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Executive Summary 

Increased greenhouse gas emissions are predicted to cause global temperatures to 

rise in the coming years. It is important to understand and predict the possible impacts of 

climate change at a local level in order to mitigate these effects and modify the existing 

infrastructure accordingly. Atmosphere-Ocean General Circulation Models (AOGCM’s) 

are state of the art in climate change assessments. They are essentially predictions of the 

future climate conditions for grid points around the globe based on plausible emissions 

scenarios created by the Intergovernmental Panel on Climate Change. The temporal and 

spatial scales of AOGCM’s are very large as they are developed for global impact 

assessments.  Therefore, measures must be taken to provide an estimate of future weather 

variables on a local scale. Literature is limited on such approaches, and more work is 

necessary to develop strategies for assessing the impacts of climate change on water 

resources and communities at both a local and regional level.  

This study provides an assessment of possible future climate conditions for the 

Upper Thames River Basin. Six different AOGCM’s with up to three emission scenarios 

each were used in order to provide a climate change assessment. The data has been scaled 

down using a principal component analysis integrated stochastic weather generator (WG-

PCA) to produce a synthetic dataset of 54 years. The variability between the AOGCM’s 

and their emissions scenarios was investigated, as well as the performance of the WG-

PCA generator in producing extreme precipitation events. The results of the study show 

that the AOGCM results are variable and need to be included when performing future 

climate change impact assessments in the Upper Thames River Basin. Future work is 

needed on regional studies to explore local characteristics of precipitation extremes and 
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improve the model quality by introducing more input variables relevant to the 

precipitation extremes. 
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1.  Introduction 

One of the most important goals of climate change research is to predict the effects 

of climate change in order to be prepared for the resulting effects on the natural 

environment and population. It is a consensus in the scientific community that as the 

levels of carbon dioxide in the atmosphere rise due to increased greenhouse gas 

emissions, so will temperatures around the globe. In the recently published 4th 

Assessment Report of Inter-governmental Panel on Climate Change (IPCC, 2007), it is 

predicted that the Earth’s average temperature is likely to increase by 30C by 2080 due to 

the global warming caused by the increased CO2 emissions. The rising temperature will 

have a major effect on atmospheric processes, and will likely impact the amount of 

precipitation a region receives. In climate change impact assessments, precipitation is an 

important parameter because it is one of the driving factors within the hydrologic cycle. It 

is of particular importance to look at extremes in precipitation and temperature, as these 

could have a substantially larger impact on the population than increase in mean 

temperature alone (Chen et al, 2008). Many studies have indicated that rising global 

temperature will make these extreme events occur more frequently (Barnett et al, 2006; 

Wilcox et al, 2007; Allan et al, 2008).  

 

1.1 Background 

Water resources are inextricably linked with climate. So the prospect of global 

climate change has serious implications for water resources and regional development. 

The 4th Assessment Report by the Intergovernmental Panel on Climate Change (IPCC, 

2007) documents the likely impacts on water resources associated with climate change. 
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Changes in the meteorological variables that drive the hydrologic cycle can be expected 

to affect the spatial and temporal distribution of water, which can affect the capability of 

the impacted population to cope with natural hazards related to water excess or shortage. 

Assessment of climate change impact on hydrology involves projections of 

climatic variables at a global scale, downscaling of global scale climatic variables to local 

scale hydrologic variables and computations of risk of hydrologic extremes in future 

water resources planning and management (Ghosh, 2007). Increases in extreme rainfall 

and temperature events are predicted to cause an intensification of the hydrologic cycle in 

Southwestern Ontario (Prodanovic and Simonovic, 2007). Some effects in particular are 

changes in stream flows, water supply, and increasing runoff. (Labat et al., 2004; Zhang 

et al.,2008). Extreme rainfall events are especially important inputs to hydrologic 

modeling when assessing flood risks in a river basin. Dry spells must also be considered, 

as low flows and water shortages could become a major problem in the future.  

In Canada, warming from 1900 to 2003 has resulted in changes in the climate 

patterns:  (i) a decrease in precipitation as snowfall in the west and the Prairies (Vincent 

and Mekis, 2006), (ii) a shifting of the magnitude and timing of hydrologic events in 

regions with winter snow, (iii) earlier spring runoff (Whitfield and Cannon, 2000; Zhang 

et al, 2001), (iv) an advance of river  and lake ice break up by 0.2 to 12.9 days over last 

100 years (Magnuson et al., 2000), and so on. Vulnerability to extended drought is 

increasing across North America as population growth and economic development create 

more demands from agricultural, municipal and industrial uses, resulting in frequent 

over-allocation of water resources. Although drought has been more frequent and intense 

in the western part of Canada, the east is not immune to droughts and reduction in water 
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supply, change in water quality and ecosystem function, and challenges in water 

allocation (Wheaton et al., 2005). Hence, it is important to understand and predict the 

effects of extreme precipitation events in order to modify the existing infrastructure 

accordingly.  

Atmosphere-Ocean General Climate Models (AOGCM’s) are developed by 

various countries around the world and frequently used to predict future changes in the 

global climate under several plausible emissions scenarios, developed by Inter-

governmental Panel of Climate Change (IPCC). Greenhouse gas emissions are used as 

inputs to AOGCM’s from different scenarios, each with a unique storyline based on 

whether future development is globally or regionally focused, and whether development 

will be driven by economic or environmental concerns (CCCSN, 2007). AOGCM’s 

discretise the planet into 3 dimensional cells, providing long sequences of gridded climate 

data that are used for climate change modeling. Unfortunately, cells from current 

AOGCMs are inappropriate for direct application to the watershed scale because: (i) 

Accuracy of AOGCMs decreases at finer spatial and temporal scales, a typical resolution 

of AOGCMs ranges from 250 km to 600 km, but the need for impact studies conversely 

increases at finer scales; (ii) limited representation of regional topography and (iii) poor 

representation of mesoscale processes (Eum et al., 2009, Schimidli et al., 2006). Hence, 

this gridded information must be scaled down to provide information on a local scale 

relevant to the area being studied, by a process, commonly known as `downscaling`. 

