Sch Reg MLP UCP Sch

MMER 39.2 40 46.7 45 43.2 27.2 42.4 41.6 34.7 55 51.7 49.1
PRED (25) 37.1 45.7 34.2 40 36.8 60.5 36.8 39.4 37.5 28.1 31.2 40.6
PRED (50) 75.7 72.8 71.4 72.8 78.9 86.8 71 73.6 71.8 56.2 71.8 71.8
PRED (75) 94.2 90 90 90 89.4 94.7 89.4 89.4 100 84.3 90.6 90.6
PRED (100) 97.1 92.8 92.8 92.8 94.7 97.3 94.7 94.7 100 87.5 90.6 90.6
RMSE 14,922 24,136 29,322 29,317 872 747 1120 1204 22,126 35,689 43,351 43,341
MAE 6338 8940 8852 8830 690 484 882 942 13,181 18,981 18,317 18,196
SD 13,607 22,581 28,155 28,158 540 576 700 759 18,055 30,706 39,919 39,966

Fig. 16. MAE small dataset.

Fig. 17. MAE large dataset.

Fig. 18. Regression main dataset.

Fig. 19. Regression small dataset.

Fig. 20. Regression large dataset.

Fig. 21. MLP main dataset.

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 157

Fig. 22. MLP small dataset.

Fig. 23. MLP large dataset.

that the log-linear regression model surpasses the MLP model as
well as the other models. When the small dataset was used, it is
clear that the MLP model outperforms the log-linear regression
model as well as the other models. The large dataset results show
that the log-linear regression model is the best model and the per-
formances of all other models deteriorate when large projects are
used for effort estimation.

Figs. 12–14 depict the interval plots at 95% confidence level
of the MMER criterion of the regression, MLP, UCP and Schnei-
der’s models for the three experiments (main, small and large). The
centers of the intervals correspond to the MMER value of the corre-
sponding models. Models with larger interval plots width indicate

Fig. 24. UCP main dataset.

Fig. 25. UCP small dataset.

Fig. 26. UCP large dataset.

that there is a large difference between the minimum and maxi-
mum values of the MMER. This points out that models with shorter
intervals width and low centers (MMER) perform better. Based on
this analysis, Figs. 12 and 14 show that the log-linear regression
model outperforms the other models. On the other hand, Fig. 13
shows that the MLP model exceeds the other models.

Similarly, based on Figs. 15 and 17, the log-linear regression
model has the best results based on the MAE criterion. However,
Fig. 16 shows that the MLP model outperforms the other models.

Figs. 18–29 show the relationship between the actual effort (x-
axis) and the predicted effort (y-axis) of each of the four models
(regression, MLP, UCP and Schneider) in each experiment (main

Fig. 27. Schneider main dataset.

Author's personal copy

158 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

Fig. 28. Schneider small dataset.

Fig. 29. Schneider large dataset.

dataset, small dataset and large dataset). The straight line repre-
sents the regression line which is the best straight line passing
through the points. In the ideal situation, when all points fall
on the straight line, this indicates that the predicted effort is
equal to the actual effort which is not the case in real life. Based
on the main dataset (Figs. 18, 21, 24 and 27), the log-linear
regression model shows that it has the best performance with
respect to the other models. However, based on the small dataset
(Figs. 19, 22, 25 and 28), the MLP model outperforms the other
models since the points are closer to the regression line. Similarly,
based on the large dataset (Figs. 20, 23, 26 and 29), the log-linear
regression model surpasses the other models.

