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A closed-form solution for composite tunnel
linings in a homogeneous infinite isotropic elastic
medium

Hany El Naggar, Sean D. Hinchberger, and K.Y. Lo

Abstract: This paper presents a closed-form solution for composite tunnel linings in a homogeneous infinite isotropic elas-
tic medium. The tunnel lining is treated as an inner thin-walled shell and an outer thick-walled cylinder embedded in lin-
ear elastic soil or rock. Solutions for moment and thrust have been derived for cases involving slip and no slip at the
lining—ground interface and lining—lining interface. A case involving a composite tunnel lining is studied to illustrate the
usefulness of the solution.

Key words: thin-walled shell, thick-walled cylinder, moment, thrust, tunnel lining, plane strain solution.

Résumé : Cet article présente une solution exacte des garnitures de tunnels composites dans un milieu élastique isotrope
infini homogene. La garniture de tunnel est traité comme une coquille intérieure a paroi mince et un cylindre extérieur a
paroi épaisse dans un sol €lastique linéaire ou un roc. Les solutions pour le moment et la pression ont été dérivées pour le
cas impliquant du glissement ou non a 1’interface garniture-sol et garniture—garniture. On étudie un cas impliquant une
garniture de tunnel composite pour illustrer 1’utilité de la solution.

Mots-clés : coquille a paroi mince, cylindre a paroi épaisse, moment, pression, garniture de tunnel, solution a déformation

plane.

[Traduit par la Rédaction]

Introduction

Many cities rely on tunnels for transportation, water distri-
bution, and sewage handling. Consequently, these structures
have high social and economical value. In some cases, long-
term exposure of a reinforced concrete lining to sulphates or
chlorides in groundwater can lead to concrete deterioration
and consequent reduction in the load carrying capacity of
the lining. For this situation, engineers may be required to
estimate the distribution of moment and thrust in the de-
graded liner to evaluate its factor of safety. Closed-form sol-
utions can be economical for such applications especially if
liner degradation is widespread in a tunnel system of varia-
ble depth.

Many closed-form solutions have been developed to esti-
mate the distribution of moment and thrust in tunnel supports
(e.g., Morgan 1961; Muir Wood 1975; Rankine et al. 1978;
Einstein and Schwartz 1979; Yuen 1979). However, none of
these solutions account for composite linings such as those
shown in Fig. 1 nor do they account for the initial stress relief
that can occur due to ground convergence prior to installation
of the liner (e.g., Lee et al. 1992). Only Lo and Yuen (1981)
have accounted implicitly for ground convergence prior to
installation of the liner; however, their solution is for a single
tunnel lining embedded in a viscoelastic medium. Ogawa

(1986) has studied composite tunnel linings comprising inner
and outer thick-walled cylinders embedded in an infinite
elastic medium. However, this solution (Ogawa 1986) is not
easily applied to segmental concrete tunnel linings, and it
also does not account for stress relief prior to liner installa-
tion. Table 1 summarizes some of the existing closed-form
solutions.

This paper presents a new closed-form solution for com-
posite tunnel liners embedded in an infinite elastic medium
(see Fig. 2). In the solution, the lining system is idealized
as an inner thin-walled shell and an outer thick-walled cylin-
der. The ground is treated as an infinite elastic medium gov-
erned by Hooke’s law, and the principle of superposition is
used to approximately account for the impact of some initial
ground convergence during construction on the moments
and thrusts mobilized in the liner system. The solution ap-
plies to tunnels in intact rock or strong soils that remain pre-
dominantly elastic during tunnel construction. Its advantages
are: (7) that it is easier to apply to cases involving segmental
concrete tunnel linings, and (i) that it can be used to ap-
proximately account for partial closure of the gap (Lee et
al. 1992) prior to lining installation. The solution, which is
considered to be a new and useful tool for tunnel engineers,
is used to study the impact of a thick-grouted annulus on
moments and thrusts in a segmental concrete tunnel lining.
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Fig. 1. Common double lining systems.
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(a) Segmental lining with grout.
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Steel liner

Castin situ
concrete

(b) Typical pressure tunnel.

Table 1. Comparison of closed-form solutions for circular tunnels in elastic ground.

Stress
Solution function Liner idealization Joints Gap closure
Morgan (1961) Airy Thin-walled tube Easy: by reducing liiner No provision
Muir Wood (1975) Airy Thin-walled tube Easy: by reducing iiner No provision
Einstein and Schwartz (1979)  Mitchell Thin-walled shell Easy: by reducing liiner No provision
Yuen (1979) Airy Thick-walled cylinder Possible: by reducing the liner No provision
thickness and adjusting E
Ogawa (1986) Airy Inner and outer thick-walled cylinders Possible: by reducing the liner No provision

thickness and adjusting £

Note: I;;,.,, moment of intertia of the lining; E, Young’s modulus.

Problem definition

Figure 2 shows the problem geometry. Solutions for mo-
ment, thrust, stress, and displacement are derived in terms
of the angle 6 measured counterclockwise from the spring
line axis of the tunnel. In this paper, the circular tunnel is
assumed to be embedded in a homogenous infinite elastic
medium subject to an initial anisotropic stress field. The in-
itial vertical and horizontal stresses in the ground are o, and
on, respectively, where o, = K, o, and K, is the coeffi-
cient of lateral earth pressure at rest. For the solution, the
initial stress field (see Fig. 3) is separated into a hydrostatic
component, P,, and deviatoric component, Q,,.

[la]  Po=(oy+on)2
and
1) Qo = (oh —0y)/2

Since tunnels are long linear structures, plane strain con-
ditions have been assumed. The mechanical properties of
the ground are assumed to obey Hooke’s law with elastic
modulus E, and Poisson’s ratio v,. The outer lining is
treated as a thick-walled cylinder with elastic modulus E,,
Poisson’s ratio v, and inner (intrados) and outer (extrados)
radii R, and Rj, respectively. The inner lining is treated as

a thin-walled shell with elastic modulus E£;, Poisson’s ratio
vy, cross-sectional area A;, and moment of inertia ;. The
intrados and extrados of the inner lining are defined by R;
and R;, respectively. Excavation of the tunnel is assumed to
cause a reduction of the boundary stresses around the cir-
cumference of the opening at » = R3 until the new boundary
stresses reach equilibrium with the liner reactions. The
following sections present the derivation of moments and
thrust in a composite tunnel lining for the case of no slip
at r =R, and r = R3. Solutions for slip and no slip at
r =R, and r = R3, respectively, and full slip at both
r = R, and r = R3 are also included.