Different downscaling procedures produce different results from the same AOGCM 

outputs. So, the downscaled AOGCM outputs are burdened with uncertainties due to 

intermodal variability (the AOGCM uncertainty), inter-scenario variability (scenario 
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uncertainty), intermodal variability and variability due to downscaling methods 

themselves (Ghosh, 2007). The purpose of the study is twofold: to investigate the 

propagation of AOGCM and inter-scenario uncertainty through climate change modeling 

and to increase our understanding of the impacts of climate change on extreme 

precipitation events. 

 

1.2 Organization of the report 

 This report comprises of several sections: a review of downscaling techniques is 

presented in section 2. Following this are details on the study area and data used as well 

as a description of the AOGCM data collected. The WG-PCA weather generator is 

detailed along with the data preprocessing steps in section 4 of the report. A detailed 

analysis of the performance of the weather generator and the AOGCM outputs are 

presented in section 5. Finally, the report concludes with some insights from the results 

obtained and outlines future work.  
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2. Literature Review  

A number of techniques have been used to generate future climate scenarios. 

Several authors (Diaz-Nieto and Wilby, 2005; Sharif and Burn, 2006) have used change 

factor method (also known as Standard Delta method) for generating future times series 

data. The GCM-simulated difference for each calendar month (absolute difference for 

temperature and relative difference for precipitation) between a future time period is 

determined and superimposed in the historic time series to create scenario time series 

from GCM output.  

AOGCMs have been developed to simulate the present climate and used to 

predict future climate change with forcing by the greenhouse gases and aerosols. These 

models are not generally designed for local climate change impact studies; thus does not 

provide satisfactory performance to represent local sub-grid-scale features and dynamics 

(Wigley et al., 1990; Carter et al., 1994).  A number of techniques have been employed to 

scale down AOGCM outputs to a smaller scale, each with it’s own strengths and 

drawbacks. 

Different techniques might be more accurate for different seasons, regions, time 

periods and depending on the variable being considered (Dibike et al, 2008). The 

methods include dynamic downscaling that uses complex algorithms at fine-grid scale 

(typically 50 km x 50 km) describing atmospheric process nested within the AOGCM 

outputs. (Limited Area Models or Regional Climate Models) and the statistical 

downscaling which produces future scenarios based on statistical relationship between 

the larger scale climate features and hydrologic variables. Literatures available for 

dynamic downscaling include Giorgi (1990, 1992), Walsh and Mcgregor (1995), Druyan 
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et al (2002), Fowler et al (2005), and so on. The main drawbacks of dynamic 

downscaling are that the regional climate models require considerable computational 

resources and cannot meet the need of spatially explicit models of ecosystems or 

hydrological systems which still requires downscaling the results from such models to 

individual sites or localities for impact studies (Vidal and Wade, 2008; Wilby and 

Wigley, 1997). Moreover, re-experiment must be done in case of expanding the region or 

moving to a slightly different region.  

Statistical downscaling, on the other hand, is based on the following assumptions: 

(i) the predictors are the relevant variables and are realistically modeled by the host 

AOGCM, (ii) the empirical relationship is also valid for a changed climate and (iii) the 

predictors adequately represent the climate change signals. Since they are derived from 

the historic observed data, they can provide site specific information and hence, is 

recommended in many climate change studies. Dibike et al. (2008), in their comparative 

study of statistical and dynamic downscaling methods in Northern Canada have found 

that statistical downscaling represents well the distributions of Tmax and Tmin. The 

study also reported reduced biases in precipitation with statistical downscaling. 

The broad categories of statistical downscaling method include weather 

generators, weather typing and transfer functions. Weather generators are statistical 

models of sequences of weather variables which can also be regarded as complex number 

generators, the output of which resembles daily weather data at a particular location. The 

parameters of the weather generators are conditioned upon a large scale state, or the 

relationships between daily weather generator parameters and climatic averages can be 

used to characterize the nature of future days on the basis of more readily available time 
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averaged climate change information (Wilks and Wilby. 1999). 

Weather generators are important because they allow for more variability in the 

data, and change the sequencing of wet and dry days. The early work that used weather 

generators as a downscaling tool in climate change studies can be found in Hughes et al. 

(1993), Hughes and Guttorp (1994), Hughes et al. (1999) and Wilks and Wilby (1999), 

etc. An overview of stochastic weather generation models is presented by Wilks and 

Wilby (1999). The parametric weather generators are associated with several limitations 

namely: (i) they do not adequately reproduce various aspects of spatial and temporal 

dependency of variables, (ii) an assumption is necessary regarding the form of probability 

distribution of variables, which is often, subjective, (iii) non-gaussian features in the data 

cannot be captured adequately as multivariate autoregressive (MAR) models implicitely 

assume a normal distribution which is difficult to satisfy, (iv) a large number of 

parameters are separately fitted to each period and the number further increases if the 

simulations are to be conditioned, (v) models are not easily transportable to other 

locations due to the site specific assumptions made regarding the probability distributions 

of the variables. Non-parametric weather generators can overcome most of these 

problems and have been used in many studies to produce synthetic datasets. Examples of 

non-parametric weather generators (WG’s) which have been successfully employed in 

climate change studies are LARS-WG (Semenov and Barrow, 1997), K-NN (Yates et al., 

2003; Sharif and Burn, 2006), EARWIG (Kilsby et al, 2007).  

Considerable research efforts have been undertaken within the hydrological 

community to statistically model the high precipitation amount, with a much evidence of 

it’s heavy-tailed distribution (Koutsoyiannis, 2004). But use of weather generators in 

 7



improving precipitation extremes is limited. Stochastic weather generators are made to 

consistently model the precipitation extremes with this information. Furrer and Katz 

(2008) proposed several possible advanced statistical approaches for improving the 

treatment of extremes within a parametric GLM based weather generator framework. 

