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Abstract: This paper presents a closed-form solution for composite tunnel linings in a homogeneous infinite isotropic elas-
tic medium. The tunnel lining is treated as an inner thin-walled shell and an outer thick-walled cylinder embedded in lin-
ear elastic soil or rock. Solutions for moment and thrust have been derived for cases involving slip and no slip at the
lining–ground interface and lining–lining interface. A case involving a composite tunnel lining is studied to illustrate the
usefulness of the solution.
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Résumé : Cet article présente une solution exacte des garnitures de tunnels composites dans un milieu élastique isotrope
infini homogène. La garniture de tunnel est traité comme une coquille intérieure à paroi mince et un cylindre extérieur à
paroi épaisse dans un sol élastique linéaire ou un roc. Les solutions pour le moment et la pression ont été dérivées pour le
cas impliquant du glissement ou non à l’interface garniture–sol et garniture–garniture. On étudie un cas impliquant une
garniture de tunnel composite pour illustrer l’utilité de la solution.

Mots-clés : coquille à paroi mince, cylindre à paroi épaisse, moment, pression, garniture de tunnel, solution à déformation
plane.

[Traduit par la Rédaction]

Introduction

Many cities rely on tunnels for transportation, water distri-
bution, and sewage handling. Consequently, these structures
have high social and economical value. In some cases, long-
term exposure of a reinforced concrete lining to sulphates or
chlorides in groundwater can lead to concrete deterioration
and consequent reduction in the load carrying capacity of
the lining. For this situation, engineers may be required to
estimate the distribution of moment and thrust in the de-
graded liner to evaluate its factor of safety. Closed-form sol-
utions can be economical for such applications especially if
liner degradation is widespread in a tunnel system of varia-
ble depth.

Many closed-form solutions have been developed to esti-
mate the distribution of moment and thrust in tunnel supports
(e.g., Morgan 1961; Muir Wood 1975; Rankine et al. 1978;
Einstein and Schwartz 1979; Yuen 1979). However, none of
these solutions account for composite linings such as those
shown in Fig. 1 nor do they account for the initial stress relief
that can occur due to ground convergence prior to installation
of the liner (e.g., Lee et al. 1992). Only Lo and Yuen (1981)
have accounted implicitly for ground convergence prior to
installation of the liner; however, their solution is for a single
tunnel lining embedded in a viscoelastic medium. Ogawa

(1986) has studied composite tunnel linings comprising inner
and outer thick-walled cylinders embedded in an infinite
elastic medium. However, this solution (Ogawa 1986) is not
easily applied to segmental concrete tunnel linings, and it
also does not account for stress relief prior to liner installa-
tion. Table 1 summarizes some of the existing closed-form
solutions.

This paper presents a new closed-form solution for com-
posite tunnel liners embedded in an infinite elastic medium
(see Fig. 2). In the solution, the lining system is idealized
as an inner thin-walled shell and an outer thick-walled cylin-
der. The ground is treated as an infinite elastic medium gov-
erned by Hooke’s law, and the principle of superposition is
used to approximately account for the impact of some initial
ground convergence during construction on the moments
and thrusts mobilized in the liner system. The solution ap-
plies to tunnels in intact rock or strong soils that remain pre-
dominantly elastic during tunnel construction. Its advantages
are: (i) that it is easier to apply to cases involving segmental
concrete tunnel linings, and (ii) that it can be used to ap-
proximately account for partial closure of the gap (Lee et
al. 1992) prior to lining installation. The solution, which is
considered to be a new and useful tool for tunnel engineers,
is used to study the impact of a thick-grouted annulus on
moments and thrusts in a segmental concrete tunnel lining.
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Problem definition

Figure 2 shows the problem geometry. Solutions for mo-
ment, thrust, stress, and displacement are derived in terms
of the angle y measured counterclockwise from the spring
line axis of the tunnel. In this paper, the circular tunnel is
assumed to be embedded in a homogenous infinite elastic
medium subject to an initial anisotropic stress field. The in-
itial vertical and horizontal stresses in the ground are �v and
�h, respectively, where �h ¼ Ko �v and Ko is the coeffi-
cient of lateral earth pressure at rest. For the solution, the
initial stress field (see Fig. 3) is separated into a hydrostatic
component, Po, and deviatoric component, Qo.

½1a� Po ¼ ð�v þ �hÞ=2

and

½1b� Qo ¼ ð�h � �vÞ=2

Since tunnels are long linear structures, plane strain con-
ditions have been assumed. The mechanical properties of
the ground are assumed to obey Hooke’s law with elastic
modulus Eg and Poisson’s ratio �g. The outer lining is
treated as a thick-walled cylinder with elastic modulus E2,
Poisson’s ratio �2 and inner (intrados) and outer (extrados)
radii R2 and R3, respectively. The inner lining is treated as

a thin-walled shell with elastic modulus E1, Poisson’s ratio
�1, cross-sectional area A1, and moment of inertia I1. The
intrados and extrados of the inner lining are defined by R1

and R2, respectively. Excavation of the tunnel is assumed to
cause a reduction of the boundary stresses around the cir-
cumference of the opening at r ¼ R3 until the new boundary
stresses reach equilibrium with the liner reactions. The
following sections present the derivation of moments and
thrust in a composite tunnel lining for the case of no slip
at r ¼ R2 and r ¼ R3. Solutions for slip and no slip at
r ¼ R2 and r ¼ R3, respectively, and full slip at both
r ¼ R2 and r ¼ R3 are also included.

Stresses and displacements in the ground
due to full stress relief

There are several solutions for the distribution of stresses
and displacements in an infinite elastic medium due to full
stress relief (see Table 1). These solutions typically employ
some form of stress function in conjunction with Hooke’s
law and the equilibrium equations. For example Timoshenko
and Goodier (1969) and Einstein and Schwartz (1979) used
Mitchell’s stress function in their solution; whereas, Morgan
(1961), Muir Wood (1975), Yuen (1979), and Ogawa (1986)
employed Airy’s stress function. In this paper, solutions
based on Airy’s stress function are utilized.