Stresses and displacements in the ground
due to full stress relief

There are several solutions for the distribution of stresses
and displacements in an infinite elastic medium due to full
stress relief (see Table 1). These solutions typically employ
some form of stress function in conjunction with Hooke’s
law and the equilibrium equations. For example Timoshenko
and Goodier (1969) and Einstein and Schwartz (1979) used
Mitchell’s stress function in their solution; whereas, Morgan
(1961), Muir Wood (1975), Yuen (1979), and Ogawa (1986)
employed Airy’s stress function. In this paper, solutions
based on Airy’s stress function are utilized.

© 2008 NRC Canada



268 Can. Geotech. J. Vol. 45, 2008

Fig. 2. Problem geometry — composite lining.
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Fig. 3. Hydrostatic and deviatoric components of the initial stress field.
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Hydrostatic component, P,
Considering the hydrostatic component,
stress function is

P,, the Airy’s

2] "= Ar+Clr

where r is the radial distance from the longitudinal tunnel
axis. From the equilibrium equations, the change in radial,
tangential, and shear stress in the ground is given by

10® c

Aol =—Z— =24+ =

[3a] TRy Jrr2

AH 0*® C

o] Ry =g =25
and

0 (109
H _ —_— —— —
[3¢] ATgy = o (r 6r> 0

where the coefficients A and C are determined from suitable
boundary conditions (see Appendix A).

From Yuen (1979), the radial deformation in the ground
due to the excavation and consequent full stress relief is,
from Hooke’s Law,

Py(1 R?
[4] u? = /srdrio( Ve )R;
E,r

and the stress field in the ground is

R 2
[561] U}ng =0y + Aoy =Py |1 — <2>

R 2
[5b] oy = 040 + Doy = Py 1+<—3)

and

[5¢] Tgﬁg =0

Deviatoric component, Q,
Considering full stress relief of the deviatoric component,
Q,, the Airy’s stress function is

c
6 @°= [Ar2 +Brt+ =+ D} cos26
r

and again utilizing the equilibrium equations, the change in
radial and tangential stresses is given by

100° 1 02@P
[7a] AO’Eg :;W+§W

C D
—+4 —2} cos20
r

:—{2A+6’A
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[7b]  Aop, = 8;(;]) = [2A + 12Br? + 6%} c0s26

and

1 s, =-o (12

cC D
= <2A +6Br’ —6— — 2—2) sin26
r r

where the coefficients, A, B, C, and D are determined
from the boundary conditions; Aor = — Q,c0s20 and
ATrg = Qosin20 at r = R3 and Ao, = Aty =0atr = oo
(see Appendix A). Again, from Yuen (1979), the change in ra-
dial, tangential, and shear stress are

4 2
3 <&> —4 (&) ] cos26
r r

Ry\*
[86]  Adp = —30, <7> c0s26

[861] Aggg = Qo

g

and

Bc]  Atgy, = Q0 [3 <Rr3)4 —2 (R:)z

and the radial and tangential displacements in the ground
due to the tunnel excavation are, from Hooke’s Law,

sin26

9a uP = edr
[9a] -
R 1 2 4
:w [4(1 - I/g)&—R—;] cos26
o roor
D
D _ Y
9] v, = /l&) . ]rd@
Qo(l + v ) R2 R4 .
= —Tg 2(1—l/g)73+r—; 311129

Combined solution

The overall ground response due to full stress relief at r =
R; can be obtained by superposition of the hydrostatic and
deviatoric solutions presented above. For example, eqs. [4]
and [9a] can be combined to obtain the radial displacement,
ug, in the ground viz.

Po(1 + vg)R3
[104] Uy :"Trg3

i Qo (1 + Vg)

R R}
[4(1 — V)= — 3] cos26
E, rooor

Similarly, the tangential displacement, v,, is

_Qo(l + 1)

[106] v, = £

roorm

R: R
{2(1 —2ug) = + —3} sin26

and the radial, tangential, and shear stresses are
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2
ld]  ore=Po|l - (&)
"
4 2
+ 0o 1—0—3(&) —4<&) ]COSZQ
r r
R;\* R\ *
[116]  ogy = Py |1+ ({) ] -0, 1+3<73> ]cosze
and
Ry\? Ry\*
1e]  Tree = 0o [1+2(=2) —3(=2) |sin20
g
r r

Stresses and displacements in the ground
due to liner reactions

For the hydrostatic component, the liner reaction at
r = Rs in the radial direction is denoted by o%l, (see Fig. 4).
For the deviatoric component, the liner reaction at r = Rj3
comprises both normal and tangential components denoted
by oQ,c0826 and T12sin26, respectively (see Fig. 5).

Hydrostatic component
The stresses and displacements at the interface between

the ground and the outer lining due to the reactive force,
o, are from Yuen (1979)

R;\’
[120} O—Ilgg react O—EZ <7)

H n (R3\’
[12b] Ofg react — —IN2 (I")

oo (14, )Rs?

12¢ U r=R3)=
[ } Rg react( 3) Egr
Deviatoric component, Q,
For the boundary conditions, ogr = ok,c0s20 and

TRy = —T12sin20 at r = R3 and Trg = or =0 at r = oo,
the stresses and displacements in the ground medium due to
the reactive forces, ogz and 71, are (Yuen 1979)

%
[13] O—gg react [2(032 + 712) (7)

Ry\*
_ ((7132 +2712) (7) 100520

R 4
[14] 0g react — (27—T2 + 0'11312) (:) cos26
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R:\’
[15] Tgé?g react (011312 + TTZ) (7)
R 4
_ (0'32 +271) <73> ] sin26
(1 +wvo)r R:\*
[16] ugDreact = 3Egg (032 + 27_TZ) 7
R 2
—6(1 — v)(omy + 712) (%) 100329
(14 vy)r Ry\"
[17] vgreact = ng (0—32 + 2TTZ) 7

R:\’| .
+3(1 = 2vy)(opy + T12) <7> sin26

Accordingly, the radial and tangential displacements at
the interface of the ground and the outer lining (r = Rj3)
due to the reactive forces, agz and 7T, are

(] + v )R3
184 Mgreacl(r =R;) = 73—E:7
x [(5 — 6vg)on, + (4 — 6vy)TT2]c0820
(14 vg)Rs
(18D)] vgreact(r =R;) = 37E;g

x [(4 — 6vg)on, + (5 — 6vg)TT2]sin20

Figs. 4 and 5 show the reactions at the extrados and intrados
of the outer liner.