They found a substantial improvement with a hybrid technique with a gamma distribution 

for low to moderate intensities and a generalized Pareto distribution for high intensities. 

Sharif and Burn (2006) used nonparametric K-nearest neighbor weather generator model 

for simulating extreme precipitation events and found encouraging results in simulating 

extreme dry and wet spells.  

 

3. Study Area and Data 

3.1 Study area 

The study area in this report is the Upper Thames River basin, located in 

Southwestern Ontario, Canada between the great lakes of Erie and Huron. The basin has 

a population of about 420,000 and covers 3 counties: Perth, Middlesex and Oxford 

(Figure 1). London, Ontario is the major urban centre with a population of around 

350,000. The Thames River is about 273 km long with an average annual discharge of 

39.3 m3/s (Prodanovic, 2008). Thames river basin consists of two major tributaries of the 

river Thames: the North branch (1,750 km2), flowing southward through Mitchel, St. 

Marys, and eventually into London where it meets the South branch; and the South 

branch (1,360 km2) flowing through Woodstock, Ingersoll and east London. The basin 

receives about 1,000 mm of annual precipitation, 60% of which is lost through 

evaporation and or evapotranspiration, stored in ponds and wetlands, or recharged as 

 8



groundwater (Prodanovic and Simonovic, 2006).  
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Figure 1: The schematic location map of Upper Thames River basin 
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The basin often experiences major hydrologic hazards such as floods and 

droughts. The basin has a well documented history of flooding events dating back to the 

1700s. Flooding mostly takes place in early March after the snowmelt and again in July 

and August as a result of summer storms. Drought conditions also may occur at any time 

of the year, with highest possibility between June and September. Several weather 

stations around the basin provide point measurements of weather variables including 

daily temperature and precipitation. Stations chosen for this study are listed in detail in 

Table 1 and Figure 2. 

Table 1: Location of Stations 

Station 
Latitudes

(deg N) 

Longitudes

 (deg W) 

Elevation 

(m) 

Blyth 43.72 81.38 350.5 

Brantford MOE 43.13 80.23 196.0 

Dorchester 43.00 81.03 271.3 

Embro 43.25 80.93 358.1 

Exeter 43.35 81.50 262.1 

Foldens 43.02 80.78 328.0 

Glen Allan 43.68 80.71 404.0 

Ilderton 43.05 81.43 266.7 

London A 43.03 81.16 278.0 

Petrolia Town 42.86 82.17 201.2 

Stratford 43.37 81.00 354.0 

St. Thomas WPCP 42.78 81.21 209.0 

Waterloo_Wellington 43.46 80.38 317.0 

Woodstock 43.14 80.77 282.0 

Wroxeter 43.86 81.15 355.0 
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Figure 2: Schematic location map of stations in the basin 

 

3.2 Data 

For the purpose of analysis the following databases were used: 

• Daily observed precipitation, maximum and minimum temperature (Tmax and 

Tmin) data covering the UTR basin for the period of 1979-2005 has been collected from 

Environment Canada (http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html). 

 11

http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html


Table 2: List of AOGCM Models and Emissions Scenarios Used 

 

Atmospheric 
Resolution GCM Models Sponsors, Country SRES 

Scenarios 
Lat Long 

CGCM3T47, 2005 A1B, B1, A2 3.750 3.750 
CGCM3T63, 2005 

Canadian Centre for Climate Modelling and Analysis 
A1B, B1, A2 2.810 2.810 

CSIROMK3.5, 2001 Commonwealth Scientific and Industrial Research 
Organization (CSIRO) Atmospheric Research, Australia A1B, A2, B1 1.875

0 
1.875

0 

GISS-AOM, 2004 National Aeronautics and Space Administration (NASA)/ 
Goddard Institute for Space Studies (GISS), USA A1B, B1 30 40 

MIROC 3.2 HIRES, 
2004 A1B, B1 1.125

0 
1.125

0 
MIROC 3.2 

MEDRES, 2004 

Center for Climate System Research (University of Tokyo), 
National Institute for Environmental Studies, and Frontier 
Research Center for Global Change (JAMSTEC), Japan A1B, A2, B1 2.80 2.80 

 

• Time series of climate variables for different regions of the world are available at 

the Canadian Climate Change Scenarios Network (CCCSN) website. These time slices 

are available for several combinations of AOGCMs and emission scenarios. To obtain 

weather data for any time slice, the coordinated of the point of interest are specified along 

with the AOGCM and the emission scenarios. The climate data may be obtained for a 

number of time slices, each corresponding to future time period. For present study, six 

AOGCM’s climate data for the above variables, each with 2 to 3 emissions scenarios 

have been collected. The AOGCM’s used in the study are the third generation Canadian 

Coupled Global Climate Model at T47 (CGCM3T47) and T63 (CGCM3T63) resolutions, 

Australia’s Commonwealth Scientific and Industrial Research Organization generated 

MK3 Climate Systems Model (CSIROMK3.5), Goddard Institute for Space Studies 

provided Atmosphere Ocean Model (GISS-AOM), the Japanese Model for 

Interdisciplinary Research on Climate version 3.2 in high (MIROC3.2HIRES) and 

medium (MIROC3.2MEDRES) resolutions. Three scenarios, A1B, A2 and B1, 

developed by IPCC’s Special Report on Emission Scenarios (SRES) (Appendix A) have 
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been used in order to investigate the widest possible range of future climates. Table 2 lists 

the AOGCM’s used with the available scenarios for each model.  

 

4. Methodology 

4.1 Data preprocessing 

Precipitations (PPT), as well as maximum and minimum temperature (Tmax and 

Tmin, respectively) have been collected from the nearest grid points for each of the six 

AOGCM’s emission scenarios surrounding the Thames River Basin. Data have obtained 

for two time slices: 1960-1990 and 2041-2070 (2050s).  