Table 1. Comparison of closed-form solutions for circular tunnels in elastic ground.

Solution
Stress
function Liner idealization Joints Gap closure

Morgan (1961) Airy Thin-walled tube Easy: by reducing Iliner No provision
Muir Wood (1975) Airy Thin-walled tube Easy: by reducing Iliner No provision
Einstein and Schwartz (1979) Mitchell Thin-walled shell Easy: by reducing Iliner No provision
Yuen (1979) Airy Thick-walled cylinder Possible: by reducing the liner

thickness and adjusting E
No provision

Ogawa (1986) Airy Inner and outer thick-walled cylinders Possible: by reducing the liner
thickness and adjusting E

No provision

Note: Iliner, moment of intertia of the lining; E, Young’s modulus.

Fig. 1. Common double lining systems.
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Fig. 2. Problem geometry – composite lining.

Fig. 3. Hydrostatic and deviatoric components of the initial stress field.
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Hydrostatic component, Po

Considering the hydrostatic component, Po, the Airy’s
stress function is

½2� �H ¼ Ar2 þ C ln r

where r is the radial distance from the longitudinal tunnel
axis. From the equilibrium equations, the change in radial,
tangential, and shear stress in the ground is given by

½3a� ��H
R ¼

1

r

@�

@r
¼ 2Aþ C

r2

½3b� ��H
� ¼

@2�

@r2
¼ 2A� C

r2

and

½3c� ��H
R� ¼ �

@

@r

1

r

@�

@r

� �
¼ 0

where the coefficients A and C are determined from suitable
boundary conditions (see Appendix A).

From Yuen (1979), the radial deformation in the ground
due to the excavation and consequent full stress relief is,
from Hooke’s Law,

½4� uH
g ¼

Z
"rdr

Poð1þ �gÞR2
3

Egr

and the stress field in the ground is

½5a� �H
Rg ¼ �ro þ��r ¼ Po 1� R3

r

� �2
" #

½5b� �H
�g ¼ ��o þ��� ¼ Po 1þ R3

r

� �2
" #

and

½5c� �H
R�g ¼ 0

Deviatoric component, Qo

Considering full stress relief of the deviatoric component,
Qo, the Airy’s stress function is

½6� �D ¼ Ar2 þ Br4 þ C

r2
þ D

� �
cos2�

and again utilizing the equilibrium equations, the change in
radial and tangential stresses is given by

½7a� ��D
Rg ¼

1

r

@�D

@r
þ 1

r2

@2�D

@�2

¼ � 2Aþ 6
C

r4
þ 4

D

r2

� �
cos2�

½7b� ��D
�g ¼

@2�D

@r2
¼ 2Aþ 12Br2 þ 6

C

r4

� �
cos2�

and

½7c� ��D
R�g ¼ �

@

@r

1

r

@�D

@r

� �

¼ 2Aþ 6Br2 � 6
C

r4
� 2

D

r2

� �
sin2�

where the coefficients, A, B, C, and D are determined
from the boundary conditions; ��R ¼ � Qocos2� and
��R� ¼ Qosin2� at r ¼ R3 and ��r ¼ �� r� ¼ 0 at r ¼ 1
(see Appendix A). Again, from Yuen (1979), the change in ra-
dial, tangential, and shear stress are

½8a� ��D
Rg ¼ Qo 3

R3

r

� �4

� 4
R3

r

� �2
" #

cos2�

½8b� ��D
�g ¼ �3Qo

R3

r

� �4

cos2�

and

½8c� ��D
R�g ¼ Qo 3

R3

r

� �4

� 2
R3

r

� �2
" #

sin2�

and the radial and tangential displacements in the ground
due to the tunnel excavation are, from Hooke’s Law,

½9a� uD
g ¼

Z
"rdr

¼ Qoð1þ �gÞ
Eg

4ð1� �gÞ
R2

3

r
� R4

3

r3

� �
cos2�

½9b� vD
g ¼

Z
"� �

uD
g

r

" #
rd�

¼ � Qoð1þ �gÞ
Eg

2ð1� �gÞ
R2

3

r
þ R4

3

r3

� �
sin2�

Combined solution
The overall ground response due to full stress relief at r ¼

R3 can be obtained by superposition of the hydrostatic and
deviatoric solutions presented above. For example, eqs. [4]
and [9a] can be combined to obtain the radial displacement,
ug, in the ground viz.

½10a� ug ¼
Poð1þ �gÞR2

3

Egr

þ Qoð1þ �gÞ
Eg

4ð1� �gÞ
R2

3

r
� R

4
3

r3

� �
cos2�

Similarly, the tangential displacement, vg, is

½10b� vg ¼ �
Qo ð1þ �gÞ

Eg

2ð1� 2�gÞ
R2

3

r
þ R4

3

r3

� �
sin2�

and the radial, tangential, and shear stresses are
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½11a� �Rg ¼ Po 1� R3

r

� �2
" #

þQo 1þ 3
R3

r

� �4

� 4
R3

r

� �2
" #

cos2�

½11b� ��g ¼ Po 1þ R3

r

� �2
" #

� Qo 1þ 3
R3

r

� �4
" #

cos2�

and

½11c� �R�g ¼ �Qo 1þ 2
R3

r

� �2

� 3
R3

r

� �4
" #

sin2�

Stresses and displacements in the ground
due to liner reactions

For the hydrostatic component, the liner reaction at
r ¼ R3 in the radial direction is denoted by �H

N2 (see Fig. 4).
For the deviatoric component, the liner reaction at r ¼ R3

comprises both normal and tangential components denoted
by �D

N2cos2� and �T2sin2�, respectively (see Fig. 5).