Equations for stresses and displacements of
the outer liner

For the hydrostatic component (see Fig. 4), the liner reac-
tions at r = Ry and r = R, are in the radial direction and de-
noted by ok, and oll;, respectively. For the deviatoric
component (see Fig. 5), the liner reactions at » = R3 com-
prise both normal and tangential components denoted by
03200520 and 7Tr,sin26, respectively. In addition, there are
normal and tangential reactions between the inner liner
(Liner 1) and the outer liner (Liner 2) at r = R, denoted by
oR,c0s20 and 71;sin20, respectively. Both Yuen (1979) and
Ogawa (1986) have developed solutions for the stresses and
displacements in a thick walled cylinder subject to these ex-
ternal loads, which are presented in Appendix A. The equa-
tions utilized in this paper are summarized below.

Hydrostatic component

In a similar manner to that used for the ground, the resultant
radial, tangential, and shear stresses in the outer lining for the
boundary conditions, or = a§2 at r = R3 and og = aﬁl at
r =Ry, are
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Rolr)* +h 1+ (Ry/r)?
[ ]

and

[19¢] 71, =0

where h = (R2/R3)?%.
lining, uﬁz, is

= [elar= S B ]l

R "
+ ﬁ-i-(l—zuz) o2

The radial displacement of the outer

20] “Ez

For r = R, and r = Rj, the radial displacements at the in-
trados and the extrados are
(1 +v2)R3

[2]] MEZO" = R3) = Ez(l _ h)

{201 - voyiet

+ (h+1-21) agz}

(1 + I/2)R2

P2 e =R =

{FI—U—ZWMF%
+muwmﬂJ

Deviatoric component
For the deviatoric component the radial and tangential
displacements of the outer lining are

2(1
23] WP, = /Erdr — 2(1+wy)r
E,

C D
X l— A —2u,Br* + —+2(1 =) —21 cos20
r r
and

[24] Vl?z = /(6(9 *T) rdf = 2+ w)r (1;_2”2)”

C D
A+ (3 —2uv,)Br* + T (1 =2v2)— ] sin26
r?

Accordingly, the stresses and displacements at the inter-
face between the ground and the outer lining (at r = R3)
due to the reactive force, O'B], 022, 711, and Ty are

[254] O'ELz(}" =R;3) = (ZA + 6 —l— 4 )c0529
R;

= 0,C0520
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C
[25b] o (r=R;) = <2A + 12BR3 + 6IT§) c0s20

cC D
[25¢] TRy, = <2A + 6BR; — 6 o 2R2) sin26)
3
= —T18in26

26] WDy (r = Ry) = LT V2IRs

3B
(a2oll312 + B2 + xzojl\jn + 8,771 )cos26
and
1+ 1/2)R3
271 WP (r = Ry = T V2)Rs
27] vio(r 3) 36, (1 — h)

X (¢2ng +Y2TT2 + 77205] + wy Ty )sin26

where the coefficients A, B, and C, and an, 55, X2, 02, ¥,
Y2, A2, and w, are defined in Appendix A.

Similarly, at the intrados of the outer lining (r = R,), the
stresses and displacements are:

C
[28a]  op (r=Ry) = <2A + 6h2R4 + 4hR2) c0s26
= 01131100529
[28b]  op (r=Ry) = <2A + 12BhR3 + 6h2R4>00529

[28¢] Tgeu (r=Ry)
C D
2
= (2A + 6BhR3 — 6h27R§ hR2> Sln29

= —TTI1 sind

(1 +I/2)R
3E;(1— h)
X (Oé]O'Nz + ,BITTQ + Xlggl + 61TT1)COS29

[29] u& (r=R;) =

(1 + V2)R2
3E>(1— h)?
(wlaNz + v, + 771‘731 + wyT71)sin20

30]  v(r=Ry) =

where a1, 61, X1, 61, ¥1, 71> A1, and w; are defined in
Appendix A.

Combined solution — hydrostatic and deviatoric

Now, the full solution for stresses and displacements in
the outer liner (thick-walled cylinder) can be obtained by
superposition of the hydrostatic and deviatoric solutions.
Since the stresses and displacements at the intrados of the
outer liner (r = R;) are required to derive equations for the
inner lining (Liner 1), the full solution at r = R, is as fol-
lows:
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Fig. 4. Reaction stresses — hydrostatic component.
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(a) Inner lining.

Fig. 5. Reaction stresses — deviatoric component.
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3la] o, (r = Ry) = oy + 0N, c0s20
—op, (1 +h) + 208
[31b] 0—91‘2(" = RZ) — N1 — N2
[31c] Tro, (F = R2) = —7r118in26
(1 +12)R,
31d —R)= ~— "=~
[ ] MLz(r 2) E2(1 — h)
and
(14+12)R,
[31e] via(r=Ry) =

~ 3Ey(1 —h)?
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(b) Outer lining. (c) The ground.
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(¢) The ground.

6C
+ <2A+ 12BhR; + — 4)00529
2R}

{I=1 = (1 = 2v)hloy, + 2(1 = 2)] oy }

(1 —+ l/2)R2

m (0410*]1\)]2 + BiTr2 + XIUBI + 617110820
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Thus far, existing equations governing stresses and dis-
placements in the ground outer liner have been presented.
The following sections present the governing equations for
the inner thin-walled shell and a new solution that accounts
for ground-liner interaction in the case of a composite liner
in elastic ground and accounting for some ground conver-
gence prior to installation of the lining.

Equations for inner liner reactions

Governing equations
From Fliigge (1966), the stresses and displacement of a
thin shell are related by eqs. [32] and [33]

d>v du R?

2] — = ——
B2 w@tae o
and

dv Dy (d*u d’u R?
33 — S Y (e i ==
[33] d9+u+DcR2<d64+ d92+u DCUR

where DC = E1A1/(1 — 1/12), Df = Elll/(l — 1/12), and Al,
I, E;, and v, are the cross-sectional area, moment of iner-
tia, elastic modulus, and Poisson’s ratio of the inner lining,

[35] (—4Cgipy — 2Cs)og, + (—4Csny — 2Csxy) oxy + (—4Cyy, — 2Cs 1) 12 + (

where Cg
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respectively. Similar to solutions for the ground and outer
liner, equations for the inner lining can be separated into hy-
drostatic and deviatoric components.

Hydrostatic component

Since u and v do not vary with 0 for the hydrostatic case,
the following equation can be derived from eq. [33] for the
radial displacement of the inner lining:

B4]  up, = L on

M DaRy? 4+ Dy N
where ot} is the normal reaction at r = R (see Fig. 4), and
R, is the radius of the centroid of the inner lining.