Preprocessing of the AOGCMs has been carried out in two steps which are 

explained in the following sections: 

4.1.1 Spatial interpolation of AOGCMs  

Climate variables from the nearest grid points have been interpolated to provide a 

dataset for each of the stations of interest. For the purpose of interpolation, the Inverse 

Distance Weighting Method (IDW) is used.  The method works by taking AOGCM 

variables for the four nearest grid points around the station, and computing the distance 

from each grid point to the station of interest. A simple formula (4.2.1) is then applied 

which calculates the weight, w, of each grid point based on its distance, d, from the 

station. Next, another formula (4.2.2) computes the value, p, for the missing variable 

(where the subscript j represents the jth grid point, and the subscript i represents the 

station of interest).  

  2
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4.1.2 Calculation of change factors for future climate 

Next, a monthly average of each variable is taken for the years 1979-2005 as the 

base climate and 2041-2070, representative of the future climate in the 2050’s. The 

average monthly differences between the base and future climate have been calculated as 

the Tmax and Tmin change factors. The percent change in monthly average PPT was 

calculated, and used as a change factor for precipitation. 

The change factors have then, been used to modify the historic dataset which was 

gathered for each station. Temperature change factors are added to the historic daily 

temperatures by month, and historic precipitation values were multiplied by the 

precipitation change factors. Once the historic dataset is modified, it is run through the 

WG-PCA described above to produce a dataset 54 years long with greater variability for 

each of the scenarios. A synthetic version of the historic dataset has also been produced 

to evaluate the performance of WG-PCA. 

 

4.2 Weather generator 

Stochastic weather generators simulate weather data to assist in the formulation of 

water resource management policies. The basic assumption for producing synthetic 

sequences is that the past would be representative of the future.  They are essentially 

complex random number generators (Eum et al, 2009), which can be used to produce a 

synthetic series of data with the same statistical properties as the base series. This allows 

the researcher to account for natural variability when predicting the effects of climate 
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change.  The weather generator used in this study is the refined version of Eum et al 

(2009), initially developed by Sharif and Burn (2007), which employs integration of 

Principal Component Analysis in the Weather Generator.  

Sharif and Burn (2006) developed an improved K-nearest neighbor weather 

generator model based on a K-NN resampling strategy proposed by Yates et al. (2003). 

The K-NN algorithm works by taking one day from the dataset, and selecting a specified 

number of days which have similar characteristics to that day. One of those days is 

randomly selected as the weather for the next day using a resampling procedure. In this 

way, the statistics of the dataset remain the same but the ordering of wet-dry days is 

changed to add variability to the dataset, which is important in hydrological impact 

assessments. The major drawback of the K-NN weather generator developed by Yates et 

al (2003) was that the observed max-min range is the same as that of the synthetic 

dataset. Sharif and Burn (2007) improved this algorithm by adding a perturbation process 

that can calculate alternative extremes for the dataset. Their version of K-NN weather 

generator was further revised by Prodanovic and Simonovic (2006) to account for leap 

years. Eum et al (2009) further modified the WG to account for more variables. 

The WG-PCA algorithm with p variables and q stations has the following steps: 

1) Regional means of p variables for all q stations are calculated for each day of the 

observed data:  

X t = x 1, t,x 2, t,...,x p, t⎣ ⎦     ∀t = 1,2,...,T{ } (4.1) 

where ∑
=

=
q

j

j
titi x

q
x

1
,,

1    ∀i = 1,2,..., p{ } (4.2) 

2)  Selection of potential neighbours, L days long where  L=(w+1) × (N-1) for each of p 

individual variable with N years of historic record, and a temporal window of size w 
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which can be set by the user of the weather generator. The days within the given window 

are all potential neighbours to the feature vector. N data which correspond to the current 

day are deleted from the potential neighbours so the value of the current day is not 

repeated (Eum et al, 2009). 

3)   Regional means of the potential neighbours are calculated for each day at all q 

stations. 

4)   A covariance matrix, Ct of size L × p is computed for day t. 

5)  The first time step value is randomly selected for each of p variables from all current 

day values in the historic record. 

6) When more meteorological variables are used in the model, the calculation of 

Mahalanobis distance becomes challenging due to multi-dimensionality and colinearity 

associated with the variables. Integration of PCA requires only the variance of the first 

principal component to calculate the Mahalanobis distance, which reduces the dimension 

of the mean vector of the current days and the mean vector of all nearest neighbor values. 

The modified steps are presented here: 

(a) Calculation of the eigen vector and eigenvalue for the covariance matrix, (Ct)  

(b) Selection of the eigenvector corresponding to the eigenvalue which represents the 

highest fraction of variance in the p variables. 

(c) Calculation of the first principle component with equations 4.3 and 4.4 using the 

eigenvector, E, found in (b).  

EXPC tt =        (4.3) 

EXPC kk =       (4.4) 

where, PCt is the value of the current day and PCk is the nearest neighbor transferred 
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by the eigenvector in (b). 

(d) The Mahalanobis distance is calculated with equation 4.5 from the one- 

dimensional matrix calculated by the above equations. 

( ) )(/2 PCVarPCPCd ktk −=     { }Kk ,...,2,1=∀   (4.5) 

Where the variance of the first principle component is Var(PC) for all K nearest 

neighbors (Eum et al, 2009).  

7) The selection of the number of nearest neighbours, K, out of L potential values using 

LK = . 

8) The Mahalanobis distance dk is put in order of smallest to largest, and the first K 

neighbors in the sorted list are selected (the K Nearest Neighbors). A discrete probability 

distribution is used which weights closer neighbors highest in order to resample out of the 

set of K neighbors. Using equations 4.6 and 4.7, the weights, w, are calculated for each k 

neighbor. 