As a conclusion from the evaluation results, the MLP model gives
promising results for estimating projects in the Small Dataset (less
than 3000 person-hours). However, the MLP model did not per-
form well with large and all datasets. To confirm these conclusions,
a statistical test was used. The Anderson–Darling normality test
was applied on the absolute residuals and we found that absolute
residuals of all models are not normally distributed. For this reason,
we used the non-parametric Mann–Whitney test and the results
are reported in Table 10. Results show that, based on the Small

Table 10
Mann–Whitney test for absolute residuals.

p-Value (small
dataset)

p-Value (large
dataset)

p-Value (all
dataset)

MLP vs UCP 0.0015 0.3172 0.1858
MLP vs Schneider 0.010 0.2738 0.1942
MLP vs regression 0.0373 0.5682 0.3826

Dataset, the MLP model is statistically significant in comparison
with the regression, UCP and Schneider’s models at the 95% con-
fidence level. The Mann–Whitney test results support the results
obtained in Table 9.

On the other hand, the log-linear regression model should be
used for estimating projects of size larger than 200 UCP. Moreover,
the original UCP model becomes inappropriate to estimate projects
of efforts more than 10,000 person-hours.

5. Threats to validity

Threats to validity can be summarized as follows:

• The largest project used in the evaluation has an effort of
218,900 person-hours. The proposed log-linear regression and
MLP models might be appropriate to estimate projects that are
larger than 218,900 person-hours. Nevertheless, the limitation
of the proposed models is set to the estimation of projects of
maximum effort of 218,900 person-hours.

• One of the reasons that the MLP model did not perform well with
large projects is because of the lack of more projects. This model
was trained using 90 projects and the performance of this model
would be better if more training projects were used.

• It was difficult to elicit the environmental factors (Table 4) from
the team that is developing software projects. For instance, devel-
opers might be optimistic when answering questions about their
experiences and motivations. Moreover, the motivation of a
developer/programmer might differ when placed in a different
team, even in the same project. Furthermore, there is no straight-
forward rule to calculate the productivity of the team based on
the productivity of each team member. In this work, the average
of all team members was performed to calculate the productivity
of the team.

• Because of the lack of industrial projects, some educational
projects were used. Educational projects are mainly developed
by students who work with these projects part time. Projects
developed by inexperienced students might incur errors when
the actual software effort is estimated.

6. Conclusions

This paper focused on software effort estimation from the use
case diagrams using the use case point (UCP) model. In the UCP
model, the unadjusted software size (UUCP) is calculated based on
the number and complexity of the use cases as well as the actors.
The adjusted use case point size (UCP) is then calculated by mul-
tiplying the UUCP by the technical and environmental factors. The
technical factors represent the project complexity where the envi-
ronmental factors represent the team productivity. After the UCP
size is calculated, software effort can be estimated by multiply-
ing the UCP size by 20. There are two main shortcomings in the
original UCP model. The first one is that the UCP model consid-
ers the relationship between software size and effort is linear. This
is incorrect because when software size increases, the number of
team members required to develop this software increases. When
the team becomes larger, communication overhead will incur and
this requires additional effort. This concludes that when software
size increases, software effort will increase exponentially. Another
shortcoming is that the influence of the team productivity is not
taken into consideration while estimating effort. In this work, a
novel log-linear regression model was proposed to tackle these
limitations. A multiple linear regression model was developed to
predict the values of the productivity factor used in the proposed
regression model. Additionally, a Mamdani fuzzy logic approach
was used to adjust the values of the productivity factor.

Author's personal copy

A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160 159

Another contribution in this paper was to develop a multi layer
perceptron (MLP) neural network model. This model takes the soft-
ware size and the team productivity represented by eight factors as
inputs. The output of this model is the software effort. The proposed
log-linear regression and MLP models were evaluated using 70
industrial and educational projects based on five different criteria
such as the MMER, PRED, RMSE, MAE and SD. A comparison among
the log-linear regression model, the MLP model and two other mod-
els (the UCP and Schneider’s models) that predict software effort
from use case diagrams was conducted according to three different
experiments. In the first experiment, all available data points (70
projects) that were not part of the training data points were used for
evaluation. In the second experiment, 38 data points of efforts less
than 3000 person-hours were used for evaluation, while in the third
experiment, 32 data points of efforts greater than 3000 person-
hours were used to evaluate the models. The results show that
the proposed log-linear regression model surpasses all the mod-
els in the first and third experiments (all data points and large
data points). On the other hand, the MLP model outperforms all
other models in the second experiment (small data points) and this
has been confirmed using the non-parametric Mann-Whitney Test.
This had led to the conclusion that an MLP model can be used as
an alternative to relevant regression models to estimate projects
of effort less than 3000 person-hours. Furthermore, the proposed
log-linear regression model can be used with promising results to
estimate software effort especially with projects of effort more than
3000 person-hours.

