
18th Canadian Hydrotechnical Conference 
18ième congrès spécialisé hydrotechnique canadienne 

 
 

Challenges for Water Resources Engineering in a Changing World 
Winnipeg, Manitoba, August 22 – 24, 2007 / 22 – 24 août 2007 

 
 

 1

Daily and Hourly Weather Data Generation using a K-Nearest 
Neighbour Approach 

Mohammed Sharif1, Donald H. Burn2 and Karen M. Wey2 
1  Department of Civil Engineering, Jamia University, New Delhi, INDIA  
2  Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario 

Abstract: This paper describes the development and application of a weather generator capable of 
generating meteorological inputs for hydrological models at both a daily and hourly time step.  The 
weather generator is based on K-nearest neighbour resampling of the historical data. A strategy is 
introduced that resamples the historical data, with an added perturbation, while preserving the prominent 
statistical characteristics, including the inter-station correlations. An advantage of the approach is that 
unprecedented meteorological data are generated that are important for the simulation of extreme events. 
The basic weather generator operates at a daily time step; however daily values can be disaggregated to 
an hourly time step, for specific events of interest.  The model can be used to generate realistic 
sequences of weather data reflecting historic conditions and can also be used to create an ensemble of 
climate scenarios that can be used for the assessment of the vulnerability of a watershed to extreme 
events, including floods and droughts. Climate scenarios are derived using change fields from GCM 
output. The weather generator model, in conjunction with a rainfall-runoff model, provides valuable aid in 
developing efficient management strategies for a watershed. The approach is demonstrated through 
application to the Upper Thames River Basin in Ontario. Daily and hourly weather variables (maximum 
and minimum temperature, and precipitation) were simulated at multiple stations in and around the basin. 
Analysis of the simulated data demonstrated the capability of the model to reproduce important statistical 
parameters of the observed data series while allowing perturbations to the observed data points. 

1. Introduction 

This paper describes the development and application of an improved K-nearest neighbour weather 
generating model that allows nearest neighbour resampling with perturbation of the historic data.  The 
modelling approach involves a two-stage process of generating daily weather data followed by 
disaggregation to an hourly time step for select variables for some events. The practicality of the 
improved model is demonstrated through simulation of climate change scenarios based on the prediction 
of Global Climate Models (GCMs) for the Upper Thames River Basin (UTRB) in Ontario.  

Stochastic weather generators are often used to simulate synthetic weather data that provide valuable aid 
in the formulation of water resource management policies. Synthetic sequences derived from stochastic 
generators are typically based on the assumption that the past will be representative of the future. 
However, the assumption of stationarity of meteorological data is not valid if the impacts of climate 
change are considered.  

Due to the lack of an ideal method for generating climate change scenarios, weather generators have 
been employed for producing alternative climate data sets based on prescribed conditioning criteria (e.g., 
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Semenov et al. 1998). Daily weather generators are most common due to the wide availability of 
meteorological data at a daily time step and due to the fact that most impact assessment models are 
driven by daily data. Results from a weather generator at a daily time step may need to be disaggregated 
to a finer temporal scale for some applications. The traditional weather generating approach (Nicks and 
Harp 1980) focuses first on the independent generation of precipitation while the remaining variables are 
modelled conditioned on precipitation occurrence (i.e., precipitation or no precipitation). Daily precipitation 
amounts are generated using a two-state first order Markov model from an assumed probability 
distribution fitted to the observed values. Different model parameters are fitted to each period in order to 
capture the seasonality in the values of the variables themselves and in the cross-correlations. More 
elaborate models have been proposed for the distribution of precipitation amounts given the occurrence 
of a wet day. Buishand (1978) and Stern and Coe (1984) used the two-parameter gamma distribution to 
describe the precipitation amount on wet days. Wilks (1999) fitted the three-parameter mixed exponential 
distribution to describe precipitation amounts on wet days. An excellent review of stochastic weather 
models has been presented by Wilks and Wilby (1999). 

