Computerized Support Tool for Participatory Flood Decision-Making in the Red River Basin

Taslima Akter

Department of Civil and Environmental Engineering University of Western Ontario

Outline

Introduction

- multi-criteria decision making(MCDM)
- Multiple stakeholders in the decision making process
- Ranking of alternatives
- Red River case study
 - Conclusions

Introduction

1997 Flood

Introduction

Stages of Flood Management Decision Making:

Planning

- Selecting alternatives for future flood protection

Emergency Management

- Sand-bagging
- floodway operation
- Post Flood Recovery
 - Compensation
 - Insurance claim assessment

Multi-criteria Decision Making

Components:

- Alternatives Possible structural measure, nonstructural measure or operational strategy
- Criteria Standard for evaluating the efficiency of an alternative
- Preference Measure of importance of different criteria
- Stakeholder A person or a group involved in flood decision making process
- A set of performance evaluations of alternatives for each objective or criteria

Multi-criteria Decision Making

	Criteria 1	Criteria 2	Criteria 3	•••	Criteria n
Alternative 1	a ₁₁	a ₁₂	a ₁₃		a _{1n}
Alternative 2	a ₂₁	a ₂₂	a ₂₃		a _{2n}
••••					
Alternative m	a _{m1}	a _{m2}	a _{m3}		a _{mn}
Weight w _n	w ₁	w ₂	W ₃		W _n

Taslima Akter

Multi-criteria Decision Making

Multiple stakeholders in decision-making

	Criteria 1	Criteria 2	Criteria 3	• • •	Criteria n
Alternative 1	a ₁₁	a ₁₂	a ₁₃		a _{1n}
Alternative 2	a ₂₁	a ₂₂	a ₂₃		a _{2n}
•••••					
Alternative m	a _{m1}	a _{m2}	a _{m3}		a _{mn}
Weight	w ₁	w ₂	W ₃		W _n
W _n					

Taslima Akter

Multiple stakeholders in decision-making

	Criteria 1	Criteria 2 ₁	Criteria 2 ₂	Criteria 2 ₃	Criteria 3	 Criteria n
Alternative 1	a ₁₁	a ₁₂₁	a ₁₂₂	a ₁₂₃	a ₁₃	a _{1n}
Alternative 2	a ₂₁	a ₂₂₁	a ₂₂₂	a ₂₂₃	a ₂₃	a _{2n}
Alternative M	a _{m1}	a _{m21}	a _{m22}	a _{m23}	a _{m3}	a _{mn}
Weight w _n	w ₁	w ₂₁	W ₂₂	W ₂₃	w ₃	W _n

Taslima Akter

Uncertainty

Natural hydrological processes

 Inflow; Precipitation; Snowmelt; Temperature

 Data monitoring systems

 Economic; Social; Health; Environmental

 Preferences (lack of knowledge)

 Subjective; Multiple stakeholders

Uncertainty

Theory of fuzzy sets

Western Engineering Science

Multiple Stakeholders in Decision-Making

Multiple Stakeholders in Decision-Making

Conditional IF

IF severe flood expected THAN IF moderate flood expected THAN very low low medium high very high

Taslima Akter

Multiple stakeholders in decision-making

Western Engineering Science

Multiple stakeholders in decision-making

	Criteria 1	Criteria 2 ₁	Criteria 2 ₂	Criteria 2 ₃	Criteria 3		Criteria n
Alternative 1	a ₁₁	a ₁₂₁	a ₁₂₂	a ₁₂₃	a ₁₃		a _{1n}
Alternative 2	a ₂₁	a ₂₂₁	a ₂₂₂	a ₂₂₃ a ₂₃			a _{2n}
•••••			μ _x				
Alternative M	a _{m1}	a _{m21}	a _{m2}				a _{mn}
Weight w _n	\mathbf{w}_1	w ₂₁	w _{2:}			a ₁₂	W _n