The next step in this investigation will focus on improving
the regression and the MLP models when new projects are avail-
able. The environmental and the technical factors of the UCP
model should be updated. Moreover, the UCP model should be
reconstructed to handle use cases of more than 7 transactions.
Furthermore, the weights of the use cases should be calibrated.

References

Ahmed, M.A., Omolade Saliu, M., AlGhamdi, J., 2005. Adaptive fuzzy logic-based
framework for software development effort prediction. Information and Soft-
ware Technology 47, 31–48.

Allison, P.D., 1984. Event History Analysis: Regression for Longitudinal Event Data.
Sage Publications.

Anda, B., Dreiem, H., Sjoberg, D.I.K., Jorgensen, M., 2001. Estimating software devel-
opment effort based on use cases-experiences from industry. In: Proceedings of
the 4th International Conference on the Unified Modeling Language, Modeling
Languages, Concepts, and Tools, pp. 487–502.

Andreou, A.S., Papatheocharous, E., 2008. Software cost estimation using fuzzy deci-
sion trees. In: 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE2008), pp. 371–374.

Anvik, J., Murphy, G.C., 2011. Reducing the effort of bug report triage: recommenders
for development-oriented decisions. ACM Transactions on Software Engineering
and Methodology 20 (August), 10:1–10:35.

Arnold, M., Pedross, P., 1998. Software size measurement and productivity rating
in a large-scale software development department. In: Proceedings of the 20th
International Conference on Software Engineering, pp. 490–493.

Attarzadeh, I., Ow, S.H., 2011. Software development cost and time forecasting using
a high performance artificial neural network model. Intelligent Computing and
Information Science 134, 18–26.

Azzeh, M., Neagu, D., Cowling, P., 2010. Fuzzy grey relational analysis for software
effort estimation. Empirical Software Engineering 15, 60–90.

Azzeh, M., Neagu, D., Cowling, P.I., 2011. Analogy-based software effort estimation
using fuzzy numbers. Journal of Systems and Software 84, 270–284.

Blum, A., 1992. Neural Networks in C++: An Object-Oriented Framework for Building
Connectionist Systems. Wiley, NY.

Boehm, B.W., 1981. Software Engineering Economics. Prentice-Hall.
Boehm, B., Abts, C., Chulani, S., 2000a. Software development cost estimation

approaches: a survey. Annals of Software Engineering 10, 177–205.
Boehm, B., Abts, C., Brown, W., Chulani, S., 2000b. Software Cost Estimation with

COCOMO II. Addison Wesley, Upper Saddle River, NJ.
Braz, M.R., Vergilio, S.R., 2006. Software effort estimation based on use cases. In:

COMPSAC’06, pp. 221–228.
Briand, L.C., Wieczorek, I., 2002. Resource estimation in software engineering. Ency-

clopedia of Software Engineering 2, 1160–1196.
Cameron, A.C., Trivedi, P.K., 1998. Regression Analysis of Count Data. Cambridge

University Press, Cambridge, UK.

de Barcelos Tronto, I.F., da Silva, J.D.S., Sant’Anna, N., 2008. An investigation of artifi-
cial neural networks based prediction systems in software project management.
Journal of Systems and Software 81, 356–367.

Demirors, O., Gencel, C., 2004. A comparison of size estimation techniques applied
early in the life cycle. Software Process Improvement 3281, 184–194.

Diev, S., 2006. Use cases modeling and software estimation: applying use case points.
SIGSOFT Software Engineering Notes 31, 1–4.