Deviatoric component

For the deviatoric component, u and v vary with 0 and two
cases must be considered: full slip and no slip at » = R,. As-
suming the radial, P, and tangential, vP,, displacements of
the inner lining are equal to the radial and tangential dis-
placements of the outer lining at » = R, (no slip), then u, v,
and partial derivatives 9*v/00°, and Ou/0® can be derived
from eqgs. [29] and [30] and substituted into eq. [32] with
the boundary condition 7Ry = 7r;sin26 to obtain

R2
4ng1 — 2C861 — _)TTI =0
Dc

= (1 + 12)Ry/[3E2 (1 — h)?]. Similarly, u, v, 9v/00, O*uld6*, and §*u/d0* can be obtained from egs. [29], and [30]

and substituted into eq. [33] with the boundary condition og = O'BI c0s26 to obtain

9D, 9Df, R?
2C C C D 2C C Csxi — —— |oR
[36] ( s + Csap +—— Do R, 8051)01\12 + ( 8 + CgXy +D R, 8X1 Dey N

+ <2C8’71 + G5y +

For conditions of full slip at » = R,, eq. [32] reduces to

d>v  du
[374] sl +— 0 =0
or

dv

37b =——
376 u=-4,
and, eq. [33] becomes

D¢ d*u d*u R2
38 — = +2— =—
SV <d94 T ”) p.™®

Again, assuming uP, = up, at r = R, (continuity condi-
tion), partial derivatives 9?u/90* and 9*u/90* can be derived
from eq. [30] and substituted into eq. [38] to obtain

9D, 9D
[39] < fl Cg()q)(]'gz + ( fl Csx| — R? )Ugl =0

R, R?,
So far equations have been developed relating the stresses
and displacements in the ground, the outer liner, and the in-

Dc R2

91:1 9F

C 2C Cgd
851)TT2+< swi 1 Cs 1+DC1R2

Cgts )TT1 =0

ner liner. For the hydrostatic component of the solution, the
radial reaction at r = R; is governed by eq. [34]. For the de-
viatoric component of the solution, eqs. [35] and [36] relate
the reactions at r = R; to the elastic properties of the inner
and outer linings and the ground for the case of no-slip.
Equation [39] governs the case of full-slip. In the following
sections, the principle of superposition is used to develop
the full solution for a thick-walled cylinder and thin-walled
shell in an infinite elastic medium.

Interaction between the ground and
composite liner system

Equations governing the interaction between the ground,
the outer liner, and the inner liner can be derived by consid-
ering compatible displacements at each of the interfaces at
r = R3 and r = R,. However, during construction of a shield
driven tunnel, there is normally a gap between the extrados
of the liner and the excavated diameter of the tunnel. Defor-
mation of the ground into the gap prior to installation of the
lining can lead to stress relief, which is ignored in current
closed-form solutions. From eq. [10a], the tunnel conver-
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gence, ADg/D,, at springline corresponding to full stress re-
lief is
2P,(1 + vg)R3

4 ADg/D, =
[ 0] F/ o DQEg

n 20,(1 + v4)(3 — 4vg)R3
D,E,
Equation [41] is used to define the case where the spring-
line convergence is less than that for full stress relief
2 QPO(l + Vg)R3
D,E,
2Q0,(1 + v,)(3 — 4vg)R3
+
D,E,

[41]  ADp/Dy =

where the parameter {2 denotes the fraction of the full stress
relief solution caused by partial convergence of the tunnel
before installation of the lining. The radial displacement
into the gap is thus

QPO(I + l/g)R3
Mgap = T
Q0o(1 + v4)(3 —4vg)R;3
+
Eg

[424]

cos26

and the corresponding tangential displacement is

Q061+ v)(1 —214)R3 q
Eg

[42b] Vg = in26

Provided that ADp/D, is less than the physical gap,
eqs. [42a] and [42b] can be used to approximately account
for some stress relief caused by ground convergence prior to
installation of the liner as shown below. In the following sec-
tion, full solutions are developed for a composite tunnel liner
in an infinite elastic medium. The solutions are separated into
hydrostatic and deviatoric components. As a result, the radial
stress at r = Rj takes the following general form:

[43a]  or(r = R3) = ok, + on,c0820
and the tangential reactions at r = Rz are
[43[9} TRQ(V = R3) = TTzsiH29

Similarly at r = R,

[44a)  or(r = Ry) = oy + oy c0s20
and
[44b] TRQ(V = Rz) = TT1 sin26

Hydrostatic component

At the interface between the ground and the outer lining,
the displacement of the outer lining, u},, plus the radial dis-
placement into the gap, u?ap, must equal the displacement of
the ground caused by full stress relief, u?, plus the displace-
ment of the ground due to the reactive force, oh,. Thus, the
compatibility constrain at r = Rj is

Can. Geotech. J. Vol. 45, 2008

[45] uEz(r =R;) + ul

cap u:(r = R3) + ulgreact(r = R3)

Substituting from eqs. [4], [12c], [21], and [42a] into
eq. [45] gives

1+ 1v,)R
[46] (+v2)Rs {[=2(1 = vo)hlogg, + (h+1 —215) op, }
Ex(1 —h)
OP(14+vg)Rs  Po(1+vg)R3 oy (1 +1,)Rs
+ = -
Eg Eg Eg

which can be simplified to
[47] (1= Q)P, — of, = C1(Cr0R, + C0m,)

where C;, C,, and C; are

_Ey(1+4+1)
€= Egz(l + 1)

2(1—w)h
N (ET

_h+(1 —21/2)
N

At the interface between the outer lining and the inner lin-
ing, the compatibility condition is

[48]  wh(r=Ry) =uy (r=Ro)

which implies that the radial displacement of the inner lin-
ing is equal to the radial displacement of the outer lining at
r = Rj3. Substituting eqs. [22] and [34] into eq. [48] and re-
arranging gives

[49] Caoy, = Csoy, + Coony

where C4, Cs, and Cg are

R4
Chp=——9——
D1 R, + Dy
(1+1,)
Cs =——[—1—(1 —2uv)h|R
5 Ez(l—h)[ (1 = 2v2)h|Ry
2(1 11—
o= 2Utm)i=r) o

E>(1—h)

The reactions ok, and oll, at = R, and r = R;, respec-
tively, can be obtained by solving eqs. [47] and [49] to obtain

1 - Q)P
50 Ny = ( .
O] on Ci(Cr + C5C7) + G5

1 — Q)P,C
51 o= G
Cl(Cz + C3C7) + Gy

where,
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(C4 — Cs)

C:
7 Ce

The above solution applies to conditions of slip and no
slip at either of the interfaces at r = R, or r = Rj3.