Hydrostatic component
The stresses and displacements at the interface between

the ground and the outer lining due to the reactive force,
�H

N2 are from Yuen (1979)

½12a� �H
Rg react ¼ �H

N2

R3

r

� �2

½12b� �H
�g react ¼ ��H

N2

R3

r

� �2

½12c� uH
Rg reactðr ¼ R3Þ ¼ �

�H
N2 ð1þ �g ÞR3

2

Egr

Deviatoric component, Qo

For the boundary conditions, �R ¼ �D
N2cos2� and

�R� ¼ ��T2sin2� at r ¼ R3 and �R� ¼ �R ¼ 0 at r ¼ 1,
the stresses and displacements in the ground medium due to
the reactive forces, �D

N2 and �T2 are (Yuen 1979)

½13� �D
Rg react ¼

"
2ð�D

N2 þ �T2Þ
R3

r

� �2

� ð�D
N2 þ 2�T2Þ

R3

r

� �4
#

cos2�

½14� �D
�g react ¼ ð2�T2 þ �D

N2Þ
R3

r

� �4

cos2�

½15� �D
R�g react ¼ ð�D

N2 þ �T2Þ
R3

r

� �2
"

� ð�D
N2 þ 2�T2Þ

R3

r

� �4
#

sin2�

½16� uD
g react ¼

ð1þ �gÞr
3Eg

ð�D
N2 þ 2�T2Þ

R3

r

� �4
"

� 6ð1� �gÞð�D
N2 þ �T2Þ

R3

r

� �2
#

cos2�

½17� vD
g react ¼

ð1þ �gÞr
3Eg

ð�D
N2 þ 2�T2Þ

R3

r

� �4
"

þ 3ð1� 2�gÞð�D
N2 þ �T2Þ

R3

r

� �2
#

sin2�

Accordingly, the radial and tangential displacements at
the interface of the ground and the outer lining ðr ¼ R3Þ
due to the reactive forces, �D

N2 and �T2 are

½18a� uD
g reactðr ¼ R3Þ ¼ �

ð1þ �gÞR3

3Eg

� ½ð5� 6�gÞ�D
N2 þ ð4� 6�gÞ�T2�cos2�

½18b� vD
g reactðr ¼ R3Þ ¼

ð1þ �gÞR3

3Eg

� ½ð4� 6�gÞ�D
N2 þ ð5� 6�gÞ�T2�sin2�

Figs. 4 and 5 show the reactions at the extrados and intrados
of the outer liner.

Equations for stresses and displacements of
the outer liner

For the hydrostatic component (see Fig. 4), the liner reac-
tions at r ¼ R3 and r ¼ R2 are in the radial direction and de-
noted by �H

N2 and �H
N1, respectively. For the deviatoric

component (see Fig. 5), the liner reactions at r ¼ R3 com-
prise both normal and tangential components denoted by
�D

N2cos2� and �T2sin2�, respectively. In addition, there are
normal and tangential reactions between the inner liner
(Liner 1) and the outer liner (Liner 2) at r ¼ R2 denoted by
�D

N1cos2� and �T1sin2�, respectively. Both Yuen (1979) and
Ogawa (1986) have developed solutions for the stresses and
displacements in a thick walled cylinder subject to these ex-
ternal loads, which are presented in Appendix A. The equa-
tions utilized in this paper are summarized below.

Hydrostatic component
In a similar manner to that used for the ground, the resultant

radial, tangential, and shear stresses in the outer lining for the
boundary conditions, �R ¼ �H

N2 at r ¼ R3 and �R ¼ �H
N1 at

r ¼ R2, are
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½19a� �H
RL2
¼ �H

N1

ðR2=rÞ2 � h

1� h

� �
þ �H

N2

1� ðR2=rÞ2
1� h

� �

½19b� �H
�L2
¼ ��H

N1

ðR2=rÞ2 þ h

1� h

� �
þ �H

N2

1þ ðR2=rÞ2
1� h

� �

and

½19c� �H
r�L2
¼ 0

where h ¼ ðR2=R3Þ2. The radial displacement of the outer
lining, uH

L2, is

½20� uH
L2 ¼

Z
"H
�2dr ¼ ð1þ �2Þr

E2ð1� hÞ

�
�R2

2

r2
ð1� 2�2Þh

� �
�H

N1

þ R2
2

r2
þ ð1� 2�2Þ

� �
�H

N2

�

For r ¼ R2 and r ¼ R3, the radial displacements at the in-
trados and the extrados are

½21� uH
L2ðr ¼ R3Þ ¼

ð1þ �2ÞR3

E2ð1� hÞ

�
½�2ð1� �2Þh��H

N1

þ ðhþ 1� 2�2Þ �H
N2

�

½22� uH
L2ðr ¼ R2Þ ¼

ð1þ �2ÞR2

E2ð1� hÞ

�
½�1� ð1� 2�2Þh��H

N1

þ ½2ð1� �2Þ��H
N2

�

Deviatoric component
For the deviatoric component the radial and tangential

displacements of the outer lining are

½23� uD
L2 ¼

Z
"rdr ¼ 2 ð1þ �2Þr

E2

� � A� 2�2Br
2 þ C

r4
þ 2ð1� �2Þ

D

r2

#
cos2�

"

and

½24� vD
L2 ¼

Z
"� �

u2D

r

� 	
rd� ¼ 2 ð1þ �2Þr

E2

� Aþ ð3� 2�2ÞBr2 þ C

r4
� ð1� 2�2Þ

D

r2

#
sin2�

"

Accordingly, the stresses and displacements at the inter-
face between the ground and the outer lining (at r ¼ R3)
due to the reactive force, �D

N1; �
D
N2; �T1; and �T2 are

½25a� �D
RL2
ðr ¼ R3Þ ¼ � 2Aþ 6

C

R4
3

þ 4
D

R2
3

� �
cos2�

¼ �D
N2cos2�

½25b� �D
�L2
ðr ¼ R3Þ ¼ 2Aþ 12BR2

3 þ 6
C

R4
3

� �
cos2�

½25c� �D
R�L2
¼ 2Aþ 6BR2

3 � 6
C

R4
3

� 2
D

R2
3

� �
sin2�

¼ ��T2sin2�

½26� uD
L2ðr ¼ R3Þ ¼

ð1þ �2ÞR3

3E2ð1� hÞ3
� ð�2�

D
N2 þ �2�T2 þ �2�

D
N1 þ 	2�T1Þcos2�

and

½27� vD
L2ðr ¼ R3Þ ¼

ð1þ �2ÞR3

3E2ð1� hÞ3
� ð 2�

D
N2 þ 
2�T2 þ �2�

D
N1 þ !2�T1Þsin2�

where the coefficients A, B, and C, and �2, �2, �2, 	2,  2,

2, �2, and !2 are defined in Appendix A.