D. Eck, B. Brundick, T. Fettig, J. Dechoretz, J. Ugljesa, Parametric Estimating Hand-
book, The International Society of Parametric Analysis (ISPA), 4th edn., 2009.

Edwards, A., 1976. An Introduction to Linear Regression and Correlation. W. H. Free-
man and Company.

Foss, T., Stensrud, E., Kitchenham, B., Myrtveit, I., 2003. A simulation study of the
model evaluation criterion MMRE. IEEE Transactions on Software Engineering
29 (11), 985–995.

Galorath, D.D., Evans, M.W., 2006. Software Sizing, Estimation and Risk Manage-
ment. Auerbach Publications, Boston, MA, USA.

Gauss, C.F., Theory of the Motion of the Heavenly Bodies Moving about the Sun
in Conic Sections (Theoria motus corporum coelestium in sectionibus conicis
solem ambientum) (First published in 1809, Translation by C.H. Davis), Dover,
New York, 1963.

Heiat, A., 2002. Comparison of artificial neural network and regression models for
estimating software development effort. Information and Software Technology
44, 911–922.

Huang, S., Chiu, N., 2006. Optimization of analogy weights by genetic algo-
rithm for software effort estimation. Information and Software Technology 48,
1034–1045.

Huang, X., Ho, D., Ren, J., Capretz, L.F., 2007. Improving the COCOMO model using a
neuro-fuzzy approach. Applied Soft Computing 7 (1), 29–40.

Humphrey, W., 1995. A Discipline for Software Engineering. Addison Wesley.
Idri, A., Abran, A., 2000. COCOMO cost model using fuzzy logic. In: 7th International

Conference on Fuzzy Theory and Technology, pp. 1–4.
Idri, A., Zahi, A., Mendes, E., Zakrani, A., 2008. Software cost estimation models using

radial basis function neural networks. Software Process and Product Measure-
ment 4895, 21–31.

Idri, A., Zakrani, A., Zahi, A., 2010. Design of radial basis function neural networks
for software effort estimation. International Journal of Computer Science Issues
7, 11–17.

Jiang, Z., Naudé, P., Jiang, B., 2007. The effects of software size on development effort
and software quality. International Journal of Computer and Information Science
and Engineering 1, 230–234.

Jorgensen, M., 1995. Experience with the accuracy of software maintenance
task effort prediction models. IEEE Transactions on Software Engineering 21,
674–681.

Jørgensen, M., 2007. Forecasting of software development work effort: evidence on
expert judgement and formal models. International Journal of Forecasting 23,
449–462.

Karner, G., 1993. Resource estimation for objectory projects. Objective Systems.
Kitchenham, B.A., Pickard, L.M., MacDonell, S.G., Shepperd, M.J., 2001. What

accuracy statistics really measure. IEEE Proceedings-Software 148 (3 (June)),
81–85.

Koirala, S., 2009. How to Prepare Software Quotation. bpb publications.
Kok, P., Kitchenham, B.A., Kirakowski, J., 1990. The MERMAID approach to software

cost estimation. Esprit Technical Week.
Kumar, K., Ravi, V., Carr, M., Kiran, N., 2008. Software development cost esti-

mation using wavelet neural networks. Journal of Systems and Software 81,
1853–1867.

Legendre, A., 1805. Nouvelles méthodes pour la détermination des orbites des
comètes. Sur La Méthode Des Moindres Quarrés.

Lehmann, E.L., 1998. Nonparametrics: Statistical Methods Based on Ranks. Prentice
Hall.

Li, Y., Xie, M., Goh, T., 2010. Adaptive ridge regression system for software cost
estimating on multi-collinear datasets. Journal of Systems and Software 83,
2332–2343.

Linoff, G.S., Berry, M.J., 2011. Data Mining Techniques: For Marketing, Sales and
Customer Relationship Management. Wiley, NY.

Lippman, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP
Magazine 3 (2), 4–22.