∑
=

= K

i

k

i

kw

1
/1

/1        { }Kk ,...,2,1=∀    (4.6) 

Cumulative probabilities, pj, are given by: 

∑
=

=
j

i
ij wp

1
      (4.7) 

  

9) A random number u (0,1) is generated and compared to the cumulative probability 

calculated above in order to select the current day’s nearest neighbor. If p1 < u < pk, then 

day j for which u is closest to pj is selected. However, if pi > u, then the day which 

corresponds to d1 is chosen. If u=pK, then the day which corresponds to day dK is 
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selected. Upon selecting the nearest neighbor, the K-NN algorithm chooses the weather 

of the selected day for all stations in order to preserve spatial correlation in the data (Eum 

et al, 2009). 

10) In order to generate values outside the observed range, perturbation is used. A 

conditional standard deviation, σ , is estimated and using equation 4.8 a bandwidth, λ ,is 

determined. 

5/106.1 Kσλ =       (4.8) 

 Perturbation is next, using equation 4.9. 

t
j

i
j
ti

j
ti zxy λσ+= ,,      (4.9) 

Where is the weather variable obtained in step 9, is the value of that variable 

obtained after perturbation, is a random variable which is normally distributed (zero 

mean, unit variance) for day t. Negative values are prevented from being produced for 

precipitation by employing a largest acceptable bandwidth:  where * 

refers to precipitation. If again a negative value is returned, a new value for zt is generated 

(Sharif and Burn, 2006). 

j
tix ,

j
tiy ,

tz

jj
ta x **, 55.1/ σλ =

 

5. Results and Discussion 

This study uses daily precipitation, maximum temperature and minimum temperature 

of 15 stations for the period of 1979-2005 (N=27) to simulate plausible meteorological 

scenarios. Employing the temporal window of 14 days (w=14) and 27 years of historic 

data (N=27), this study uses 404 days as the potential neighbors (L=(w+1) x N-1=404) 

for each variable. The study has generated synthetic meteorological scenarios which is 

 18



equal to the historic data in length in order to allow for the statistical comparison of 

synthetic and historic data. For the purpose of comparing performances of AOGCM’s 

WG results for London station has been chosen. The following sections present the 

analysis of the obtained results in reproducing present and future climate. 

   

5.1 Reproduction of historic data 

Using the WG-PCA weather generator of Eum et al (2009), 54 years of synthetic 

data are produced using the historic dataset in order to determine if the WG-PCA 

algorithm has been able to produce a dataset with statistically similar characteristics to 

the observed values. Box plots have been used to illustrate the results, as they provide a 

wide range of variation of the dataset’s statistics. The top and bottom lines of the plot 

represent the 75th and the 25th percentiles, respectively. The middle line in the box 

represents the median. The whiskers extend out to 1.5 times the inter-quartile range of the 

data (range of the data between the 25th and 75th percentiles). Values that go beyond those 

points, have been identified as outliers and marked in black.  

Figure 3 consists of monthly box plots of the 54 simulated years of data for 

maximum temperature in London, as well as a line plot illustrating the means of the 

observed data. Despite the weather generator being applied to daily data, the box plots 

have been made on a monthly scale in order to facilitate presentation of the results. The 

WG-PCA simulated results are clearly able to reproduce the historic monthly values, 

despite the fact that the algorithm has been applied on a daily scale. The output of the 

weather generator in reproducing temperature values is highly satisfactory. 
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Figure 3: Box plots of monthly mean maximum temperature 

 

 
Figure 4: Box plots of total monthly precipitation 

 

Total monthly precipitation values for the simulated data are presented as box plots 

in Figure 4. The historic mean values are represented by the line plot. For all of the 

months, the median of the simulated data is close to the mean of the observed data. There 
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is a slight underestimation in total precipitation for the months of August, September, 

October, November and December. For the rest of the months, the mean total 

precipitation of the observed data is very close to the median of the simulated data. There 

are a number of outliers, marked as black dots; however these are representative of the 

increased variability due to the perturbation process in the weather generator. 

Precipitation has the greatest variability of all the weather variables, so overall the 

performance of the WG-PCA algorithm in this aspect is very good.  

   

 

 

 

 

 

 

 

 

 

 

Figure 5: Box plots of total number of wet days 

 

The number of wet days for the simulated data in London is illustrated as monthly box 

plot in Figure 5. Wet day statistics are very important when it comes to hydrologic 

modeling and flood management. The observed means are shown as a line plot. It is clear 

that the observed values agree very well with the simulated data. There is a slight 

overestimation by the simulated data for the month of February and an underestimation 

for January but the results are otherwise very good.  
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5.2 Correlation Structure 

It is important to preserve the correlation structure of the observed data intact in the 

simulated data. To keep the inherent correlation structure unaltered, the modified versions 

by Sharif and Burn (2007) and Eum et al. (2009) used a constant value of the random 

normal variate for all the variables and all stations at any given time step. This section 

investigates the extent to which the correlation structure changed from the observations. 

Figure 6 presents box plots of the monthly correlations between precipitation and 

maximum temperature. Observed data has shown positive correlation during winter 

months; correlations during summer months are very close to zero which indicates a 

statistically insignificant correlation for these months.    
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Figure 6: Box plots of correlation between Tmax and PPT 

 

5.3 Generation of climate change scenario 

Major focus of this study is to evaluate the performance of WG-PCA in simulating 

the future precipitation amounts which may be larger than the observations. This section 
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presents the performances of WG-PCA in simulating 54 year’s of future precipitation 

using the informations from the AOGCM’s  with plausible scenarios.  

First, bar graphs have been used to illustrate the change factors for the various 

AOGCM’s and emissions scenarios. Figure 7 shows the monthly change factors for 

Tmin. All models predict an increase in the minimum temperature,ranging from 1.50 C to 

60 C; the magnitude of increase is however, diffierent for different models.  For example, 

in the month of February, there is a difference of 4.8°C in the predicted temperature 

changes of CGCM3T63 scenario A1B and GISS-AOM scenario B1. The variation of the 

change fields are more prominent during winter months. The MIROC-HIRES model for 

A1B and B1 scenarios have shown consistent increase of Tmins all through the year 

ranging between 3-40C. The CGCM3T63 has shown lager variability in different months 

of the year, predicting an increase ranging from 1.5 to 60C for scenarios A1B and A2. For 

the summer months, the predictions match quite well with variability less than 10C except 

for MIROC-HIRES and MEDRES models. The monthly Tmax change factors for all 

models are shown in Figure 8. Again, the variability between the models and scenarios 

can be clearly seen from the graph. A substantial difference is seen for the winter months 

of January, February, March and in late summer months. The greatest difference has been 

found for the month of March; there has been a difference of over 5.1°C between the 

predicted change fields for MIROC3.2MEDRES scenario A1B and GISS-AOM scenario 

B1. All other months had a range of at least 1.4°C between the lowest and highest 

predicted temperature change.  