Although a large number of precipitation models have been developed, many practical applications 
require that weather generators produce other meteorological variables in addition to precipitation. To 
generate other variables probability distributions are fitted independently for each variable for each period 
and for each precipitation state. The assumption is made that each variable is conditionally independent 
and identically distributed. Richardson (1981) describes a Markov-chain exponential model in which the 
precipitation is generated independently of the other variables. The other variables are generated by 
using a multivariate model with the parameters of the variables conditioned on the wet or dry status of the 
day, as determined by the precipitation model. Stochastic weather generators of the type proposed by 
Richardson (1981) are commonly referred to as WGEN (for ‘weather generator’) as in Richardson and 
Wright (1984). WGEN is a multivariate time series model that can stochastically generate daily values of 
maximum and minimum temperature, precipitation and solar radiation for any required length of time.  

A drawback associated with the ‘Richardson type’ weather generators is that persistent events, such as 
drought or prolonged rainfall, are not well reproduced. To overcome this problem, a serial approach to 
weather generation was presented by Racsko et al. (1991) and Semenov et al. (1998), among others. In 
this approach, the sequence of dry and wet series of days is modelled first and the precipitation amounts 
and other variables are generated conditioned on the wet or dry status. Racsko et al. (1991) used 
predefined distributions for modelling of wet and dry series whereas semi-empirical distributions are used 
in LARS-WG (Semenov and Barrow 1997; Semenov et al. 1998). Since LARS-WG uses every 
observation in the modelling process, it is expected to perform better than models that are based on fitting 
of a predefined distribution to the observed data. Semenov et al. (1998) confirmed the superiority of 
LARS-WG through a performance evaluation of WGEN and LARS-WG at 18 sites from different parts of 
the world. LARS-WG matched the observed data more closely than did WGEN, which may be attributed 
to the use of more complex distributions in LARS-WG. Both generators, however, had difficulty in 
reproducing the annual variability in monthly means of the variables. 

A number of applications of weather generators for multisite simulation of variables have been reported. 
Smith (1994) presented an extension of the Markov model to bivariate time series of daily precipitation at 
two stations. Further extension to more stations was limited by the number of parameters needed in the 
model. Wilby (1994) developed a stochastic model for the synthesis of daily precipitation data by weather 
type analysis. The model was applied to generate daily rainfall at two sites in southern England. Wilks 
(1998) developed a multisite version of the first order Markov model with the mixed exponential 
distribution for wet day precipitation amounts. Means, variances, and inter-station correlations of monthly 
precipitation totals were well preserved in the model proposed by Wilks (1998). 

A number of parametric weather generators have been developed but they have several drawbacks. 
First, they do not adequately reproduce various aspects of spatial and temporal dependence of variables. 
Second, an assumption has to be made regarding the form of probability distribution of the variables, 
which is often subjective. Third, non-Gaussian features in the data cannot be adequately captured as 
multivariate autoregressive (MAR) models implicitly assume a normal distribution. Fourth, a large number 
of parameters are separately fitted to each period and the number further increases if the simulations are 
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to be conditioned. Fifth, the models are not easily transportable to other sites due to the site-specific 
assumptions made regarding the probability distributions of the variables. 

Nonparametric methods can circumvent problems associated with the parametric methods. Simple 
nonparametric techniques essentially involve random resampling from the historical data to generate 
synthetic sequences of the required duration. Such sequences often fail to capture the time correlation of 
the data series. Procedures have been developed that can capture the prominent time correlation 
between the weather data. The most promising nonparametric technique for generating weather data is 
the K-nearest neighbour (K-NN) resampling approach. The works of Lall et al. (1996), Rajagopalan and 
Lall (1999) and Buishand and Brandsma (2001) describe various forms of K-NN resampling.  A K-NN 
algorithm typically involves selecting a specified number of days similar in characteristics to the day of 
interest. One of these days is randomly resampled to represent the current day’s weather.  

A nonparametric weather generator can be used to create synthetic meteorological data for given climate 
scenarios and operates on a daily time step.  The output from this model functions as input for 
hydrological models used to simulate streamflow.  While the daily weather generator data can be input 
directly to the continuous hydrological model used in this project, temporal disaggregation and spatial 
interpolation are required before  these data can be used as input to the event-based hydrological model 
(Cunderlik and Simonovic 2007).  The approaches used for disaggregation and interpolation of the daily 
precipitation data are also discussed in this paper. 