Similarly, at the intrados of the outer lining (r = R2), the
stresses and displacements are:

½28a� �D
RL2
ðr ¼ R2Þ ¼ � 2A þ 6

C

h2R4
3

þ 4
D

hR2
3

� �
cos2�

¼ �D
N1cos2�

½28b� �D
�L2
ðr ¼ R2Þ ¼ 2Aþ 12BhR2

3 þ 6
C

h2R4
3

� �
cos2�

½28c� �D
R�L2
ðr ¼ R2Þ

¼ 2Aþ 6BhR2
3 � 6

C

h2R4
3

� 2
D

hR2
3

� �
sin2�

¼ ��T1sin�

½29� uD
L2 ðr ¼ R2Þ ¼

ð1þ �2ÞR2

3E2ð1� hÞ3
� �1�

D
N2 þ �1�T2 þ �1�

D
N1 þ 	1�T1


 �
cos2�

and

½30� vD
L2ðr ¼ R2Þ ¼

ð1þ �2ÞR2

3E2ð1� hÞ3
� ð 1�

D
N2 þ 
1�T2 þ �1�

D
N1 þ !1�T1Þsin2�

where �1, �1, �1, 	1,  1, 
1, �1, and !1 are defined in
Appendix A.

Combined solution – hydrostatic and deviatoric
Now, the full solution for stresses and displacements in

the outer liner (thick-walled cylinder) can be obtained by
superposition of the hydrostatic and deviatoric solutions.
Since the stresses and displacements at the intrados of the
outer liner (r ¼ R2) are required to derive equations for the
inner lining (Liner 1), the full solution at r ¼ R2 is as fol-
lows:
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½31a� �RL2
ðr ¼ R2Þ ¼ �H

N1 þ �D
N1cos2�

½31b� ��L2
ðr ¼ R2Þ ¼

��H
N1ð1þ hÞ þ 2�H

N2

1� h
þ 2Aþ 12BhR2

3 þ
6C

h2R4
3

� �
cos2�

½31c� �R�L2
ðr ¼ R2Þ ¼ ��T1sin2�

½31d� uL2ðr ¼ R2Þ ¼
ð1þ �2ÞR2

E2ð1� hÞ ½�1� ð1� 2�2Þh��H
N1 þ ½2ð1� �2Þ� �H

N2

� 
þ ð1þ �2ÞR2

3E2ð1� hÞ3
ð�1�

D
N2 þ �1�T2 þ �1�

D
N1 þ 	1�T1Þcos2�

and

½31e� vL2ðr ¼ R2Þ ¼
ð1þ �2ÞR2

3E2ð1� hÞ3 ð 1�
D
N2 þ 
1�T2 þ �1�

D
N1 þ !1�T1Þsin2�

Fig. 5. Reaction stresses – deviatoric component.

Fig. 4. Reaction stresses – hydrostatic component.
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Thus far, existing equations governing stresses and dis-
placements in the ground outer liner have been presented.
The following sections present the governing equations for
the inner thin-walled shell and a new solution that accounts
for ground–liner interaction in the case of a composite liner
in elastic ground and accounting for some ground conver-
gence prior to installation of the lining.

Equations for inner liner reactions

Governing equations
From Flügge (1966), the stresses and displacement of a

thin shell are related by eqs. [32] and [33]

½32� d2v

d�2
þ du

d�
¼ � R2

Dc

�R�

and

½33� dv

d�
þ uþ Df

DcR2

d4u

d�4
þ 2

d2u

d�2
þ u

� �
¼ R2

Dc

�R

where Dc ¼ E1A1=ð1� �1
2Þ, Df ¼ E1I1=ð1� �1

2Þ, and A1,
I1, E1, and �1 are the cross-sectional area, moment of iner-
tia, elastic modulus, and Poisson’s ratio of the inner lining,

respectively. Similar to solutions for the ground and outer
liner, equations for the inner lining can be separated into hy-
drostatic and deviatoric components.

Hydrostatic component
Since u and v do not vary with y for the hydrostatic case,

the following equation can be derived from eq. [33] for the
radial displacement of the inner lining:

½34� uH
L1 ¼

Rc1
4

Dc1Rc1
2 þ Df1

�H
N1

where �H
N1 is the normal reaction at r ¼ R2 (see Fig. 4), and

Rc1 is the radius of the centroid of the inner lining.

Deviatoric component
For the deviatoric component, u and v vary with y and two

cases must be considered: full slip and no slip at r ¼ R2. As-
suming the radial, uD

L1, and tangential, vD
L1, displacements of

the inner lining are equal to the radial and tangential dis-
placements of the outer lining at r ¼ R2 (no slip), then u, v,
and partial derivatives @2v=@y2, and @u=@y can be derived
from eqs. [29] and [30] and substituted into eq. [32] with
the boundary condition �R� ¼ �T1sin2� to obtain

½35� ð�4C8 1 � 2C8�1Þ�D
N2 þ ð�4C8�1 � 2C8�1Þ �D

N1 þ ð�4C8
1 � 2C8�1Þ�T2 þ
�
� 4C8!1 � 2C8	1 �

R2
c1

DC1

�
�T1 ¼ 0

where C8 ¼ ð1þ �2ÞR2=½3E2ð1� hÞ3�. Similarly, u, v, @v=@y, @2u=@y2, and @4u=@y4 can be obtained from eqs. [29], and [30]
and substituted into eq. [33] with the boundary condition �R ¼ �D