Longstreet, D., 2008. Estimating software effort. Software Metrics.
Lopez-Martín, C., 2011a. A fuzzy logic model for predicting the development effort

of short scale programs based upon two independent variables. Applied Soft
Computing 11 (1), 724–732.

Lopez-Martín, C., 2011b. Applying a general regression neural network for predicting
development effort of short-scale programs. Neural Computing & Applications
20, 389–401.

Lopez-Martín, C., Isaza, C., Chavoya, A., 2011. Software development effort prediction
of industrial projects applying a general regression neural network. Empirical
Software Engineering 17, 1–19.

Lopez-Martín, C., Yanez-Marquez, C., Gutierrez-Tornes, A., 2008. Predictive accuracy
comparison of fuzzy models for software development effort of small programs.
Journal of Systems and Software 81, 949–960.

J. Lynch. Chaos manifesto. The Standish Group. Boston, 2009 [Online]. Available
from: http://www.standishgroup.com/newsroom/chaos 2009.php.

Mamdani, E.H., 1977. Application of fuzzy logic to approximate reasoning using
linguistic synthesis. IEEE Transactions on Computers C-26, 1182–1191.

McConnell, S., 2006. Software Estimation: Demystifying the Black Art. Microsoft,
Redmond, Washington.

Author's personal copy

160 A.B. Nassif et al. / The Journal of Systems and Software 86 (2013) 144– 160

Mendes, E., Mosley, N., Watson, I.,2002. A comparison of case-based reasoning
approaches. In: Proceedings of the 11th International Conference on World Wide
Web. Honolulu, Hawaii, USA, pp. 272–280.

Mohagheghi, P., Anda, B., Conradi, R., 2005. Effort estimation of use cases for
incremental large-scale software development. In: Proceedings of the 27th
International Conference on Software Engineering, St. Louis, MO, USA, pp.
303–311.

Nassif, A.B., Ho, D., Capretz, L.F., 2011a. Regression model for software effort estima-
tion based on the use case point method. In: 2011 International Conference on
Computer and Software Modeling, Singapore, pp. 117–121.

Nassif, A.B., Capretz, L.F., Ho, D., 2011b. Estimating software effort based on use case
point model using sugeno fuzzy inference system. In: 23rd IEEE International
Conference on Tools with Artificial Intelligence, Florida, USA, pp. 393–398.

Ochodek, M., Nawrocki, J., 2008. Automatic transactions identification in use cases.
In: Meyer, B., Nawrocki, J.R., Walter, B. (Eds.), Balancing Agility and Formalism
in Software Engineering. Springer-Verlag, Berlin, Heidelberg, pp. 55–68.

Ochodek, M., Nawrocki, J., Kwarciak, K., 2011. Simplifying effort estimation based
on use case points. Information and Software Technology 53, 200–213.

Papatheocharous, E., Andreou, A.S., 2007. Software cost estimation using artifi-
cial neural networks with inputs selection. In: 9th International Conference
on Enterprise Information Systems (ICEIS2007), Volume DISI – Databases and
Information Systems Integration, pp. 398–407.

Papatheocharous, E., Papadopoulos, H., Andreou, A.S., 2010. Feature subset selection
for software cost modelling and estimation. Engineering Intelligent 18, 233–246.

Park, H., Baek, S., 2008. An empirical validation of a neural network model for soft-
ware effort estimation. Expert Systems with Applications 35 (10), 929–937.

Pendharkar, P.C., Rodger, J.A., 2009. The relationship between software develop-
ment team size and software development cost. Communications of the ACM
52 (January), 141–144.

Pendharkar, P.C., Subramanian, G.H., Rodger, J.A., 2005. A probabilistic model for pre-
dicting software development effort. IEEE Transactions on Software Engineering
31, 615–624.

Periyasamy, K., Ghode, A., 2009. Cost estimation using extended use case point (e-
UCP) model. In: International Conference on Computational Intelligence and
Software Engineering.

