

# Water Flume Measurements of Buoyant Plume Rise and Dispersion from Multiple Stacks

**Zhiyong Duan** 

**Supervisor: Dr. Eric Savory** 

# Outline

- >Background and Motivation
- Introduction
- > Experimental Setup and Technique
- > Experimental Procedure
- > Data Analysis Procedure
- Results and Discussion
- Conclusions and Further Work

# **Background and Motivation**

- 1. Previous research: single exhaust sources only.
- 2. Industrial reality: multiple stacks to discharge the effluent into the atmosphere.
- 3. In main design guidelines, also only single sources are considered in any detail. [e.g. ASHRAE HANDBOOK ]
- 4. Little physical basis has been confirmed by existing data to support suggestions given for multiple stacks.
- 5. Experiments where geometrical and fluid mechanics aspects of stack dispersion are examined for a range of practical cases are necessary.
- 6. Purpose: to establish a sound engineering design basis for assessing the exhaust behaviour of clusters of stacks.

# **Examples**



Much experimental research has been carried out on dispersion from single stacks



However, multiple stacks are commonly used in many industries



# **Key Equations**

• 1/3 Power Law for Momentum Jets (Briggs 1984)

$$\frac{z_s}{l_m} = \left(\frac{3}{\beta_m^2}\right)^{1/3} \left(\frac{x}{l_m}\right)^{1/3} = C_m \left(\frac{x}{l_m}\right)^{1/3}$$

• 2/3 Power Law for Buoyant Plume (Briggs 1984)

$$\frac{z_s}{l_b} = \left(\frac{3}{2\beta_b^2}\right)^{1/3} \left(\frac{x}{l_b}\right)^{2/3} = C_b \left(\frac{x}{l_b}\right)^{2/3}$$
  
Integral Model for Buoyant Plume (Contini 1999)

Integral Model for Buoyant Plume (Contini 1999)

$$z_{s} = \left[\frac{3F_{m}x}{\beta_{m}^{2}U_{w}^{2}} + \frac{3F_{b}}{2\beta_{b}^{2}U_{w}^{3}}\right]^{2}$$

## **Key Equations**

#### **Combined Flux Model (CFM)**

$$\frac{z_n}{l_b} = E_n \left(\frac{3}{2\beta_b^2}\right)^{1/3} \left(\frac{x}{l_b}\right)^{2/3} = n^{1/3} \left(\frac{3}{2\beta_b^2}\right)^{1/3} \left(\frac{x}{l_b}\right)^{2/3} = n^{1/3} C_b \left(\frac{x}{l_b}\right)^{2/3}$$

• Momentum Length Scale • Buoyant Length Scale  $l_m = R_s \frac{Us}{Uw} \sqrt{\frac{\rho_s}{\rho_a}} \quad l_b = R_s^2 \frac{Us}{Uw^3} g \frac{\Delta \rho}{\rho_a}$ • Buoyancy Flux Parameter  $F_b = l_b U_w^3$ 

## **Schematic of the Hydraulic Flume**

#### Fully developed, turbulent approach flow



## Water Flume



Water flume and laser sheet (Side-View) Test and flow development sections with model stacks (upstream view)

#### **Micro-Acoustic Doppler Velocimeter**



# **Flow Control System**



#### Hot water flow meter

#### **Dye flow meter**

# Laser System

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

**Scanning mirror** 

# Optical Cut-off Filter and Camera

- > Only the fluoresced light (555nm) passed to the CCD camera sensor.
- > The primary argon-ion laser light (514nm) was blocked.

![](_page_12_Figure_3.jpeg)

# **Video Image Acquisition System**

![](_page_13_Picture_1.jpeg)

#### Planar Laser-Induced Fluorescence (PLIF) •Principle:

Fluorescent dyes absorb excitation light over a range of wavelengths then re-emit light at a longer wavelength.

•Key Points:

 A suitable laser/dye combination for PLIF measurement (Argon-ion laser + Rhodamine WT).
A careful calibration to make sure the intensity of the fluoresced light is proportional to the local intensity of the excitation source and the local concentration of dye.

**3.** After calibration, the digital images of the instantaneous intensity distribution are converted to the concentration field.