N1 cos2� to obtain

½36�
�

2C8 1 þ C8�1 þ
9DF1

DC1R2
c1

C8�1

�
�D

N2 þ
�

2C8�1 þ C8�1 þ
9DF1

DC1R2
c1

C8�1 �
R2

1

DC1

�
�D

N1

þ
�

2C8
1 þ C8�1 þ
9DF1

DC1R
2
c1

C8�1

�
�T2 þ

�
2C8!1 þ C8	1 þ

9DF1

DC1R
2
c1

C8	1

�
�T1 ¼ 0

For conditions of full slip at r ¼ R2, eq. [32] reduces to

½37a� d2v

d�2
þ du

d�
¼ 0

or

½37b� u ¼ � dv

d�

and, eq. [33] becomes

½38� Df

DcR2

d4u

d�4
þ 2

d2u

d�2
þ u

� �
¼ R2

Dc

�R

Again, assuming uD
L1 ¼ uD

L2 at r ¼ R2 (continuity condi-
tion), partial derivatives @2u=@y2 and @4u=@y4 can be derived
from eq. [30] and substituted into eq. [38] to obtain

½39� 9Df1

R2
c1

C8�1

� �
�D

N2 þ
9Df1

R2
c1

C8�1 � R2
c1

� �
�D

N1 ¼ 0

So far equations have been developed relating the stresses
and displacements in the ground, the outer liner, and the in-

ner liner. For the hydrostatic component of the solution, the
radial reaction at r ¼ R2 is governed by eq. [34]. For the de-
viatoric component of the solution, eqs. [35] and [36] relate
the reactions at r ¼ R2 to the elastic properties of the inner
and outer linings and the ground for the case of no-slip.
Equation [39] governs the case of full-slip. In the following
sections, the principle of superposition is used to develop
the full solution for a thick-walled cylinder and thin-walled
shell in an infinite elastic medium.

Interaction between the ground and
composite liner system

Equations governing the interaction between the ground,
the outer liner, and the inner liner can be derived by consid-
ering compatible displacements at each of the interfaces at
r ¼ R3 and r ¼ R2. However, during construction of a shield
driven tunnel, there is normally a gap between the extrados
of the liner and the excavated diameter of the tunnel. Defor-
mation of the ground into the gap prior to installation of the
lining can lead to stress relief, which is ignored in current
closed-form solutions. From eq. [10a], the tunnel conver-
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gence, �DF=Do, at springline corresponding to full stress re-
lief is

½40� �DF=Do ¼
2Poð1þ �gÞR3

DoEg

þ 2Qoð1þ �gÞð3� 4�gÞR3

DoEg

Equation [41] is used to define the case where the spring-
line convergence is less than that for full stress relief

½41� �DP=Do ¼
2 �Poð1þ �gÞR3

DoEg

þ 2�Qoð1þ �gÞð3� 4�gÞR3

DoEg

where the parameter � denotes the fraction of the full stress
relief solution caused by partial convergence of the tunnel
before installation of the lining. The radial displacement
into the gap is thus

½42a� ugap ¼
�Poð1þ �gÞR3

Eg

þ �Qoð1þ �gÞð3� 4�gÞR3

Eg

cos2�

and the corresponding tangential displacement is

½42b� vgap ¼ �
�Qoð1þ �gÞð1� 2�gÞR3

Eg

sin2�

Provided that �DP=Do is less than the physical gap,
eqs. [42a] and [42b] can be used to approximately account
for some stress relief caused by ground convergence prior to
installation of the liner as shown below. In the following sec-
tion, full solutions are developed for a composite tunnel liner
in an infinite elastic medium. The solutions are separated into
hydrostatic and deviatoric components. As a result, the radial
stress at r ¼ R3 takes the following general form:

½43a� �Rðr ¼ R3Þ ¼ �H
N2 þ �D

N2cos2�

and the tangential reactions at r ¼ R3 are

½43b� �R�ðr ¼ R3Þ ¼ �T2sin2�

Similarly at r ¼ R2

½44a� �Rðr ¼ R2Þ ¼ �H
N1 þ �D

N1cos2�

and

½44b� �R�ðr ¼ R2Þ ¼ �T1 sin2�

Hydrostatic component
At the interface between the ground and the outer lining,

the displacement of the outer lining, uH
L2, plus the radial dis-

placement into the gap, uH
gap, must equal the displacement of

the ground caused by full stress relief, uH
g , plus the displace-

ment of the ground due to the reactive force, �H
N2. Thus, the

compatibility constrain at r ¼ R3 is

½45� uH
L2ðr ¼ R3Þ þ uH

gap ¼ uH
g ðr ¼ R3Þ þ uH

g reactðr ¼ R3Þ

Substituting from eqs. [4], [12c], [21], and [42a] into
eq. [45] gives

½46� ð1þ �2ÞR3

E2ð1� hÞ ½�2ð1� �2Þh��H
N1þ ðhþ 1� 2�2Þ �H

N2

� 
þ �Poð1þ �gÞR3

Eg

¼ Poð1þ �gÞR3

Eg

� �
H
N2ð1þ �gÞR3

Eg

which can be simplified to

½47� ð1� �ÞPo � �H
N2 ¼ C1ðC2�

H
N1 þ C3�

H
N2Þ

where C1, C2, and C3 are

C1 ¼
Egð1þ �2Þ
E2ð1þ �gÞ

C2 ¼ �
2ð1� �2Þh
ð1� hÞ

C3 ¼
hþ ð1� 2�2Þ
ð1� hÞ

At the interface between the outer lining and the inner lin-
ing, the compatibility condition is

½48� uH
L2ðr ¼ R2Þ ¼ uH

L1 ðr ¼ R2Þ

which implies that the radial displacement of the inner lin-
ing is equal to the radial displacement of the outer lining at
r ¼ R3. Substituting eqs. [22] and [34] into eq. [48] and re-
arranging gives

½49� C4�
H
N1 ¼ C5�

H
N1 þ C6�

H
N2

where C4, C5, and C6 are

C4 ¼
R4

c1

Dc1 R
2
c1 þ Df1

C5 ¼
ð1þ �2Þ
E2ð1� hÞ

½�1� ð1� 2�2Þh�R2

C6 ¼
2 ð1þ �2Þð1� �2Þ

E2ð1� hÞ
R2

The reactions �H
N1 and �H

N2 at r ¼ R2 and r ¼ R3, respec-
tively, can be obtained by solving eqs. [47] and [49] to obtain

½50� �H
N1 ¼

ð1� �ÞPo

C1ðC2 þ C3C7Þ þ C7

½51� �H
N2 ¼

ð1� �ÞPoC7

C1ðC2 þ C3C7Þ þ C7

where,
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C7 ¼
ðC4 � C5Þ

C6

The above solution applies to conditions of slip and no
slip at either of the interfaces at r ¼ R2 or r ¼ R3.