2. Nonparametric Weather Generator 

A basic K-NN algorithm involves selecting a specified number of days similar in characteristics to the day 
of interest. One of these days is randomly resampled to generate the weather of the next day in the 
simulation period. The nearest neighbour approach involves simultaneous sampling of weather variables, 
such as precipitation and temperature.  The sampling is carried out from the observed data, with 
replacement. To simulate weather variables for a new day (t+1), days with similar characteristics as those 
simulated for day t are selected from the historical record. One of these nearest neighbours is then 
selected according to a defined probability distribution or kernel and the observed values for the day 
subsequent to that nearest neighbour are adopted as the simulated values for day t+1. Models based on 
the K-NN approach can be easily extended to multisite simulation of weather data while keeping the 
spatial correlation structure virtually intact. Spatial dependencies are preserved because the same day’s 
weather is adopted as the weather for all stations. Temporal dependence is also likely to be preserved as 
the simulated values for day t+1 are conditioned on the values for day t.  The cross-correlation among the 
variables at any given site is preserved since a block of variables is resampled from the observed data. 

A limitation of K-NN weather generators is that they do not produce new values but merely reshuffle the 
historical data to generate realistic weather sequences. A modified approach was developed that entails 
resampling with perturbation of the historic data. A strategy is introduced that resamples the historical 
data with perturbations while preserving the prominent statistical characteristics, including the inter-station 
correlations. The improved model is capable of extrapolating beyond the observed record to produce 
precipitation and temperature values that are different from the observed values. Details of this daily 
weather generation model are presented in Sharif and Burn (2006).  A practical advantage of the 
approach is that unprecedented precipitation amounts are generated that are important for the prediction 
of hydrologic extremes.  The disaggregation of the daily data to an hourly time step further facilitates the 
use of the weather data for event based modelling, which typically operates at a small time interval. 

Precipitation data are often required at a finer time scale than is observed, such as hourly rather than 
daily. One option for creating hourly precipitation data is to modify the weather generator to produce 
hourly data, while another is to disaggregate the daily data produced by the weather generator to hourly 
data. Porter and Pink (1991) recognized that generation of monthly data rarely preserves the annual 
statistics of the time series and concluded that disaggregation was a good way to maintain the necessary 
statistical properties of the data, at both the annual and monthly scale. Wójcik and Buishand (2003) 
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extended this theory to the disaggregation of daily climate data and concluded that disaggregation of daily 
data preserved second order statistics much better than directly generating data at the finer time scale.  

For precipitation events requiring hourly data, a second modelling stage is used herein to disaggregate 
the daily precipitation values obtained for select precipitation events generated using the daily weather 
generation model.  Since the hourly data are intended to estimate potential flood events, only data for 
events with a substantial amount of precipitation were disaggregated, where an event is defined as all 
consecutive non-zero precipitation days, with at least one day with zero precipitation separating events. 
The approach used is based on the method of fragments (Svanidze 1977). The method of fragments 
requires data at both the original and the disaggregated time scale. For a daily data value that is to be 
disaggregated, a set of fragments must be formed.  The fragments are the fraction of daily precipitation 
that occurred in each hour of the day, thus the fragments sum to unity.  Each fragment is then multiplied 
by the daily data being disaggregated such that the total precipitation in the day is not altered. This 
produces the new hourly precipitation values. 

The series of hourly data to be used as fragments was selected such that the total daily precipitation 
closely matches the daily data being disaggregated.  The method used is a hybrid between the key site 
approach (McMahon and Mein 1986; Porter and Pink 1991) and the method used by Maheepala and 
Perera (1996).  The approach involves multiple key sites, thereby representing the distribution across the 
watershed without the computational expense of examining all sites in the study area.  The multiple key 
site method requires the user to select the number of key sites to be used for a specific application.  By 
increasing the number of key sites, the user decreases the ambiguity of the selection process; however, 
by decreasing the number of keys sites, the user decreases the required computational time for fragment 
selection.  It is important to select enough sites to accurately represent the region of study. 