Putnam, L.H., 1978. A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering 4, 345–361.

Reddy, C.S., Rao, P.S., Raju, K., Kumari, V.V., 2008. A new approach for estimating
software effort using RBFN network. International Journal of Computer Science
and Network Security 8, 237–241.

Robiolo, G., Orosco, R., 2008. Employing use cases to early estimate effort with
simpler metrics. Innovations in Systems and Software Engineering 4, 31–43.

Robiolo, G., Badano, C., Orosco, R., 2009. Transactions and paths: two use case based
metrics which improve the early effort estimation. In: International Symposium
on Empirical Software Engineering and Measurement, pp. 422–425.

Schneider, G., Winters, J.P., 2001. Applied use Cases, Second Edition, A Practical
Guide. Addison-Wesley.

Shin, M., Goel, A.L., 2000. Empirical data modeling in software engineering using
radial basis functions. IEEE Transactions on Software Engineering 26, 567–576.

Tan, H.B.K., Zhao, Y., Zhang, H., 2009. Conceptual data model-based software size
estimation for information systems. ACM Transactions on Software Engineering
and Methodology 19 (October), 4:1–4:37.

Wang, F., Yang, X., Zhu, X., Chen, L., 2009. Extended use case points method for
software cost estimation. In: International Conference on Computational Intel-
ligence and Software Engineering.

Xia, W., Capretz, L.F., Ho, D., Ahmed, F., 2008. A new calibration for function point
complexity weights. Information and Software Technology 50, 670–683.

Xu, Z., Khoshgoftaar, T.M., 2004. Identification of fuzzy models of software cost
estimation. Fuzzy Sets and Systems 145, 141–163.

Zadeh, L.A., 1965. Fuzzy sets. Information and Control 8, 338–353.

Ali Bou Nassif is currently an adjunct professor at King’s
University College, as well as holding a position as a
post-doctoral fellow at Western University, Canada. He
obtained a Master’s degree in Computer Science and a
Ph.D. degree in Electrical and Computer Engineering from
Western University in 2009 and 2012, respectively. Prior
to joining Western, Ali worked in the IT field and pro-
vided IT services including, but not limited to, IT sales
and consulting for several years. He has also taught many
courses in Computer Science at the undergraduate level.
His research areas include software effort estimation,
requirements engineering, cloud computing and service
oriented architecture.

Danny S.K. Ho is an independent management consul-
tant and advisor for two startup companies. Prior to this,
he held senior management and technical positions with
Motorola Canada Limited, Nortel Networks Corporation
and IBM Canada Limited. He is also appointed as an
Adjunct Research Professor at the Department of Software
Engineering at Western university, Canada. Throughout
his professional career, he has led programs in the areas
of wireline, RF, and infrared development; eMarketing,
mCommerce, and software development environment.
His areas of special interest include software estimation,
project management, object-oriented software develop-
ment, and complexity analysis. Danny received his Honors

Bachelor of Science in Computer Science with Electrical Engineering, and Master
of Science in Computer Science from Western. He is currently a member of the
Professional Engineers Ontario (PEO) and a Project Management Professional (PMP).

Dr. Luiz Fernando Capretz has over 30 years of expe-
rience in the software engineering field as practitioner,
manager and educator. He is currently the Assistant Dean
for IT and e-Learning, and former Director of the Soft-
ware Engineering Program at Western University, Canada.
He has authored over 100 peer-reviewed research papers
on software engineering in leading international journals
and conference proceedings, and co-authored two books.
His current research interests are software engineering,
human aspects of software engineering, software prod-
uct lines, and software engineering education. Dr. Capretz
received his Ph.D. from the University of Newcastle upon
Tyne (U.K.), M.Sc. from the National Institute for Space

Research (INPE-Brazil), and B.Sc. from UNICAMP (Brazil). He is a senior member
of IEEE, a distinguished member of the ACM, a MBTI Certified Practitioner, and a
Certified Professional Engineer in Canada.