#### **Experimental Procedure**

- 1. Simulated atmospheric boundary layer measurements
- 2. Calibration measurements
- 3. Plume cross section concentration field measurements
- 4. Physical scaling ruler

#### **Basic Modeling Parameters**

≻Model stack inside diameter D=11.5mm; height H=100mm

- Cross flow velocity  $U_c = 69$  mm/s; plume exit velocity  $U_e = 138$  mm/s, corresponding to velocity ratio a = 2
- Froude number square  $Fr^2 = \frac{U_r^2 \rho_a}{\Delta \rho_g D}$  was kept at 4.1 for all the experiments.
- > Modeling Scale: 1:200

Aerodynamic roughness length  $z_0 = 1.7$ mm with the zero plane displacement d set to 1.5mm.

![](_page_17_Picture_0.jpeg)

### **Co-ordinate System and Stack Arrangements**

![](_page_17_Figure_2.jpeg)

#### **Simulated Atmospheric Boundary Layer**

![](_page_18_Figure_1.jpeg)

## **Measurement locations**

![](_page_19_Figure_1.jpeg)

#### Flow visualization of single stack dispersion

![](_page_20_Figure_0.jpeg)

#### **PLIF Calibration Measurements**

![](_page_21_Figure_1.jpeg)

# Normalized Gaussian Profiles of Mean Concentration (1S)

![](_page_22_Figure_1.jpeg)

## **Plume Trajectory Comparison (1S)**

![](_page_23_Figure_1.jpeg)

Measured plume trajectory compared with those calculated by the 2/3 law and the integral model

![](_page_24_Figure_0.jpeg)

# Normalized Gaussian Profiles of Mean Concentration (2SBS)

![](_page_25_Figure_1.jpeg)

x/D = 8.7

# Normalized Gaussian Profiles of Mean Concentration (2SBS)

![](_page_26_Figure_1.jpeg)

x/D = 17.4

# Normalized Gaussian Profiles of Mean Concentration (2SBS)

![](_page_27_Figure_1.jpeg)

x/D = 34.8

## **Plume Trajectory Comparison (2SBS)**

![](_page_28_Figure_1.jpeg)

# Normalized Gaussian Profiles of Mean Concentration (3SBS)

![](_page_29_Figure_1.jpeg)

x/D = 8.7

# **Plume Trajectory Comparison (3SBS)**

![](_page_30_Figure_1.jpeg)

# Normalized Gaussian Profiles of Mean Concentration (2SIL)

![](_page_31_Figure_1.jpeg)

x/D = 8.7

# **Plume Trajectory Comparison (2SIL)**

![](_page_32_Figure_1.jpeg)

# **Plume Trajectory Comparison (3SIL)**

![](_page_33_Figure_1.jpeg)

# **Plume Trajectory Comparison (all)**

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

Sketch of vortex interactions for two stack side-by-side cases

![](_page_36_Figure_0.jpeg)

## Conclusions

- 1. The PLIF experimental method, implementing an image processing procedure to obtain quantitative concentration information, works very well.
- 2. Side-by-side Cases: the two plumes have not fully mixed at x/D = 17.4, however, the three plumes have merged at x/D = 8.7.
- 3. In-line cases: the two plumes have merged together at x/D = 8.7.
- 4. The CFM model can not accurately predict the trajectories for side-by-side cases; but can accurately predict them for in-line cases.

## **Further Work**

- 1. The effects of exit velocity ratio and wind angle.
- 2. The effects of stack array patterns other than in-line and side-by-side cases, e.g., stacks in-circle.
- **3.** A new model needs to be developed for accurately predict the plume trajectory for side-by-side case or a model which can incorporate in-line, side-by-side, in-circle cases together.
- 4. Quantitatively determining how large are the effects of buoyancy enhancement, momentum shielding, and vorticity interactions.

#### Acknowledgements

Supervisor: Dr. Eric Savory, UWO Dr. Robert Macdonald (1961 – 2004), University of Waterloo **Brian S. Kim, University of Waterloo**  $\succ$  Miho Horie, Shibaura Institute of Technology, Tokyo, Japan ➢ Iftekhar Zaheer Nagavi, UWO >the Natural Sciences and Engineering **Research Council(NSERC)** 

**THANK YOU**