Deviatoric component — no slip at r = R, and r = R;
Equation [45] can also be applied to the radial displace-

ments resulting from the deviatoric component of the initial

stress field. Thus, at r = R3 the compatibility condition is

[52] MEZ(r: R3)+ MgDap (}" - R3) +u greact( = R3)

where up, (r = R3) is the radial displacement of the outer
liner at r = R3, u ap is the radial displacement of the ground
into the gap prior to installation of the liner, u?(r = R3) is
the ground displacement caused by full stress relief, and
Uy reqer (1 = R3) is the ground displacement due to the liner
reaction. Substituting eqs. [26], [42a], [9a], and [18a] into
eq. [52] gives

[53] 3(1 —2)0,(3 — 4I/g) = (Cyo+ CQOQ)O'BZ
+ (Coxa)on + (Ci1 + CoBy) 12 + (Cod2) 71
where,
oD a a a a 0
N2 11 ap a3 di
0 0
56 oni U |an an an an| _
4 TT2 a1 ax  az; o Ay 3(1-9)0,
TTI aq1 A Q43 A 3(1 -9)0,
where,

ajp = —4Csy; — 2Csag
ajy = —4Csn; — 2Cgx;

apz = —4Cgy — 2G5,

2

aig = —4Csw; —2Cg0) — —
14 w1 917D

9Dk
a1 = 2Cg; + Cgag +——5

C
D¢ R, s
206, + Coxy + 2 2FL Ry
dry — _
22 = 208 8X1 De R2 8X1 Dcy
ax = 2Cgy, + Csf3) + DaR?, Cs /3

275

(1 +V2)Eg
Co = -
(1 +vg)Er(1 —h)
C10 =5- 6Vg
C][ =4 — 61/g

Similarly, the following compatibility equation can be de-
rived for the tangential displacements:

[54] VE2(r - R3) + ngaP = ng(r = R3) + ngreact (r = RS)
Substituting eqs. [27], [42b], [9b], and [18D] into eq. [54]
gives

[55]  3(1 = 2)Qu(3 — 4v) = (Ci1 — Cothr)oyy

— (Comy)aRy + (Cro — Cov,)T12 — (Cown) T

where Co, Cyp, and C;; are defined above.

There are now four equations relating oR,, oR,, 71, and
T to Q, for the deviatoric component of the solution. Com-
bining eqs. [35] and [36] for the inner lining and eqs. [53]
and [55] for the outer lining gives the following system of
equations:

ayy = 2Cgw; + Cgby +

az; = Cip + Gy
azp = Cox,

ayy = Cp1 + Cof3,
azy = Coby

asy = Cyp — Cotpy
asy = —Con,

asgs = Cio — Co

asy = —Cow,

(Note: Cs = (1 + v2)Ro/[3E2(1 — h)3))
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Explicit solutions for 0'11311 s crg2 ,TT1, and 71, are

3(1—Q)06(3 — 4vy) (4 + aia)
(@31 + azD) (4 + aia) — (an + anl) (5 + as)

[57] ‘752 =

58] 031 = 1"022

3(1 = 2)00(3 — 4vg)(an + anl)
az + anl')(ai3 + aul) — (an + anl')(as + al)

[59] TT2 = —(

[60] TT] = ATTZ

where,
= (031 - 6141)(61146!23 - 6124013) + (033 - 043)(011024 - 6121014) + (6134 - 6144)(021013 - 61116123)
(6132 - a42)(a14a23 - 6124013) + (033 - 043)(6112024 - 6122014) + (6134 - 044)(022013 - 012023)
and
A=— (a31 — aq1)(anaiz — annax) + (ax — an)(anan — anais) + (a3 — as3)(az1a12 — anan)

(a31 — aq1)(axnais — ana) + (as — ap)(anaxy — anaw) + (s — au)(azan — anaxn)

Deviatoric component — full slip at r = R, and r = R;

For the case of full slip at r = R, and r = R3, the boundary conditions are: og = agzcosw and Ty = O at r = R3, op =
02100529 and Tgg = 0 at r = Ry, and og = 7gg = 0 at r = oo. Thus, from eq. [18a] the radial displacement in the ground
at r = R3 is

(1 =+ l/g)R3

[61] e =R3) = — 3E,

ug react

[(5 — 6vg)om,]cos 20

Also from eq. [26], the radial displacement of the outer lining at r = R3 is

(1+12)R;
[62]  ups(r=Rs) = 30— i) (@20, + X200y )c0s20
Considering compatibility of the radial displacement at r = R3 (see eq. [52]), the following equation can be developed by
combining eqs. [62], [42a], [9a], and [61]:

1+1,)R, Q0.1 3—4u,)R, (1 3—4u,)R, 14v,)R,
[63] ()R (o, +X,05, )cos 20+ Q,(L0,) B—4v)R cos260= Q,(1+v,) 3—-4v,) cosZ@—ﬂ [(5—6v,)0y,]cos 20
3E,(1—h)? ’ E, E, 3E,
which can be rearranged to give 9D¢
gedto g 65] oD = C13(1 — Q)0 (3 — 4vy) (—R—2“C30q>
cl

[64]  3(1—0)Q0(3— 4v,) =(Cio+ Coaz)ans + (Coxz)on,

Thus, for full slip at r = R, and r = R3, there are now two b 9Dy 5
equations relating 0%, and 0%, to Q, for the deviatoric com- [66]  oxp = Cia3(1 = 2)Q0(3 — 4vy) (R—z Csxi — Rcl)
ponent. Hence, by solving egs. [39] and [64], the reactions
oR, and oR, at r = R, and r = Ry are where,

1
(Cro + Cora) (913” Csxi1 — R31> — (Coxz) (913%? Csoq)

1

Cp=

Deviatoric component — full slip at R;, no slip at R3

For the case of full slip at » = R, and no slip at » = R3 the boundary conditions are: ogr = 03200529 and Trg = TT,8in260
at r = Rz, or = 03100526 and Trg = 0 at r = Ry, and or = 7;p = 0 at r = oco. Using a similar approach to that followed for
the previous two cases, the following system of equations can be developed:
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0'32 b]l b12 b13 3(1 - Q)Q0(3 — 4I/g)
[67] Ugl X b21 b22 b23 = 3(1 — Q)Qo (3 — 4I/g)
(V) by by b3 0
where, R, ciocnoc
(71] Ugl X | €1 €22 €23
bir = Cio + Gz TTI €31 €3 €33
3(1 — Q)QO(S — 4Vg)
b1y = Cox, = 0
0
bi3 = Cii + Cof3, where,
ci1 = Cio+ Coaz
by = Cy1 — Cothy
cin = Cox,
by = —Con,
c13 = Gyl
byz = Cio — Co,
9D
¢ =2CsY, + Cgovy +——- 2 Csay
b _ 9Dp c D01R
31 = —5— Cgy
7 2
9D R
cn =2Csn; + Csxy + > Csx1 —
DciR;, Dc
9Dy,
by = ——Cgx; —
Rey 9D
=2C Csby + ——L g6
€23 swi + Cgoy +DC1R31 801
by = ', Csf3