Deviatoric component – no slip at r = R2 and r = R3
Equation [45] can also be applied to the radial displace-

ments resulting from the deviatoric component of the initial
stress field. Thus, at r ¼ R3 the compatibility condition is

½52� uD
L2ðr¼ R3Þþ uD

gap ¼ uD
g ðr ¼ R3Þ þ uD

g reactðr ¼ R3Þ

where uD
L2ðr ¼ R3Þ is the radial displacement of the outer

liner at r ¼ R3, uD
gap is the radial displacement of the ground

into the gap prior to installation of the liner, uD
g ðr ¼ R3Þ is

the ground displacement caused by full stress relief, and
uD

g react ðr ¼ R3Þ is the ground displacement due to the liner
reaction. Substituting eqs. [26], [42a], [9a], and [18a] into
eq. [52] gives

½53� 3ð1� �ÞQoð3� 4�gÞ ¼ ðC10 þ C9�2Þ�D
N2

þ ðC9�2Þ�D
N1 þ ðC11 þ C9�2Þ�T2 þ ðC9	2Þ�T1

where,

C9 ¼
ð1þ �2ÞEg

ð1þ �gÞE2ð1� hÞ3

C10 ¼ 5� 6�g

C11 ¼ 4 � 6�g

Similarly, the following compatibility equation can be de-
rived for the tangential displacements:

½54� vD
L2ðr ¼ R3Þþ vD

gap ¼ vD
g ðr ¼ R3Þþ vD

g react ðr ¼ R3Þ

Substituting eqs. [27], [42b], [9b], and [18b] into eq. [54]
gives

½55� 3ð1� �ÞQoð3� 4�gÞ ¼ ðC11 � C9 2Þ�D
N2

� ðC9�2Þ�D
N1 þ ðC10 � C9
2Þ�T2 � ðC9!2Þ�T1

where C9, C10, and C11 are defined above.
There are now four equations relating �D

N1; �
D
N2, �T1, and

�T2 to Qo for the deviatoric component of the solution. Com-
bining eqs. [35] and [36] for the inner lining and eqs. [53]
and [55] for the outer lining gives the following system of
equations:

½56�
�D

N2

�D
N1

�T2

�T1

8>><
>>:

9>>=
>>;�

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

2
664

3
775 ¼

0

0

3ð1� �ÞQoð3� 4�gÞ
3ð1� �ÞQoð3� 4�gÞ

8>><
>>:

9>>=
>>;

where,

a11 ¼ �4C8 1 � 2C8�1

a12 ¼ �4C8�1 � 2C8�1

a13 ¼ �4C8
1 � 2C8�1

a14 ¼ �4C8!1 � 2C8	1 �
R2

c1

DC1

a21 ¼ 2C8 1 þ C8�1 þ
9DF1

DC1R
2
c1

C8�1

a22 ¼ 2C8�1 þ C8�1 þ
9DF1

DC1R
2
c1

C8�1 �
R2

c1

DC1

a23 ¼ 2C8
1 þ C8�1 þ
9DF1

DC1R
2
c1

C8�1

a24 ¼ 2C8!1 þ C8	1 þ
9DF1

DC1R
2
c1

C8	1

a31 ¼ C10 þ C9�2

a32 ¼ C9�2

a33 ¼ C11 þ C9�2

a34 ¼ C9	2

a41 ¼ C11 � C9 2

a42 ¼ �C9�2

a43 ¼ C10 � C9
2

a44 ¼ �C9!2

(Note: C8 ¼ ð1þ �2ÞR2=½3E2ð1� hÞ3�)
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Explicit solutions for �D
N1 ; �

D
N2 ; �T1 ; and �T2 are

½57� �D
N2 ¼

3ð1� �ÞQoð3� 4�gÞ a13

�
þ a14


 �
ða31 þ a32�Þ a13

�
þ a14


 �
� ða11 þ a12�Þ a33

�
þ a34


 �
½58� �D

N1 ¼ ��D
N2

½59� �T2 ¼ �
3ð1� �ÞQoð3� 4�gÞða11 þ a12�Þ

ða31 þ a32�Þða13 þ a14�Þ � ða11 þ a12�Þða33 þ a34�Þ
and

½60� �T1 ¼ ��T2

where,

� ¼ �ða31 � a41Þða14a23 � a24a13Þ þ ða33 � a43Þða11a24 � a21a14Þ þ ða34 � a44Þða21a13 � a11a23Þ
ða32 � a42Þða14a23 � a24a13Þ þ ða33 � a43Þða12a24 � a22a14Þ þ ða34 � a44Þða22a13 � a12a23Þ

and

� ¼ �ða31 � a41Þða22a13 � a12a23Þ þ ða32 � a42Þða11a23 � a21a13Þ þ ða33 � a43Þða21a12 � a11a22Þ
ða31 � a41Þða22a14 � a12a24Þ þ ða32 � a42Þða11a24 � a21a14Þ þ ða34 � a44Þða21a12 � a11a22Þ

Deviatoric component – full slip at r = R2 and r = R3
For the case of full slip at r ¼ R2 and r ¼ R3, the boundary conditions are: �R ¼ �D

N2cos2� and �R� ¼ 0 at r ¼ R3, �R ¼
�D

N1cos2� and �R� ¼ 0 at r ¼ R2, and �R ¼ �R� ¼ 0 at r ¼ 1. Thus, from eq. [18a] the radial displacement in the ground
at r ¼ R3 is