For the disaggregation of the first day of any event there are no hourly data in the previous day for 
comparison because, by definition, the day prior to the beginning of an event must be a non-event day.  
There is no precedence put on the time of day when the precipitation occurs during the fragment 
selection process for the first day of an event.  By selecting the fragments for the first day of an event in 
this manner, no assumptions were made regarding the precipitation on the previous day.  The fragments 
to be used for disaggregation of a generated daily precipitation, values are selected based on a nearest-
neighbour day for the generated daily precipitation.  While the first event day is not influenced by 
preceding precipitation, all subsequent event days must maintain some continuity with the former portion 
of the event. All subsequent event days had fragments chosen by selecting the day that resulted in 
minimum deviation from current day precipitation and the hourly precipitation on the previous day. 
Precipitation patterns vary depending on the season.  To maintain an appropriate seasonal distinction in 
the disaggregated data, it is vital to choose fragments, and hence precipitation patterns, that originate in 
the correct season.  For this model a season was defined as 30 days in either direction of the day being 
disaggregated and nearest neighbours for selecting fragments were restricted to days within this window. 

3. Application 

The Thames River Basin is located in the agricultural heartland of the south-western region of Ontario. 
The Thames River is 273 km long and has a catchment area of around 5,825 km2, making it the second 
largest watershed in south-western Ontario. Most of the precipitation comes in the form of winter snow. 
Daily maximum temperature (TMX), daily minimum temperature (TMN) and daily precipitation depth 
(PPT) data from 15 stations in and around the basin were used for the period from 1964 to 2001. The 
meteorological stations in and around the basin are distributed across an area of approximate dimension 
80 km (west to east) by 120 km (north to south). The inter-station distances range from approximately 10 
km to 120 km.  In addition to the daily data, hourly precipitation data are available for some of the sites 
plus additional sites that are not part of the daily data network (for a total of 28 sites with hourly data).  As 
a result of poor temporal coverage for many of the hourly data sites and the need for co-located hourly 
and daily data sites, spatial interpolation with the inverse distance method was used to create a 
consistent network of 15 sites with both daily and hourly data.   
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3.1 Reproduction of Historical Statistics 

The model was initially evaluated for capability to reproduce the characteristics of historical data. A new 
subset of years that constitute the driving data for the model was obtained by using an integer function 
that returned integers between specified upper and lower bounds. To generate N years of data, the 
integer function was called N times. With this method, each year has an equal probability of being 
selected but some years may be selected more than once. A new data set was thus obtained and the K-
NN algorithm was used to generate 800 years of synthetic data with this data set. The goal of simulation 
was to produce a data series that preserved the statistical attributes of the historic data while perturbing 
the data points. The statistics of interest were computed from the simulated sequence and compared to 
the statistics of the observed record using box plots. Results are presented below for London; the results 
for other stations are similar. 

Figure 1 shows the box plots of 800 simulated values of mean TMX values for London. Although the 
model was applied on daily data, the statistics from the daily data have been aggregated to a monthly 
time scale to facilitate presentation of the results. The simulations are summarized using box plots. Box 
plots show the range of variation in statistics of simulations and provide a straightforward method of 
comparing the statistics of simulations with historical data. The bottom and top horizontal lines in the box 
in a box plot indicate the 25th and 75th percentile, respectively, of the statistics computed from the 
simulated data. The horizontal line within the box represents the median. The whiskers are lines 
extending from each end of the box to show the extent of the rest of the data. The whisker extends to the 
most extreme data value within 1.5 times the inter-quartile range of the data. The values beyond the ends 
of the whiskers are called outliers and are shown by dots. The statistics of the historical record are 
represented by dots and joined by solid lines. Comparison of historical monthly values with the simulated 
values clearly showed that the model was capable of adequately reproducing the historical values. This is 
highly satisfactory given that monthly statistics were not explicitly specified in fitting the K-NN model. 

 

Figure 1. Box plots of monthly mean maximum temperature for London 
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Evaluation of total monthly precipitation revealed that the historical mean of the total precipitation is close 
to the median of the simulated data for all months. The simulated total annual precipitation (987 mm) 
closely matched the historical value (980 mm). The model slightly overestimated the monthly totals for 
February, August, September and November. For the rest of the months, model results were close to the 
observed values. Among all weather variables, precipitation has the greatest variability in time and space 
and therefore the performance of the model in simulating the total monthly precipitation may be 
considered to be very good. The total number of wet days was also evaluated with results indicating that 
the model adequately reproduced the total number of wet days in different months of the year.  

