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Background and Motivation

1. Previous research: single exhaust sources only.

2. Industrial reality: multiple stacks to discharge the effluent 

into the atmosphere.

3. In main design guidelines, also only single sources are 

considered in any detail. [e.g. ASHRAE HANDBOOK ]

4. Little physical basis has been confirmed by existing data to 

support suggestions given for multiple stacks.

5. Experiments where geometrical and fluid mechanics aspects 

of stack dispersion are examined for a range of practical 

cases are necessary. 

6. Purpose: to establish a sound engineering design basis for 

assessing the exhaust behaviour of clusters of stacks.



Examples

Much experimental research 

has been carried out on 

dispersion from single stacks

However, multiple stacks are 

commonly used in many 

industries
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Key Equations
� 1/3 Power Law for Momentum Jets (Briggs 1984)

� 2/3 Power Law for Buoyant Plume (Briggs 1984)

� Integral Model for Buoyant Plume (Contini 1999)
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Combined Flux Model (CFM)



Schematic of the Hydraulic Flume

Fully developed, turbulent approach flow

- Flume dimensions: 13.4 m x 1.2 m x 1.2 m

2.4 m

Test Section



Water flume and laser sheet

(Side-View)

Test and flow development sections 

with model stacks (upstream view)

Water Flume



Micro-Acoustic Doppler Velocimeter

Submersible 

probe

Schematic of 

control volume Experimental setup

Probe Head



Flow Control System

Dye flow meter

Hot water 

flow meter
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Laser System

Argon-ion laser Scanning mirror



Optical Cut-off Filter and 
Camera

� Only the fluoresced light (555nm) passed to 
the CCD camera sensor.

� The primary argon-ion laser light (514nm) 

was blocked.
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Video Image Acquisition System



Planar Laser-Induced Fluorescence (PLIF) 
•Principle:

Fluorescent dyes absorb excitation light over a range 

of wavelengths then re-emit light at a longer wavelength.

•Key Points:
1. A suitable laser/dye combination for PLIF 

measurement (Argon-ion laser + Rhodamine WT). 

2. A careful calibration to make sure the intensity of 

the fluoresced light is proportional to the local intensity 

of the excitation source and the local concentration of 

dye.

3. After calibration, the digital images of the 

instantaneous intensity distribution are converted to 

the concentration field.



Experimental Procedure

1. Simulated atmospheric boundary layer

measurements

2. Calibration measurements

3. Plume cross section concentration

field measurements

4. Physical scaling ruler



Basic Modeling Parameters

�Model stack inside diameter D=11.5mm; height H=100mm

�Cross flow velocity Uc = 69mm/s; plume exit velocity 

Ue =138mm/s, corresponding to velocity ratio a = 2

� Froude number square                          was kept at  4.1 for

all the experiments.

� Modeling Scale: 1:200

�Aerodynamic roughness length z0 = 1.7mm with the zero 

plane displacement d set to 1.5mm.
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Co-ordinate System 

and Stack Arrangements
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Simulated Atmospheric Boundary Layer

Profiles of normalized 

turbulence intensity

Semi-log-plot of the 

mean velocity
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Measurement locations

Flow visualization of single stack dispersion



Video 

images
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PLIF Calibration Measurements

Calibration resultsCalibration box 

measurements

Single stack calibration chart
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Normalized Gaussian Profiles of 

Mean Concentration (1S)
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Measured plume trajectory compared with those 

calculated by the 2/3 law and the integral model

Plume Trajectory Comparison (1S)
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Plume cross-section experimental

procedure for multiple stacks
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Normalized Gaussian Profiles of 

Mean Concentration (2SBS)
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Wind direction

Sketch of vortex interactions for two stack side-by-side cases 

Discussions (I)
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Discussions (II)

Wind direction

X

Y

Z

Sketch of vortex interactions and momentum shielding 

for two stack in-line cases

Plume from

Upstream stack Plume from

Downstream stack

Combined plume



Conclusions

1. The PLIF experimental method, implementing an 

image processing procedure to obtain quantitative 

concentration information, works very well.

2.  Side-by-side Cases: the two plumes have not fully 

mixed at x/D = 17.4, however, the three plumes have 

merged at x/D = 8.7.

3. In-line cases: the two plumes  have merged together 

at x/D = 8.7.

4. The CFM model can not accurately predict the 

trajectories for side-by-side cases; but can 

accurately predict them for in-line cases.



Further Work

1. The effects of exit velocity ratio and wind angle.

2. The effects of stack array patterns other than in-line and 

side-by-side cases, e.g., stacks in-circle.

3. A new model needs to be developed for accurately predict 

the plume trajectory for side-by-side case or a model which

can incorporate in-line, side-by-side, in-circle cases together.

4. Quantitatively determining how large are the effects of 

buoyancy enhancement, momentum shielding, and vorticity 

interactions.
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