 

 



 

    Figure 7: AOGCM predicted change factors for minimum temperature 

 

 
 
 
 
 
 
 
 

Figure 7: AOGCM predicted change factors for minimum temperature 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: AOGCM predicted change factors for maximum temperature 
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Figure 9: AOGCM predicted percent changes in precipitation 
 
The change factors for precipitation are illustrated as percentage changes in Figure 9. The differences in projections are largest in case 

of precipitations as compared to Tmax and Tmins. While one scenario has predicted an increase, other may have associated with a 

decrease in precipitation for any specific month. This is more evident during the summer months of May to November. For example, 

during November, the difference between CGCM3T63 scenario A2 and CSIROMK3.5 scenario A1B is 68.9 percent.Despite wide 

variations in predictions, one interesting observation is that all scenarios have predicted increase in winter precipitation from 

December through April. The wide range of different future climate projections in Figures 8 through 10, thus clearly suggests to 

interprete the obtained results as plausible scenarios rather than as predictions of future climate conditions. 



Next, line plots (Figures 10 through 12) are  from the simulated weather data 

conditioned to the plausible climate change sceanrios derived from several scenarios.. 

Figures marked (a) consist of all emissions scenarios for the models CGCM3T47, 

CGCM3T63, and GISS-AOM. Figures marked (b) consist of all scenarios for the models 

CSIROMK3.5, MIROC3.2MEDRES, and MIROC3.2HIRES. Figures 10 a and shows the 

AOGCM predicted total monthly precipitation values of the simulated data, along with 

the historic simulated data as a reference. While the overall shapes of the plots are 

similar, it is clear that there is a wide range of variability in the AOGCM predictions. For 

the months of February and March, most AOGCM simulations predict an increase in 

precipitaiton, but the range of increase between the lowest and highest is quite large, 

almost 30 mm.  All models but two (CGCM3T63 B1 and MIROC3.2 HIRES B1) predict 

an increase in the average precipitation in April. For most other months, some 

simulations predict an increase where others predict a decrease.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 10a: AOGCM predicted average total precipitation compared with historical 

averages 
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Figure 10b: AOGCM predicted average total precipitation compared with historical 

averages 

 

Predictions for AOGCM maximum temperatures are shown in Figures 11a and 11b.  

All simulations predict an increase in the the maximum temperature for all months. The 

amount of increase differs with each model, as discussed in the change factor bar graphs 

in Figure 8. MIROC3.2MEDRES scenario A1B predicts an average maximum 

temperature of 10.5°C for March (Figure 11b), while GISS-AOM scenario B1 predicts a 

March average of 5.5°C (Figure 11a). Since snowmelt is a major flooding risk in the 

basin, this difference would have a significant impact of the timing and magnitude of 

peak runoff. 
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Figure 11a: AOGCM predicted average monthly maximum temperatures compared to 
historical averages 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11b: AOGCM predicted average monthly maximum temperatures compared to 

historical averages 
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Figure 12a: AOGCM predicted average monthly minimum temperature compared with 

historical averages 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12 b: AOGCM predicted average monthly minimum temperature compared 

with historical averages 

Minimum temperature predictions are illustrated in Figures 12a and b. For all 
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months, the simulations predict an increase in the average monthly minimum 

temperature. It is clear that the magnitude of this increase for the simulations is variable. 

For the month of February, there is the most variability in the predictions. For example 

CGCM3T63 scenario A1B predicts a minimum temperature of -3.1°C, while the model 

GISS-AOM scenario B1 predicts an average minimum temperature of -7.8°C. The 

AOGCM predictions for the month of May display the least variability. 

MIROC3.2MEDRES scenario A1B has a minimum temperature for May of 10.4°C, 

which is relatively close to the 8.9°C prediction of simulation GISS-AOM scenario B1. 

Box plots of total monthly mean precipitation for all scenarios are presented in box 

plots 13 through 18. Figure 13 shows the box plots for the model CGCM3T47 scenarios 

A1B, A2 and B1, respectively. It is clear by the number of outliers that the WG-PCA 

weather generator has been able to produce a dataset adequately. For summer month, 

especially from May through September, A1B and B1 scenarios have predicted a 

decrease in precipitation while A2 has predicted less precipitation for June and August. 

The precipitation generated for the month of November in A2 scenario is the only month 

where the observed precipitation falls below the 25th percentile value of A2. 

The monthly precipitation box plots for the CGCM3T63 model are illustrated in 

Figure 14. Overall, the months of November and September have the greatest range of 

monthly precipitation totals among all of the emissions scenarios. The medians for 

November were the highest in all scenarios. The inter-quartile ranges (the boxes) of 

SRES scenario A1B were much larger than those of A2 and B1. Unlike CGCM3T47 

model, A1B and B1 scenarios of CGCM3T63 have projected a decrease in precipitation 

only in two summer month: June and July by A1B and May and June by B1. However 
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CGCM3T63 A2 has projected wider variability: a decrease in precipitation during most 

of summer and increase of precipitation during winter. Overall, the performance of the 

model in producing the changes in monthly precipitation totals has proved satisfactory 

only except for November.  