Taslima Akter

Multiple stakeholders in decision-making

Defuzzify by centroid of area method

Ranking of alternatives

Method of Chang and Lee (1994)

- Overall Existence Ranking Index (OERI)
- Subjective weighting indicating neutral, optimistic and pessimistic preferences of the decision maker

$$OERI(A) = \int \omega(\alpha) \Big[\chi_1(\alpha) \mu_{iL}^{-1}(\alpha) + \chi_2(\alpha) \mu_{iR}^{-1}(\alpha) \Big] d\alpha$$

	Ec	onomic Crite	eria	Env	ironmental Cr	Social Criteria		
	Cost	Cost Damage Benefit		age Benefit Contami- nation Species ment		Environ- ment	Community Involvement	Personal Loss
Structural Alternative	<i>e</i> ₁₁	<i>e</i> ₁₂	<i>e</i> ₁₃	e ₁₄	<i>e</i> ₁₅	<i>e</i> ₁₆	e ₁₇	<i>e</i> ₁₈
Non-Structural Alternative	<i>e</i> ₂₁	e ₂₂	e ₂₃	e ₂₄	e ₂₅	e ₂₆	e ₂₇	e ₂₈
Combination Alternative	<i>e</i> ₃₁	e ₃₂	e ₃₃	e ₃₄	e ₃₅	e ₃₆	e ₃₇	e ₃₈
Weight Coefficient	W_1	<i>W</i> ₂	<i>W</i> ₃	W_4	W_5	W_{6}	W ₇	W_{8}

^{*}Stakeholder preference, e_{mn}

Flood management pay-off (decision) matrix

Experiment

- Two criteria
 - Maximize community involvement Minimize personal losses
- Three alternatives
 - Structural alternative
 - Non-structural alternative
 - Combined alternative
- Around 40 stakeholders

Criterion 1 – Community involvement

- 1. Rate the level of opportunity provided by each alternative to get involved during the planning stage of flood protection.
- 2. Rate the level of opportunity provided by each alternative to get involved during time of flooding.
- 3. To what degree would you think each alternative induces this sense of complacency?
- 4. For each alternative, indicate the level of technical contribution that you would be able to provide through knowledge and experience.
- 5. Rate the alternatives according to the level of training required to be actively involved in flood management activities.
- 6. Rate your willingness to participate
- 7. Rate the importance of the role of leadership to the successful execution and implementation of each alternative.
- 8. Rate the alternatives according to the degree to which they promote local leadership and community tightness.

Criterion 2 – Personal loss

- 1. Rate the severity of an economic loss
- 2. Rate the degree of impact on personal health each alternative would expose the public to during a flood.
- 3. Rate the level of stress induced in the daily lives of the public by each alternative
- 4. Rate the alternatives according to the level of safety they would provide.
- 5. Rate the level of control an individual and/or a community have over the flood protection measures implemented

Data sources by location

- Manitoba Conservation
- City of Winnipeg
- St. Adolphe
- Morris
- Selkirk
- Data sources by domain knowledge
 - Technical
 - Non-technical

