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TIMELINE

FIDS TO BC HYDRO

BESc (2007-2011)

• Undergraduate research position after 2nd and 3rd year with Professor Simonovic

MESc (2011-2012)

• Continuation of work in undergraduate research
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TIMELINE
BC Hydro (2013-Present)

CONTEMPORARY DAM SAFETY



4

BRIDGE RIVER

CONTEMPORARY DAM SAFETY
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LAJOIE DAM
BC Hydro (2013-Present)

CONTEMPORARY DAM SAFETY
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DAM SAFETY
Do we need a new approach?

CONTEMPORARY DAM SAFETY
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DAM SAFETY

CONTEMPORARY DAM SAFETY

BC Hydro Fleet

• All dams built between the early 1900s and 1985

• Many assets reaching end-of-life

• Major capital investment plan to renew generation infrastructure

• New methodology for risk assessment of dam systems required?
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PROBABILISTIC RISK ASSESSMENT (PRA)
Current standard for dam safety analyses

• Events are assumed to be independent (eg. flood, gate failure, landslide)

• Linear analysis using a chain of events

• Quantify the likelihood of identified failure modes

• No consideration of human factors (eg. maintenance, design errors)

CONTEMPORARY DAM SAFETY
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FAULT TREE ANALYSIS

CONTEMPORARY DAM SAFETY

A fault tree shows the interaction among system elements whose failure 

could lead to an undesired event

Ref: G. Baecher
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EVENT TREE ANALYSIS

CONTEMPORARY DAM SAFETY

An event tree graphically shows the logical sequence of events given the 

occurrence of a specific circumstance

Ref: G. Baecher
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BOW-TIE MODEL

CONTEMPORARY DAM SAFETY

The bow-tie model is a method that can be used for risk management 

pertaining to a specific event (total or component failure). Key event causes 

and ways to prevent them are identified. Strategies for mitigation of the 

potential event outcomes are identified. 

Ref: G. Baecher
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BOW-TIE MODEL

CONTEMPORARY DAM SAFETY
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EXTREME EVENT ANALYSIS

CONTEMPORARY DAM SAFETY

Probable Maximum Earthquake Probable Maximum Flood
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PROBABILISTIC RISK ASSESSMENT (PRA)
Successes:

• Brainstorming of various failure modes

• Extreme load events and checks against design criteria

• Analysis of linear events

CONTEMPORARY DAM SAFETY

Observation:

• Many historical dam failures are caused by events which are well within 

the design envelope of the system

• Uncommon combination of common events

• Nonlinearities, feedbacks, component interactions in complex systems

• Lack of understanding of the system behaviour over time
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TAUM SAUK, 2005

Pumped storage dam overtopping 

• Gauge readings too low

• Back-up gauges located too high 

to indicate imminent failure

• No visual monitoring

• No overflow spillway

HISTORICAL DAM FAILURES

15

Failure of SCADA (Supervisory control 

and data acquisition) systems and 

oversight of design engineers

Ref: P. Regan, G. Baecher
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SAYANO-

SHUSHENSKAYA, 2009
Hydroelectric plant turbine failure 

• Turbine operated in a “rough load 

zone” on several occasions

• Head cover bolt fatigue

• Inadequate maintenance or 

inspections?

• Lack of turbine shutoff valves 

and no backup power for intake 

gates 

HISTORICAL DAM FAILURES

16

Failure resulting from design omissions, 

operator oversight and inadequate 

maintenance or inspections

Ref: P. Regan
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FOLSOM DAM, 1995

Hydroelectric plant spillway gate failure

• Corrosion at the pin-hub interface 

increased the bending stress causing 

yielding of the strut

• Decreasing frequency of inspection, 

testing and maintenance 

• Inadequate lubricant specifications

• Lack of sensors to measure force 

applied to move gate

HISTORICAL DAM FAILURES

17

Failure resulting from increasing corrosion, 

inadequate maintenance and inspections, 

design omissions (lubricant, sensors)

Ref: G. Baecher

http://www.wired.com/images_blogs/wiredscience/2009/08/dam_f.jpg
http://www.wired.com/images_blogs/wiredscience/2009/08/dam_f.jpg
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NOPPIKOSKI

DAM, 1985
Hydroelectric plant dam breach

• High inflow event, not well forecasted

• Failure of spillway gate hoist 

• Inability to access remote dam site to 

open additional gates 

• Not able to activate emergency gate 

(lack of personnel/equipment on site)

• Lack of backup power supply 

• Lack of staff to respond to crisis

HISTORICAL DAM FAILURES

Failure resulting from design omissions 

and operational issues

Ref: P. Regan, G. Baecher
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A NEW APPROACH TO RELIABILITY ANALYSIS

SYSTEMS APPROACH

Adapted from Leveson, 2010 , Baecher, 2014
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A NEW APPROACH TO RELIABILITY ANALYSIS

Requirements:

• Nonlinear capabilities

• Assess combinations of loadings

• Design and construction errors

• Human factors (operational errors etc.)