 The precipitation produced by CSIROMK3.5 is different than the CGCM models 

(Figure 15). All months but September, October, and November has projected decrease in 

precipitation. A similar trend has been seen for the GISS-AOM A1B and B1 scenario 

simulations (Figure 16). SRES Scenario A1B predicts increase of early springtime 

precipitation and extended period of summer precipitation with greater variability than 

scenario B1. The high resolution MIROC3.2 model has predicted decrease of 

precipitation in all months except December, January, February and March (Figure 17). A 

similar trend is seen for the mid resolution MIROC3.2 A1B and B1 too (Figure 18).  

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13: Box plots of CGCM3T47 generated monthly precipitation for A1B (upper left), A2 (upper right) and B1 scenarios 
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Figure 14: Box plots of CGCM3T63 generated monthly precipitation for A1B (upper left), A2 (upper right) and B1 scenarios 
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Figure 15: Box plots of CSIROMK3.5 generated monthly precipitation for A1B (upper left), A2 (upper right) and B1 scenarios 
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Figure 16: Box plots of GISS-AOM generated monthly precipitation for A1B (left), B1 (right) scenarios 

  

 

 

 

 

 

 

 

 

 

Figure 17: Box plots of MIROC3.2HIRES generated monthly precipitation for A1B (left), B1 (right) scenarios 
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Figure 18: Box plots of MIROC3.2MEDRES generated monthly precipitation for A1B (upper left), A2 (upper right) and B1 

Scenarios
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5.4 Simulation of extreme events 

A moderate change in precipitation can have large impact on the runoff, and thus 

on the occurrence of floods. The change is climate is predicted to shift the runoff pattern 

in Canada: reductions in spring and summer runoff, increase in winter runoff and earlier 

peak runoff (Sharif and Burn, 2007). It is therefore important to assess the changes in 

extreme precipitation amounts. In this study, three precipitation indices (Table 3), 

proposed by Vincent and Mekis (2006) have been used for comparing the performances 

of the AOGCMs in generating heavy precipitation amounts.  

 

Table 3: List of Extreme Precipitation Indices 

  

Precipitation Indices Definitions Units 

Heavy precipitation days (>= 10 days) Number of days with precipitation >= 10 mm days 

Very wet days (>= 95th percentile) Number of days with precipitation >=95th percentile days 

Highest 5-day precipitation amount Maximum precipitation sum for 5 day interval mm 

These indices demonstrate precipitation frequency, intensity and extremes. The 

highest 5 day precipitation, very wet days and the heavy precipitation days express 

extreme features of precipitation. For very wet days, the 95th percentile reference value 

(18.3 mm) has been obtained from all non-zero total precipitation events for 1979-2005. 

It is better to use indices based on percentile values rather than a fixed threshold in 

Canada due to large variations of precipitation intensities in various regions.  
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Table 4: Change in Precipitation Indices Compared to 1979-2005 

 

Scenarios No. of Heavy prec. 
days 

No. of very wet 
days 

5 day-max. 
Precipitation, mm 

CGCM3T47_A1B 0.963 0.500 -0.771 
CGCM3T47_A2 2.759 2.537 5.738 
CGCM3T47_B1 -2.370 -1.389 -4.351 
CGCM3T63_A1B 3.037 2.074 4.765 
CGCM3T63_A2 -2.389 -1.370 3.592 
CGCM3T63_B1 1.481 1.130 -1.979 
CSIROMK3.5_A1B -1.963 -2.278 1.359 
CSIROMK3.5_A2 2.463 1.778 8.432 
CSIROMK3.5_B1 -0.704 0.481 -0.236 
GISS-AOM_A1B -1.778 -2.093 -18.066 
GISS-AOM_B1 -2.296 -1.778 -4.286 
MIROC3.2HIRES_A1B 2.519 2.407 12.595 
MIROC3.2HIRES_B1 -0.685 -1.148 -12.762 
MIROC3.2MEDRES_A1B -2.296 -2.204 -1.534 
MIROC3.2MEDRES_A2 -0.648 -0.019 0.513 
MIROC3.2MEDRES_B1 2.000 1.593 14.542 

 

Figure 19 and Appendix C presents probability plots of heavy precipitations 

generated by the AOGCMs at 95% confidence interval (upper and lower bound in each 

set) with Weibull distribution using Maximum Likelihood estimates. The parameter 

estimates have been displayed with Anderson-Darling (AD) goodness-of-fit statistic and 

associated p value. The AD measure how well several distributions from several 

AOGCMs follow the historic observation. A lower value of p (usually <0.05) indicates 

the data do not follow the specified distribution. For comparison of several distributions 

with AD, the smallest AD statistic indicates the closest fit to the data. One common 

feature of all AOGCMs are that they are positively (rightward) skewed indicating more 

data points in the right tail in the upper half than expected. This clearly suggests increase 

in the number of heavy precipitation days.  The higher AD and lower p (<0.5) values 
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indicate that the CGCM3T47 A1B, CGCM3T63 A1B, MIROC3.2MEDRES A1B and B1 

scenarios does not follow the same data distribution as the historic one. Changes in the 

precipitation indices compared to the historic observed 1979-2005 values are computed 

and presented in Table 4. The mean change in the heavy precipitation is not very 

significant over 54 year period; CGCM3T63 A1B shows an increase of 3 days of heavy 

precipitation events. Interestingly, a few models have shown a decrease in the 

occurrences of heavy precipitation days. So the deviation of the occurrence of heavy 

precipitation days between the AOGCMs is 5.3 days. 

Figure 20 and Appendix D shows comparison plots of the frequency of occurrence 

as predicted by AOGCMs. CGCM3T47 A2, CSIROMK3.5 A2, CGCM3T63 A1B 

scenarios have predicted higher occurrence of very wet days with an increase of 2.5 days. 

However, scenarios, such as MIROC3.2MEDRES A1B, GISS-AOM B1 and 

CSIROMK3.5 A1B scenarios have predicted decrease of 2 very wet days. So in this case 

also, the differences between the AOGCMs are 5 days (Table 4).  