	Alternative	5	Structura	d	Nor	n-Struct	ural	 C	ombinatio	on
	Type	А	В	С	Α	В	С	Α	В	С
	Question No.	FEV	FEV	FEV	FEV	FEV	FEV	FEV	FEV	FEV
	1	0.600	0.650	0.544	0.647	0.650	0.544	0.600	0.625	0.544
ent	2	0.529	0.517	0.500	0.500	0.517	0.491	0.500	0.570	0.544
Ē	3	0.618	0.700	0.529	0.559	0.625	0.529	0.600	0.625	0.544
Ş	4	0.600	0.650	0.544	0.657	0.650	0.559	0.686	0.650	0.544
L I	5	0.700	0.700	0.559	0.629	0.650	0.544	0.700	0.650	0.544
≩	6a	0.800	0.825	0.677	0.704	0.770	0.588	0.800	0.825	0.647
in	6b	0.771	0.770	0.588	0.714	0.717	0.574	0.743	0.770	0.574
E.	6c	0.700	0.700	0.574	0.629	0.650	0.574	0.686	0.700	0.574
હૈ	7	0.800	0.825	0.735	0.829	0.850	0.718	0.857	0.825	0.718
	8	0.700	0.717	0.574	0.700	0.650	0.574	0.700	0.700	0.574
S	1	0.800	0.770	0.718	0.700	0.700	0.574	0.700	0.717	0.671
S	2	0.588	0.570	0.544	0.600	0.650	0.544	0.600	0.625	0.574
<u> </u>	3a	0.500	0.570	0.574	0.559	0.625	0.574	0.559	0.570	0.574
ⁿ S	3Ь	0.700	0.717	0.625	0.700	0.717	0.588	0.706	0.717	0.588
er:	4	0.771	0.770	0.574	0.700	0.650	0.574	0.700	0.717	0.544
	5	0.500	0.570	0.529	0.700	0.570	0.544	0.571	0.570	0.544

Taslima Akter

Results Red River Case Study

Taslima Akter

FEV Aggregation (Linguistic)

Ranking

- 3 generic alternatives
- 2 social criteria
- Equal weights
- All participants
- Winnipeg
- Morris
- Selkirk

						Crite	erion 1							Criter	ion 2		
	Question #	1	2	3	4	5	6a	6b	6c	7	8	1	2	3a	3b	4	5
	Left X	0.392	0.600	0.625	0.600	-0.829	0.726	0.600	0.821	-0.842	0.000	-0.614	-0.614	-0.842	-0.814	0.526	0.000
Alt 1	Centre X	0.517	0.700	0.650	0.700	-0.825	0.770	0.700	0.825	-0.717	0.000	-0.570	-0.570			0.570	0.000
	Right X	0.642	0.800	0.675	0.800	-0.821	0.814	0.800	0.829	-0.592	0.000	-0.526	-0.526	-0.592	-0.726	0.614	0.000
	Left X	0.392	0.621	0.625	0.625	-0.814	0.592	0.625	0.825	-0.675	0.000	-0.675	-0.629	-0.842	-0.675	0.526	0.000
Alt 2	Centre X	0.517	0.625	0.650	0.650	-0.770	0.717	0.650	0.850	-0.650	0.000	-0.650	-0.625	-0.717	-0.650	0.570	0.000
	Right X	0.642	0.629	0.675	0.675	-0.726	0.842	0.675	0.875	-0.625	0.000	-0.625	-0.621	-0.592	-0.625	0.614	0.000
	Left X	0.526	0.621	0.625	0.625	-0.829	0.726	0.600	0.821	-0.800	0.000	-0.629	-0.614	-0.842	-0.842	0.526	0.000
Alt 3	Centre X	0.570	0.625	0.650	0.650	-0.825	0.770	0.700	0.825	-0.700	0.000	-0.625	-0.570	-0.717	-0.717	0.570	0.000
	Right X	0.614	0.629	0.675	0.675	-0.821	0.814	0.800	0.829	-0.600	0.000	-0.621	-0.526	-0.592	-0.592	0.614	0.000

11/30/2006

all

Participants	Alternative 1	Alternative 2	Alternative 3
All stakeholders	13.22	13.72	13.29
	(1)	(3)	(2)
Morris	15.43	16.09	13.63
	(2)	(3)	(1)
Selkirk	14.63	14.42	14.58
	(3)	(1)	(2)
Winnipeg	13.74	15.25	13.92
	(1)	(3)	(2)

Taslima Akter

Conclusions

Tool for supporting flood decision making

- Multiple criteria
- Multiple stakeholders
- Uncertainty
- Red River Case Study
 - 3 generic alternatives
 - 2 social criteria
- Observations
 - Variability in regional data comparison (FEV)
 - Final rank dependent on the input data