The solution to eq. [67] is

3(1 = 9)0(3 — 4vy)
68] o, = ;
[68] N2 p 4 bl — bi3(b31 + b3T')/bs3

[69] 01]\)11 = Fffgz

b3 + b3l
[70] T = _%032
where

_ ba (b3 — bi3) + bs3(bi1 — bay)
b33(byy — b12) + bxa(bi3 — b23)

Deviatoric component — no slip at R,, full slip at R;

For the case of no slip at r = R, and full slip at » = R3
the boundary conditions are: or = oR,c0s20 and TRy = 0
at r = R;, op = op,c0820 and TRy = Trisin26 at r =R, ,
and or = 7 =0 at r = oo. Similar to the previous cases,
the following system of equations can be developed:

c31 = —4Cgyh) — 2Cga
e = —4Cgn — 2Cg

2
C33 = —4ng1 — 2Cg(§ _—
' De

Explicit solutions for the unknowns o3, o%,, and 7t are

3(1 = 0)0,(3 — 4v
cii + el —ciz(es + cl)/ess

(73] 031 = FOJI\)IZ

c31 + ¢l
74 =2 o
33

23031 — €21C33
€22€33 — €23C3
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Moment and thrust - inner liner

From Fliigge (1966) the moments and thrusts for a thin-
walled shell in polar coordinates are

Df d2u

e\
D, dv M
T="8 —)+=
R (u+d0>+R

Hydrostatic component

From eqs. [75a] and [75h], moments and thrusts in the in-
ner lining due to the hydrostatic component of the solution
are

[754] M=

[75b]

DR, ?
76wt — DR’ u
D¢iRe1” + Dy

DCIR(:I3 MH

Tl'I - - - @ 4+ —
DeRa®> +Dyp N R

[76b]

Equations [76a] and [76b] apply to both cases of slip and
no slip at » = R;,.

Deviatoric component — no slip at r = R, and r = R;
Using eqs. [75a] and [75b], moments and thrusts in the
inner lining due to the deviatoric component are:

Dy,

[77a) MP° ="~
R

[—3Cs(ajon, + B2

-+ XIO'BI + (517’1‘1 )]COS2,9

and

D
[77D] " = {Rc: Cs [(a1 + 2¢))oR, + (B +27)) 72
C

MD
+ (Xl + 2771)01]311 + (51 +2w1)TT1 ] +R— }00529
cl

Deviatoric component — full slip r = R, and r = R;
For conditions of full slip at r = R,, from eq. [37], u
equals —dv/df and hence, eq. [75b] simplifies to

M
78 T=—
73 -
giving,
D‘
[79a) MP =— R—; [~3Cs(a10R, + X109 )]cos26
cl
MD
79b TP = —cos26
[

cl

Using a similar process, moment and thrust for other cases
are given by eqgs. [80] and [81].

Can. Geotech. J. Vol. 45, 2008

Deviatoric component — full slip at R,, no slip at R;

Dy
[80a]  MP = —R—;[—3C8(041032 + X108, + 81712)]c0s20
cl

TP _0

cl

cos20

800

Deviatoric component — no slip at R,, full slip at R;

D
[81a] MP = _R_zfl [—3Cg(a1032 + chrgl + 61711 )|cos20
cl
D,
s8] 10 = {2 Gllon + 2008, + (i + 2m)8,
C

MD
+(($1 + 2&)1 )TTI] + }COS29
Rcl

Thus, full solutions for displacement, moment, and thrust
in the inner thin-walled shell have been derived and pre-
sented. In the following sections, the solution is applied to a
composite lining in an infinite elastic medium.

Typical results

To illustrate some of the characteristics of the solution,
normalized displacements, thrusts, and moments are pre-
sented in this section versus the flexibility ratio defined in
accordance with Einstein and Schwartz (1979) viz.

_ EgRg1(1 - U%)

2a) F=-all” Y
[82a] Edy(1—1?)

and the normalized displacements, u., thrust, 7, and mo-
ment, M., are

E
[825] Ue = _ MR
Uchl (1 + ’Ug)
T
[82¢] T.=
oyRc1
and
M
[824] M. =—+
Jch]

The effect of ground convergence prior to
liner installation

Figures 6 through 9 show the effect of 2 on displace-
ments, moment, and thrust in the inner lining. For this group
of figures, the thickness of the outer liner was assumed to be
0.001 m. Consequently, the outer lining has no effect on the
inner lining behaviour, and for €2 = 0 the composite lining
solution is essentially equivalent to the FEinstein and
Schwartz (1979) solution. In accordance with eqs. [40] and
[41], the parameter () represents the fraction of the full
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Fig. 6. Normalized radial displacement at the crown of the inner lining.
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Fig. 7. Normalized radial displacement at the springline of the inner lining.
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Fig. 8. Normalized thrust at the springline of the inner lining.
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stress relief solution (eqs. [10a] and [105]) that is permitted
to occur prior to installation of the lining. As shown in each
of the figures, solutions have been developed for K(’) =0.7
and thickness ratios, #;/R.; of 0.05 and 0.1 for the inner lin-
ing.

It can be seen from Fig. 6 that the radial displacement at
the crown of the inner lining increases as the flexibility ratio

increases. For €2 = 0, the composite lining solution reduces
to a single lining solution that agrees with Einstein and
Schwartz (1979). Furthermore, the radial displacement of
the inner lining at the crown decreases as the degree of
ground convergence prior to the liner installation increases
(e.g., as ) increases). Similar trends in behaviour can also
be observed in Fig. 7 for the springline. At the springline,
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Fig. 10. Radial displacement at the crown and the springline of the inner lining.
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Fig. 11. Thrust at the crown and the springline of the inner lining.
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Table 2. Material parameters used in the study.

Parameter Value
Soil elastic modulus, E; (MPa) 90
Soil Poisson’s ratio, v 0.4
Coefficient of earth pressure at rest, K’ 0.7
Initial vertical stress, oy (kN/m?) 344
Initial horizontal stress, oy, (KN/m?) 241
Elastic modulus of concrete, E} (GPa) 30
Poisson’s ratio of concrete, v 0.2
Elastic modulus of grout, E> (GPa) 20
Poisson’s ratio of grout, > 0.2

however, the radial displacement of the inner lining is gen-
erally inward for low flexibility ratios. For thickness ratios,
11/R.1, of 0.05 and 0.1, the radial displacement reverses di-

rection — becoming inward when the flexibility ratio ex-
ceeds 2500 and 550, respectively. As the flexibility ratio
becomes very large, the radial displacements approach those
obtained using eq. [10a] (no lining).