Parametric models often fail to reproduce the correlation structure of the observed data. Due to the 
inherent structure of the basic K-NN model, there is a strong likelihood of the correlation structure being 
preserved. Many studies have shown that the lack of spatially distributed precipitation amounts can have 
a serious impact on basin runoff generation (Shah et al. 1996). The assumption of uniform spatial 
precipitation distribution is often invalid, even for small basins, because runoff simulation is significantly 
impacted by the distribution of precipitation over the basin. Therefore, it was considered important to 
evaluate the performance of the model in reproducing the spatial dependencies of the observed data, 
especially since the proposed approach involves perturbing the observed data points. Scatter plots of 
inter-station correlations for daily precipitation values are presented in Figure 2, which shows correlation 
coefficients for daily PPT values for the observed and the simulated data. The model reproduced the 
historical correlation structure very well. The spatial correlation of the disaggregated historical generated 
data matched the spatial correlation of spatially interpolated data closely across the entire watershed.  It 
was also found that spatial variation was maintained within extreme events as well.  Isohyetal plots 
revealed that plausible spatial variation of hourly data is obtained within extreme events.   

 

Figure 2. Observed versus simulated correlations for daily PPT values for four days 
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3.2 Climate Change Scenarios 

For the present study, output from two GCMs (CCSRNIES and CSIRO Mk2b) for scenarios B11 and B21, 
respectively, have been considered (see Nakicenovic and Swart (2000) for a description of the 
scenarios). The time-series of three climate variables: TMX, TMN, and PPT were obtained for a 30 year 
time slice (2040-2069). The data obtained may be taken as representing the average climatic conditions 
in the year 2050. The baseline simulations were carried out for the period 1961-1990 and the change 
fields corresponding to the year 2050 for both scenarios were obtained for TMX, TMN, and PPT. These 
changes have been expressed on a monthly time scale. All the observed daily temperatures of a given 
month have been increased/decreased by the amount predicted by the GCM for that particular month. 
Similarly, observed daily precipitation values of each month have been modified by multiplying them with 
the fractional change predicted by the GCM for that particular month. A modified data set is, therefore, 
obtained after applying the GCM-predicted change fields to the observed data set. Both models predict 
increases in TMN for all months although the magnitude of change is different for each model. For 
example, there is a difference of about 4° C between the change in TMN predicted by the two GCMs for 
the month of January. For the month of March and July, the predictions match very well. There are, 
however, substantial differences between the predicted values for the rest of the months with maximum 
deviations observed for the month of March. The variation between the change predicted by CSIRO Mk2b 
B11 and CCSRNIES B21 scenarios is less for TMX as compared to TMN.  The difference between the 
predicted values of PPT for the two scenarios is large when compared to the change fields for TMX and 
TMN. The deviation in predictions is to the extent that one scenario predicts an increase while the other 
predicts a decrease for the same month. The PPT change fields deviate substantially from each other 
except for the months of February, May and July.  For April and September, CSIRO Mk2b B11 predicts a 
decrease in PPT while CCSRNIES B21 predicts an increase.  For October and December the change 
predicted by CSIRO Mk2b B11 is negative in comparison to a positive change predicted by scenario 
CCSRNIES B21.  It is only for the month of November that both models predict a decrease in the PPT 
values. The two GCM scenarios produce very different projections of future climate. These scenarios 
should be interpreted as plausible scenarios rather than predictions of future climatic conditions. 

The KNN-model was then applied to simulate weather data conditioned upon plausible climate change 
scenarios derived from the two GCMs. Box plots have been used to present the statistics of interest 
obtained from the simulated sequences.  Results are again presented for the London station. Two 800-
year simulations were carried out, each corresponding to the GCM scenarios considered. Simulation 1 
was carried out to reproduce the statistics of the modified data set obtained after applying the change 
fields from CSIRO Mk2b B11 to the observed data. Simulation 2 represents the results obtained for 
CCSRNIES B21. The results of the simulations are described below. 

Relatively modest changes in precipitation can have proportionally large impacts on runoff, which directly 
affects the occurrence of floods. Under scenarios of increasing temperatures, it is reasonable to expect 
reductions in spring and summer runoff, increases in winter runoff and earlier peak runoff. It is therefore 
important to evaluate the impacts of potential change in precipitation amounts on the occurrence of 
extreme events. The analysis of simulated data representative of CSIRO Mk2b B11 and CCSRNIES B21 
was, therefore, conducted. The capability of the model to simulate the occurrence of extreme events, both 
high precipitation and low precipitation, was investigated with particular emphasis on generating realistic 
unprecedented events for the basin. Figure 3 shows the box plots of total precipitation that occurred 
during the most extreme precipitation event in each year of the simulated record for simulations under 
CSIRO Mk2b B11 and CCSRNIES B21.  An extreme precipitation event is defined as consisting of a 
continuous sequence of wet days. For each year of the data, a single multi-day extreme event was 
determined along with the total precipitation that occurred during the event. The first box plot in Figure 3 
shows the total precipitation during the most extreme event in each year of the observed data while the 
remaining box plots show the same statistics for two different simulations.  

