GENERIC MODELING FRAMEWORK FOR INTEGRATED WATER RESOURCES MANAGEMENT

V. V. Nikolic | University of Western Ontario, Canada|vnikolic@uwo.caProf. S. P. Simonovic | University of Western Ontario, Canada|simonovic@uwo.caDr. D. B. Milicevic | University of Nis, Serbia|drgara@gaf.ni.ac.rs

21st Canadian Hydrotechnical Conference 21e congrès spécialisé hydrotechnique canadienne Banff, Alberta, May 14-17, 2013 / 14–17 Mai 2013

O Presentation Outline

i. Theoretical and Practical Requirementsii. Architecture of Modeling Frameworkiii. First and Second Level of Integrationiv. Conclusion and Future Work

Challenges of humanity: Water | Food | Energy

Integrated Water Resources Management | Global Water Partnership

"Process that promotes the coordinated development and management of water, land and its related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystem."

Objectives of Generic Modeling Framework:

Objective 1 | Address the guiding principles Objective 2 | Address the complexity of system structure and relations between components

Objective 3 Address the system behavior in space and time

Specific IWRM Goals of Modeling Framework:

Water allocation | Water Quality Management | Ecosystem protection | etc.

5 Case Study: The Upper Thames River Basin

Upper Thames River Basin, SW Ontario, Canada

Important River Basin Properties	
Average precipitation	1000 mm/year
Average annual discharge	39.5 m³/s
Land use	78% Agriculture 9% Urban 12% Forest
Population	485.000

Data Source | Upper Thames River Conservation Authority

6 First Level of Integration

System Structure

7 Physical System: Hydrologic Model

Computed and Observed Hydrographs at Byron GS

Schematic of Upper Thames Basin Hydrologic Model

8 Operational and Institutional: Agent-based Model

9 Socio-Economic System: System Dynamics Simulation

Population on the Watershed Level | Stock and Flow Diagram

10 Level 1: The Integrated Model

12 Second Level of Integration

13 Upper Thames River Water Quality Model

River Kilometer, Reaches 1 – 15

River Kilometer, Reaches 6 – 10

14 Conclusions and Future Work

- i. Systems View as a guiding principle in IWRM
- ii. Modeling framework to describe system behavior in space and time
- iii. Interaction between system elements and actors
- iv. Dynamic data exchange between system components and detailed representation of all system actors |water sources, users, polluters, etc.|

Thank you for your attention...