Figures 8 and 9 show the normalized thrust and moment
in the inner lining at the springline. Again, increasing the
flexibility ratio results in a decrease in both moment and
thrust. Similarly, increasing the parameter () also reduces
moment and thrust in the inner lining. It is interesting to
note that the flexibility ratio has a more pronounced influ-
ence on moments compared to thrust.

The effect of composite lining behaviour

Now, consider a composite tunnel lining comprising an
inner segmental concrete tunnel lining surrounded by a thick
annulus of grout and situated 13.5 m below the ground sur-
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Fig. 12. Moment at the crown and the springline of the inner lining.
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face (depth to the springline axis of the tunnel). This condi-
tion is rare, however, it has been encountered recently in
Toronto, Canada and was confirmed by coring through the
lining. Table 2 summarizes the soil properties assumed in
the analysis. Figure 2 shows the liner geometry.

For the present analysis, it is assumed that the tunnel
shown in Fig. 2 is situated above the groundwater table and
embedded in a soil of sufficient strength to preclude signifi-
cant plasticity in the soil mass. The inner lining is assumed
to comprise a 150 mm thick precast segmental concrete lin-
ing (8 segments) with radial joints situated at the springline
and crown and at 45° intervals from the springline. The in-
side and outside diameter of the segmental lining are 4.88 m
and 5.18 m, respectively, and the liner is assumed to possess
constant thickness. To illustrate composite lining behaviour,

(°)

it is also assumed that the inner lining is surrounded by a
grouted annulus. Solutions for displacement, moment, and
thrust of the inner lining are obtained for outer lining thick-
nesses, f,, ranging from 0 up to 300 mm. The properties of
the annulus grout are summarized in Table 2. Figures 10,
11, and 12 show the effect of #, on the radial displacement,
moment, and thrust in the inner lining neglecting the effect
of the joints on the bending stiffness (E;I;). In this case, 1,
represents the average thickness of grout since normally the
grout thickness will vary around a tunnel lining. In addition,
the grouted annulus would normally be neglected in design;
however, it may be useful to consider the contribution of the
grout when assessing the capacity of aging tunnel linings.
From Fig. 10, it can be seen that the radial displacement
at the crown (inner lining) decreases as the thickness of the

© 2008 NRC Canada



El Naggar et al.

Fig. 14. Thrust distribution in the inner lining for 50 mm thick grout.
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outer lining increases. The impact of the outer lining is gen-
erally small, however, it becomes more predominant as the
thickness exceeds about 200 mm. Figures 11 and 12, how-
ever, show the main features of the composite behaviour.
From Fig. 11, the thickness of the outer lining (in this case
a grouted annulus) has a pronounced effect on the magni-
tude of thrust in the inner lining at both the crown and
springline. In contrast, the moments in the inner lining (see
Fig. 12) are relatively insensitive to f, for the geometries
considered here. From Fig. 12, it can be seen that the outer
lining begins to impact in the inner lining bending moments
only when #, reaches about 175 mm, at which point the
bending stiffness of the outer and inner linings are similar.

Lastly, Figs. 13 and 14 show the distribution of moment
and thrust in the inner lining accounting for the effect of
joints. In this case, the impact of joints can be accounted
for by reducing the moment of inertia of the inner lining in
accordance with Muir Wood (1975) or Lee and Ge (2001).
In Figs. 13 and 14, the moment of inertia of the inner lining
has been reduced by a factor, 1, of 0.5 to account for joint-
ing. As expected, the main influence of liner joints is to re-
duce the moments in the lining. This is evident from
Figs. 13 and 14, which show a negligible impact on thrust
in the inner lining but a 48% reduction of moment at the
springline.

Conclusions

In this paper, a closed-form solution has been presented
for displacements, moments, and thrusts in a composite tun-
nel lining. In the solution, the ground is treated as an infinite
elastic medium subject to an initial anisotropic stress field.
The tunnel lining is idealized as an outer thick-walled cylin-
der and an inner thin-walled shell. In general, the solution is
suitable for the analysis of composite lining systems in-
stalled in either intact rock or strong soils above the ground-

80

100 120 140 160

6 (%)

180

water table that remain predominantly elastic during
construction of the tunnel.

The general behaviour of the solution was demonstrated
for various cases involving both single and double linings.
From the analysis, it is shown that the solution can be used
to calculate displacements, moments, and thrusts in double
linings. The solution can also be used to approximately ac-
count for such factors as jointing of the inner lining and
some stress relief due to ground convergence prior to instal-
lation of the lining. In addition, a single-lining solution can
be obtained by assuming that the thickness of the outer lin-
ing is very small (e.g., 0.01 m). For this condition, the solu-
tion is comparable to the Einstein and Schwartz (1979)
solution. The main difference is the stress functions used to
analyze the ground response. Based on the analyses and dis-
cussions presented in this paper, it is concluded that the
composite lining solution is versatile, it covers several dif-
ferent lining geometries and conditions, and thus it should
be a useful tool for design considerations in tunnelling.
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List of symbols

0 angle measured counter clockwise from the tunnel
springline
o, the initial vertical stress in the ground
oy, the initial horizontal stress in the ground
K! the coefficient of lateral earth pressure at rest
Py (oy + op)/2
Qo (0 — o2
E, elastic modulus of the ground
v, Poisson’s ratio of the ground
E, elastic modulus of the outer liner
v, Poisson’s ratio of the outer liner
E elastic modulus of the inner liner
vy Poisson’s ratio of the inner liner
A; cross-sectional area of the inner liner
I} moment of inertia moment of the inner liner
R, radius, inner liner intrados
R, radius, inner liner extrados and outer liner intrados
R3 radius, outer liner extrados
R, radius, centerline of the inner liner
® Airy’s stress function