½61� uD
g reactðr ¼ R3Þ ¼ �

ð1þ �gÞR3

3Eg

½ð5� 6�gÞ�D
N2�cos 2�

Also from eq. [26], the radial displacement of the outer lining at r ¼ R3 is

½62� uD
L2ðr ¼ R3Þ ¼

ð1þ �2ÞR3

3E2ð1� hÞ3 ð�2�
D
N2 þ �2�

D
N1Þcos2�

Considering compatibility of the radial displacement at r ¼ R3 (see eq. [52]), the following equation can be developed by
combining eqs. [62], [42a], [9a], and [61]:

½63� ð1þ�2ÞR3

3E2ð1�hÞ3
ð�2�

D

N2
þ�2�

D

N1
Þcos 2�þ

� Qoð1þ�gÞð3�4�gÞR3

Eg

cos2�¼
Qoð1þ�gÞð3�4�gÞR3

Eg

cos2��
ð1þ�gÞR3

3Eg

½ð5�6�gÞ�D

N2
�cos 2�

which can be rearranged to give

½64� 3ð1��ÞQoð3� 4�gÞ ¼ðC10þC9�2Þ�D
N2þðC9�2Þ�D

N1

Thus, for full slip at r ¼ R2 and r ¼ R3, there are now two
equations relating �D

N1 and �D
N2 to Qo for the deviatoric com-

ponent. Hence, by solving eqs. [39] and [64], the reactions
�D

N1 and �D
N2 at r ¼ R2 and r ¼ R3 are

½65� �D
N1 ¼ C123ð1� �ÞQoð3� 4�gÞ �

9Df1

R2
c1

C8�1

� �

½66� �D
N2 ¼ C123ð1� �ÞQoð3� 4�gÞ

9Df1

R2
c1

C8�1 � R2
c1

� �

where,

C12 ¼
1

ðC10 þ C9�2Þ 9Df1

R2
c1

C8�1 � R2
c1

� 	
� ðC9�2Þ 9Df1

R2
c1
C8�1

� 	

Deviatoric component – full slip at R2, no slip at R3

For the case of full slip at r ¼ R2 and no slip at r ¼ R3 the boundary conditions are: �R ¼ �D
N2cos2� and �R� ¼ �T2sin2�

at r ¼ R3, �R ¼ �D
N1cos2� and �R� ¼ 0 at r ¼ R2, and �R ¼ � r� ¼ 0 at r ¼ 1. Using a similar approach to that followed for

the previous two cases, the following system of equations can be developed:
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½67�
�D

N2

�D
N1

�T2

8<
:

9=
;�

b11 b12 b13

b21 b22 b23

b31 b32 b33

2
4

3
5 ¼ 3ð1� �ÞQoð3� 4�gÞ

3ð1� �ÞQoð3� 4�gÞ
0

8<
:

9=
;

where,

b11 ¼ C10 þ C9�2

b12 ¼ C9�2

b13 ¼ C11 þ C9�2

b21 ¼ C11 � C9 2

b22 ¼ �C9�2

b23 ¼ C10 � C9
2

b31 ¼
9Df1

R2
c1

C8�1

b32 ¼
9Df1

R2
c1

C8�1 � R2
c1

b33 ¼
9Df1

R2
c1

C8�1

The solution to eq. [67] is

½68� �D
N2 ¼

3ð1� �ÞQoð3� 4�gÞ
b11 þ b12�� b13ðb31 þ b32�Þ=b33

½69� �D
N1 ¼ ��D

N2

½70� �T2 ¼ �
b31 þ b32�

b33

�D
N2

where,

� ¼ b31ðb23 � b13Þ þ b33ðb11 � b21Þ
b33ðb22 � b12Þ þ b32ðb13 � b23Þ

Deviatoric component – no slip at R2, full slip at R3
For the case of no slip at r ¼ R2 and full slip at r ¼ R3

the boundary conditions are: �R ¼ �D
N2cos2� and �R� ¼ 0

at r ¼ R3, �R ¼ �D
N1cos2� and �R� ¼ �T1sin2� at r ¼ R2 ,

and �R ¼ � r� ¼ 0 at r ¼ 1. Similar to the previous cases,
the following system of equations can be developed:

½71�
�D

N2

�D
N1

�T1

8<
:

9=
;�

c11 c12 c13

c21 c22 c23

c31 c32 c33

2
4

3
5

¼
3ð1� �ÞQoð3� 4�gÞ

0

0

8<
:

9=
;

where,

c11 ¼ C10 þ C9�2

c12 ¼ C9�2

c13 ¼ C9	2

c21 ¼ 2C8 1 þ C8�1 þ
9DF1

DC1R
2
c1

C8�1

c22 ¼ 2C8�1 þ C8�1 þ
9Df1

DC1R
2
c1

C8�1 �
R2

c1

DC1

c23 ¼ 2C8!1 þ C8	1 þ
9Df1

DC1R
2
c1

C8	1

c31 ¼ �4C8 1 � 2C8�1

c32 ¼ �4C8�1 � 2C8�1

c33 ¼ �4C8!1 � 2C8	1 �
R2

c1

DC1

Explicit solutions for the unknowns �D
N1; �

D
N2; and �T1are

½72� �D
N2 ¼

3ð1� �ÞQoð3� 4�gÞ
c11 þ c12�� c13ðc31 þ c32�Þ=c33

½73� �D
N1 ¼ ��D

N2

½74� �T1 ¼ �
c31 þ c32�

c33

�D
N2

where,

� ¼ c23c31 � c21c33

c22c33 � c23c32
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Moment and thrust – inner liner

From Flügge (1966) the moments and thrusts for a thin-
walled shell in polar coordinates are

½75a� M ¼ � Df

R2
uþ d2u

d�2

� �

½75b� T ¼ Dc

R
uþ dv

d�

� �
þM

R

Hydrostatic component
From eqs. [75a] and [75b], moments and thrusts in the in-

ner lining due to the hydrostatic component of the solution
are

½76a� MH ¼ � Df1Rc1
2

Dc1Rc1
2 þ Df1

�H
N1

½76b� TH ¼ Dc1Rc1
3

Dc1Rc1
2 þ Df1

�H
N1 þ

MH

Rc1

Equations [76a] and [76b] apply to both cases of slip and
no slip at r ¼ R2.