 

 

 

 

 

  

 

 

Figure 19: Probability plot of heavy precipitation days with > 10 mm precipitation generated by (a) CGCM3T47 (left) and (b) 

CSIROMK3.5 (right) 

 

 

 

 

 

 

 

 

 

 

Figure 20: Time series plot of very wet days with > 95th percentile precipitation
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Figure 21: Frequency plot of maximum 5 day precipitation 

 

Figure 21 presents frequency plot of highest 5 day maximum precipitation, 

accumulated over each year. The AOGCMs have predicted a wide variation in predicting 

the extent of the precipitation amounts. From the relative position of the peaks of GISS-

AOM B1, CGCM3T47 A1B shows that these models have captured the highest 5 day 

precipitations very well. The shorter and wider-looking fitted distributions of 

CGCM3T47 A2 and CGCM3T63 B1 have shown greater variability. However, the 

highest frequency of the 5 day maximum precipitation ranges between 60-120 mm for 

most of the scenarios. The change in the precipitation amounts, however, does not show 

any specific pattern (Table 4).  
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6. Conclusions and Recommendations 

This study investigates the potential impact of climate change on the Upper Thames 

River Basin using Principal component analysis integrated weather generator algorithm. 

Six AOGCM models have been used along with three SRES emissions scenarios. 54 

years of synthetic data has been created using the WG-PCA algorithm with downscaled 

AOGCM data. For the purpose of comparing performances of AOGCM’s WG results for 

London station has been chosen. The weather generator has been able to adequately 

reproduce a historic dataset which is statistically similar to the observed data. The model 

has also been able to simulate future plausible scenarios presented by the AOGCMs. For 

a given scenario this model has produced an unprecedented amount of precipitations, thus 

enabling higher accuracy of generating higher and lower extreme values which is more 

appropriate of assessing the flood and draught conditions in the study area under a 

changed climate. Generated results have been able to keep the correlation structure of the 

observed values which is important to produce hydrologic models at watershed scale. The 

climate change scenario simulations indicate wider variability in between the plausible 

scenarios. Overall, all models have indicated increase in maximum temperature, ranging 

from 1.5-60 C and a decrease in summer precipitation and increase in wintertime 

precipitation. The performances of the AOGCMs in predicting extreme precipitation 

indices are assessed by precipitation indices. No consistent pattern has been found in the 

number of highest 5 day maximum precipitations. The variabilities between the 

AOGCMs are even wider in case of extreme precipitation, which increases the difficulty 

of detecting a significant pattern. Overall, the above results have improved the present 

understanding of daily and extreme precipitation events in the study area. This 
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inconsistency clearly indicates the need for regional studies to explore local 

characteristics of precipitation extremes and improving the model quality by introducing 

more input variables relevant to the precipitation extremes. 
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APPENDIX A 

 

SRES Scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: SRES Emission Scenarios (Nakicenovic et al, 2000) 

A1B: In scenario A1B, the storyline includes rapid economic expansion and 

globalization, a population peaking at 9 billion in 2050, and a balanced emphasis on a 

wide range of energy sources (Nakicenovic et al, 2000). 

B1: The storyline for the B1 scenario is much like A1B in terms of population and 

globalization; however there are changes toward a service and information economy with 

more resource efficient and clean technologies. Emphasis is put on finding global 

solutions for sustainability (Nakicenovic et al, 2000). 

A2: In A2, the storyline consists of a world of independently operating nations with a 

constantly increasing population and economic development on a regional level. 

Technological advances in this storyline occur more slowly due to the divisions between 

nations (Nakicenovic et al, 2000). 
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APPENDIX B 

Atmosphere-Ocean General Circulation Model data description 

 

Canadian Coupled Global Climate Model 

The third generation Coupled Global Climate Model (CGCM3) was created in 2005 by 

the Canadian Centre for Climate Modelling and Analysis (CCCma) in Victoria, BC for 

use in the IPCC 4th assessment report to run complex mathematical equations which 

describe the earth’s atmospheric and oceanic processes. The CGCM3 climate model 

includes four major components: an atmospheric general circulation model, an ocean 

general circulation model, a thermodynamic sea-ice model, and a land surface model 

(Hengeveld, 2000) and consists of two resolutions, T47 and T63. CGCM3T47 has a 

spatial resolution of 3.75° x 3.75° and it includes 31 vertical levels (Flato, 2005). The 

atmospheric resolution of CGCM3T63 model is 2.8° × 2.8°. The emissions scenarios 

A1B, A2 and B1 were used as greenhouse gas inputs in both models.  

 

Commonwealth Scientific and Industrial Research Organization’s Mk3.5 Climate 

Systems Model  

 Australia’s Commonwealth Scientific and Industrial Research Organization created 

the AOGCM CSIROMK3.5, which is an improved version of the MK climate systems 

model. The spatial resolution of the model is 1.875 × 1.875. The SRES emissions 

scenarios A1B, A2, and B1 were used as inputs to the model for the IPCC 4th assessment 

report. 
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Goddard Institute for Space Studies’ Atmospheric Ocean Model 

 The North American Space Association and the Goddard Institute for Space Studies 

developed the GISS-AOM climate model, first in 1995 and then a revised version was 

created with smaller grids in 2004 for the IPCC 4th assessment report. The resolution for 

the model is 4° longitude by 3° latitude (PCMDI, 2005). The atmospheric grid has 12 

vertical layers (PCMDI, 2005). The emissions scenarios SRES A1B and B1 were used as 

greenhouse gas inputs to the model. 

 

Model for Interdisciplinary Research on Climate version 3.2 

The Japanese Model for Interdisciplinary Research on Climate version 3.2 (MIROC3.2) 

was developed in two resolutions: the high resolution (MIROC3.2HIRES) in 1.125° × 

1.125° grid and the medium resolution (MIROC3.2MEDRES) in 2.8° × 2.8° grid. For 

present study, two emissions scenarios from MIROC3.2HIRES (A1B and B1) and three 

scenarios (A1B, A2 and B1) from MIROC3.2MEDRES were used. 
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