A, B, C,D

OR
o]
TRO
AO’ R
Aoy
AT RO
€R

€p

Ug

Ve

Ug react

Vg react

Ugap
Veap
UL
VL1
%)
VL2
ADg/D,
ADp/D,

Q

H
IN2
D
ONI1

D
ON2

TT1

T2

Can. Geotech. J. Vol. 45, 2008

constants of Airy’s stress function (hydrostatic com-
ponent)

radial stress

tangential stress

shear stress

change in radial stress

change in tangential stress

change in shear stress

radial strain

tangential strain

radial ground displacement

tangential ground displacement

radial ground displacement due to the liner reac-
tions

tangential ground displacement due to the liner re-
actions

radial gap displacement

tangential gap displacement

radial displacement of the inner liner

tangential displacement of the inner liner

radial displacement of the outer liner

tangential displacement of the outer liner

tunnel convergence at springline due to full stress
relief

tunnel convergence at springline due to partial
stress relief

fraction of the full stress relief solution caused by
convergence of the tunnel before installation of the
lining

radial reaction between the inner and outer liners
due to the hydrostatic component

radial reaction between the outer liner and the
ground due to the hydrostatic component

the maximum radial reaction between the inner and
outer liners due to the deviatoric component

the maximum radial reaction between the outer
liner and the ground due to the deviatoric compo-
nent

the maximum tangential reaction between the inner
and outer liners due to the deviatoric component
the maximum tangential reaction between the outer
liner and the ground due to the deviatoric compo-
nent

(Ro/R3)?

compressibility constant of the inner liner
flexibility constant of the inner liner

moment

thrust
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Appendix A: Equations for stresses and displacements of the outer liner

This section summarizes the solutions developed by Yuen (1979) and Ogawa (1986) for the stresses and displacements in a
thick walled cylinder subject to both normal and tangential external loads.

Hydrostatic component

In a similar manner to that used for the ground, the radial, tangential, and shear stresses in the outer lining can be solved
for using Airy’s stress function and, eqs. [2-3a, 3b, and 3c], respectively. For the boundary conditions, or = 0%, at r = R;
and og = agl at r = R, the Airy’s coefficients A and C in eq. [2] are

ot — ol h
Al A= N2 N1
A1l 2(1—h)

(1—nh)

where h = (R,/R3)?. The resultant stresses in the outer lining are

Rz/}’z—h 1-— Rz/}’2
o =[] o 1=

Ro/r)? +h 1 + (Ro/7)?
) olf, = oty [T gy [LE (Y

[A5] T, =0

From generalized Hooke’s law, it can be shown that the radial displacement of the outer lining, u}}, is

[A6] uﬁzz/s;;dr = %{[—R—%—(I—ZW)h]ogﬁ- {]:—2%+(1—2y2)}0—§2}

2
For r = R, and r = Rj, the radial displacements at the intrados and the extrados are

AT) (= Re) = (20— vl ¢ (k1= 2ot
48] afh(r = Re) =GR (11— (1= 2wl + 201 - allof)

Deviatoric component

For the deviatoric component, Q,, the Airy’s stress function is given by eq. [6] and the radial, tangential, and shear stresses
are governed by the equilibrium eqs. [7a—c], respectively. Referring to Fig. 5, the boundary conditions for the outer lining are

[A9] OR = Op,C0820 at r=Rj

[A10] TR9 = —T128in20 at r = R3
[Al1] OR = 03100529 at r=R,
and
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[AlZ} TR = —T1151n20 atr =R,

where o, and oX, are the maximum radial stresses acting on the outer lining at the intrados and the extrados, respectively,
and 71 and 71, are the maximum tangential shear stresses acting at the intrados and the extrados, respectively. Again, Fig. 5
shows the assumed stress conditions at the two interfaces.

For the above boundary conditions, the constants A, B, C, and D of the Airy’s stress function are

[A13] A= ﬁ [—(2h* + h+ 1)oRy — 2k°T72 + (B + h* + 2h)oR, + 2hT1i]
1
[A14] B= SR [(3h+ 1)om, + (3h — 1)Tr2 — (K* + 3h)ox, + (h* — 3h)T11]
- 3

h*R3
[A15]  C= 6(17_3}1)3 [—(h+ 3)on, — 2h7T12 + (3h + 1), + 2714]

hR% 2 2 2 D
[Al6] D= m[(h +hA42)on, + (B +h) 1y — 2K + h+ )og, — (h+ 1)71]

Using generalized Hooke’s law, the radial and tangential displacements of the outer lining are

2(L 4+ wo)r

2

C D
[A17] ”Ez = /srdr = [_A — 2u,Br? + = +2(1 — 1) r_z] cos26

and

D 2(1 c D
[A18] VEZ:/ er— "2 pq0) = 2Ty 0m2 £ € (1= 200) 2 sin2o
r E, r r?

Accordingly, the stresses and displacements at the interface between the ground and the outer lining (at r = R3) due to the
reactive force, 011311, agz, 711, and 7o are

D
[A19] ang(r =R;) =— (ZA + 61% + 4R_§> c0s26 = oR,c0820

4% 4

[A20] oD (r=R;) = (ZA + 12BR3 + 6R£>00520
3

C D
[A21] TEGLZ = [ZA + 6BR3 — 6; - 2R_} sin26 = —7r,sin26

3R
[A22] upy(r = R3) = % [20R, + BoTt2 + X208 + 62771]c0820
and
[A23] v, (r = R3) = % (08, + V2TT2 + Momy + wWaTT1 )sin26
where

@y = (5 —6v2)h* + (9 — 6v2)h* + (15 — 1812)h + (3 — 21»)

By = (4 — 62k + (12 — 61,1 — 62k + 21,
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Similarly, at the intrados of the outer lining (r = R;), the stresses and displacements are

[A24]

[425]

[426]

[427]

and
[A28]

where

Xo = —4(1 — v2)h(3h* + 2h + 3)

6 = —4(1 — v2)h(h + 3)

V=P,

Yy =—(5 = 6v)h* — (9 — 6)R* + (9 — 61vy)h — (3 — 2u7)
n, =4(1 —)*(3h + 1)

wy = 8(1 — vy)h?

C D
Jgu(r =Ry) = — <2A + 6h2—R§‘ + 4h_R§> cos26 = aﬁlcosza

C
ob (r=Ry) = (ZA + 12BhR} + 6h2—R‘3‘> cos20

C D\ . .
Tgeu (r=Ry) = <2A + 6BhR; — 6h2—R‘3‘ - 2h_R%) sin20 = —7rsinf
14+ 1v2)R
up, (r=Ry) = ﬁ [a1on, + B1712 + X108 + 81711]c0820
14+ v2)R .
v, (r = Ry) = ﬁ (108 + Y1712 + Momy + wiTT1]sin26

ar = —xalh
By =mlh
X1 = —(3 = 2v)h* — (15 = 18v2)h* — (9 — 6v2)h — (5 — 612)

81 = —2uyh® + 6vyh? — (12 — 61y)h — (4 — 61)

vy = —walh
m=—0

wy = (3 =2v)h* — (9 — 612)h* + (9 — 6L2)h + (5 — 612)
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