• Uncertainties

• Disturbances

• Maintenance Activities

• Evolution of the system over time

SYSTEMS APPROACH
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SYSTEM DYNAMICS SIMULATION

Advantages:

• Simulation can be useful in showing how a system changes over time

• Nonlinearities can be simulated using feedback loops, stocks and flows

• Ability to represent non-physical system components

• Operations

• Maintenance

• Budget

• Information flow

• Disturbances (eg. Flood events, earthquakes, landslides, debris buildup, 

forced outages, sabotage)

SYSTEMS APPROACH
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SYSTEM DYNAMICS SIMULATION

The basics:

• Stocks accumulate in value (eg. population)

• Flows describe the rate of change in the stock at a given time step (births, 

deaths)

• Auxiliary variables can be constants or equations which relate to other 

variables and help describe system behaviour (birth rate, death rate)

SYSTEMS APPROACH
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Model setup:

• Several sectors will be required to deal with different system aspects

• Water-balance

• Operations

• Information flow (SCADA)

• Disturbances

• System-of-systems approach?

• Sensitivity analysis required to 

deal with uncertainties
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Water-Balance Sector:

• Physical structures which pass, 

store, or divert water for power 

production

• Component conditions 

(degradation, age)

• Component conditional reliability 

functions

• Site accessibility

• Back-up electrical systems and 

operational modes
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Adapted from Leveson, 2010 , Baecher, 2014
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Operations Sector:

• Operational decisions (errors)

• Inflow forecast accuracy

• Maintenance budget

• Maintenance activities

• Local staff availability and qualifications

• Component priority (manufacturers maintenance recommendations, risk 

acceptance)

• Changing values (eg. environmental, regulatory, First Nations)
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Adapted from Leveson, 2010 , Baecher, 2014
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Information Flow Sector:

• Accuracy and values from gauges measuring:

• Reservoir level

• Landslide movement

• Embankment dam seepage

• Penstock leakage

• Forces on spillway gate hoists, etc.

• Gauge condition

• SCADA Systems (relay of sensory information to operators, alarms)

• Communication systems (microwave, radio, etc.)
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Adapted from Leveson, 2010 , Baecher, 2014
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Disturbances Sector:

• Earthquakes

• Landslides

• Rockfalls

• Sinkholes

• Floods (stochastic timeseries input?)

• Forced outages (turbines, generators, electrical equipment, spillway 

gates, etc.)

• Debris buildup (affecting spillway capacity, ability to operate gates, ability 

to inspect dam face)
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SYSTEM DYNAMICS SIMULATION

SYSTEMS APPROACH

Adapted from Leveson, 2010 , Baecher, 2014
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SYSTEM DYNAMICS SIMULATION

NEXT STEPS

Next steps in creation of a working example:

• Research partnership between BC Hydro and Western University (Civil 

Engineering)

• Application to NSERC’s Collaborative Research and Development grant 

program

• Development of theoretical foundations that will help quantify relationships 

in the system dynamics simulation model

• Application of simulation approach to BC Hydro’s Bridge River system



33

BRIDGE RIVER

CONTEMPORARY DAM SAFETY
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RELIABILITY OF FLOW CONTROL SYSTEMS

CONCLUSIONS

Possible benefits of system dynamics modelling for flow control 
systems:

• Representation of extremely complex, nonlinear systems in a 

computational model

• Consideration of factors beyond physical structure of a system 

• Identification of critical system components with respect to dam safety and 

overall system reliability

• Ability to test different system configurations to assist in decision making 

for capital upgrades

• Modeling of budget and staffing for sensitivity analysis of budget cuts

• Training of future system operators in a safe environment
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RELIABILITY OF FLOW CONTROL SYSTEMS

CONCLUSIONS

Questions?