The box plot for CSIRO Mk2b B11 shows that the median of the simulated data matches closely with the 
median of the observed data. A total precipitation of the order of 250 mm in the most extreme 
precipitation event was observed in the simulated data compared to a corresponding value of 200 mm in 
the observed record. Additionally, greater variability in the simulation of extreme events is achieved. A 
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total precipitation amount of around 225 mm was simulated in the most extreme event for CCSRNIES 
B21, which is about 25 mm higher than the highest observed value. The median value is slightly higher 
than the observed value as well as that simulated for scenario CSIRO Mk2b B11. Of the two scenarios, 
CSIRO Mk2b B11 appears to be critical with respect to simulation of extreme high precipitation events. 
The inter-annual variability for both scenarios is quite high as is the case with all other simulations thus 
providing a variety of extreme events that can be used as input to hydrological models.  

 

 

Figure 3. Box plots of total precipitation during extreme events in each year for different simulations 

Apart from floods, the vulnerability of UTRB to the occurrence of droughts needs to be assessed. Figure 4 
shows box plots of dry spell durations for the observed and the simulated data for both scenarios. The 
first box plot in Figure 4 presents the distribution of extreme dry spells computed from 38 years of 
observed data. It can be seen from the box plot of simulation 1 that while the median dry spell duration for 
the observed data is 25, the corresponding statistic in the simulated data for CSIRO Mk2b B11 is 29. The 
median of the simulated data for both scenarios was substantially higher than that for the observed data. 
The longest dry spell for CSIRO Mk2b B11 lasted around 90 days, which is substantially higher in 
comparison to the observed value of 67 days. For CCSRNIES B21, the most extreme dry spell duration 
has about the same value as for the observed data. Therefore, CSIRO Mk2b B11 is critical with respect to 
dry spell durations. Several events that are more severe than the observed events were simulated thus 
providing a wider range of events as input to a hydrologic model. The strength of the approach presented 
here lies in the simulation of extreme dry spells for potential climate change scenarios that are important 
for evaluation of effective drought management policies for the basin. 

4. Conclusions 

The potential impact of climatic change, as predicted by two GCMs, on the occurrence of extreme 
precipitation events in the UTRB has been investigated. Weather sequences based on two plausible 
climate change scenarios for the basin were simulated using a K-NN model. It should be noted that the 
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Figure 4. Box plots of dry spell durations during extreme events in each year for different simulations 

intent herein was not to conduct an extensive climate change sensitivity analysis for the UTRB.  Doing so 
would have required the consideration of a larger number of GCMs and scenarios.  Rather the intent was 
to assess the effectiveness of the weather generation scheme for application to this watershed.  The 
model framework has been shown to be effective in producing simulated sequences that are 
representative of future climate scenarios predicted by the GCMs for the UTRB. An advantage of the 
approach presented here is that unprecedented precipitation amounts can be simulated for a given 
climate change scenario. Consequently, extreme events, both high precipitation and low precipitation, 
that are more severe than the observed events can be easily simulated, which is important for assessing 
the vulnerability of the basin to floods and droughts under changing climatic conditions. A distinct 
advantage of the model is that it produces spatially correlated data for the basin, which is crucial for 
evaluating the response of hydrological models to watershed-level processes.  

There are, however, limitations associated with the methodology adopted in this work. First, validation 
exercises have revealed that GCMs suffer from several deficiencies in the simulation of present day 
climate conditions. Therefore, the accuracy of the results presented is directly related to the accuracy of 
the GCM simulations. Second, a climate change scenario based on the output from a GCM represents 
only one of many future climate change scenarios whereas exploring many alternative climate scenarios 
could be more useful for effective management of water resource systems.  Future work should explore 
the impacts of considering a larger number of GCMs and scenarios. 
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