Deviatoric component – no slip at r = R2 and r = R3

Using eqs. [75a] and [75b], moments and thrusts in the
inner lining due to the deviatoric component are:

½77a� MD ¼ �Df1

R2
c1

½�3C8ð�1�
D
N2 þ �1�T2

þ �1�
D
N1 þ 	1�T1Þ�cos2�

and

½77b� TD ¼
�

Dc1

Rc1

C8 ð�1 þ 2 1Þ�D
N2 þ ð�1 þ 2
1Þ�T2

�
þ ð�1 þ 2�1Þ�D

N1 þ ð	1 þ 2!1Þ�T1 � þ
MD

Rc1

�
cos2�

Deviatoric component – full slip r = R2 and r = R3

For conditions of full slip at r ¼ R2, from eq. [37], u
equals �dv=d� and hence, eq. [75b] simplifies to

½78� T ¼ M

R

giving,

½79a� MD ¼ �Df1

R2
c1

½�3C8ð�1�
D
N2 þ �1�

D
N1Þ�cos2�

½79b� TD ¼ MD

Rc1

cos2�

Using a similar process, moment and thrust for other cases
are given by eqs. [80] and [81].

Deviatoric component – full slip at R2, no slip at R3

½80a� MD ¼ �Df1

R2
c1

½�3C8ð�1�
D
N2 þ �1�

D
N1 þ �1�T2Þ�cos2�

½80b� TD ¼ MD

Rc1

cos2�

Deviatoric component – no slip at R2, full slip at R3

½81a� MD ¼ �Df1

R2
c1

½�3C8ð�1�
D
N2 þ �1�

D
N1 þ 	1�T1Þ�cos2�

½81b� TD ¼ Dc1

Rc1

C8½ð�1 þ 2 1Þ�D
N2 þ ð�1 þ 2�1Þ�D

N1

�

þð	1 þ 2!1Þ�T1� þ
MD

Rc1

�
cos2�

Thus, full solutions for displacement, moment, and thrust
in the inner thin-walled shell have been derived and pre-
sented. In the following sections, the solution is applied to a
composite lining in an infinite elastic medium.

Typical results
To illustrate some of the characteristics of the solution,

normalized displacements, thrusts, and moments are pre-
sented in this section versus the flexibility ratio defined in
accordance with Einstein and Schwartz (1979) viz.

½82a� F ¼ EgR3
c1ð1� 2

1Þ
E1I1ð1� 2

gÞ

and the normalized displacements, uc, thrust, Tc, and mo-
ment, Mc, are

½82b� uc ¼
uL1Eg

�vRc1ð1þ gÞ

½82c� Tc ¼
T

�vRc1

and

½82d� Mc ¼
M

�vR2
c1

The effect of ground convergence prior to
liner installation

Figures 6 through 9 show the effect of � on displace-
ments, moment, and thrust in the inner lining. For this group
of figures, the thickness of the outer liner was assumed to be
0.001 m. Consequently, the outer lining has no effect on the
inner lining behaviour, and for � ¼ 0 the composite lining
solution is essentially equivalent to the Einstein and
Schwartz (1979) solution. In accordance with eqs. [40] and
[41], the parameter � represents the fraction of the full
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Fig. 6. Normalized radial displacement at the crown of the inner lining.

Fig. 7. Normalized radial displacement at the springline of the inner lining.
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stress relief solution (eqs. [10a] and [10b]) that is permitted
to occur prior to installation of the lining. As shown in each
of the figures, solutions have been developed for K 0o ¼ 0:7
and thickness ratios, t1/Rc1 of 0.05 and 0.1 for the inner lin-
ing.

It can be seen from Fig. 6 that the radial displacement at
the crown of the inner lining increases as the flexibility ratio

increases. For � ¼ 0, the composite lining solution reduces
to a single lining solution that agrees with Einstein and
Schwartz (1979). Furthermore, the radial displacement of
the inner lining at the crown decreases as the degree of
ground convergence prior to the liner installation increases
(e.g., as � increases). Similar trends in behaviour can also
be observed in Fig. 7 for the springline. At the springline,

Fig. 8. Normalized thrust at the springline of the inner lining.

Fig. 9. Moment at the springline of the inner lining.
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however, the radial displacement of the inner lining is gen-
erally inward for low flexibility ratios. For thickness ratios,
t1/Rc1, of 0.05 and 0.1, the radial displacement reverses di-

rection — becoming inward when the flexibility ratio ex-
ceeds 2500 and 550, respectively. As the flexibility ratio
becomes very large, the radial displacements approach those
obtained using eq. [10a] (no lining).

Figures 8 and 9 show the normalized thrust and moment
in the inner lining at the springline. Again, increasing the
flexibility ratio results in a decrease in both moment and
thrust. Similarly, increasing the parameter � also reduces
moment and thrust in the inner lining. It is interesting to
note that the flexibility ratio has a more pronounced influ-
ence on moments compared to thrust.

The effect of composite lining behaviour
Now, consider a composite tunnel lining comprising an

inner segmental concrete tunnel lining surrounded by a thick
annulus of grout and situated 13.5 m below the ground sur-

Table 2. Material parameters used in the study.

Parameter Value
Soil elastic modulus, Eg (MPa) 90
Soil Poisson’s ratio, �g 0.4
Coefficient of earth pressure at rest, K’o 0.7
Initial vertical stress, �v (kN/m2) 344
Initial horizontal stress, �h (kN/m2) 241
Elastic modulus of concrete, El (GPa) 30
Poisson’s ratio of concrete, �1 0.2
Elastic modulus of grout, E2 (GPa) 20
Poisson’s ratio of grout, �2 0.2

Fig. 10. Radial displacement at the crown and the springline of the inner lining.

Fig. 11. Thrust at the crown and the springline of the inner lining.
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face (depth to the springline axis of the tunnel). This condi-
tion is rare, however, it has been encountered recently in
Toronto, Canada and was confirmed by coring through the
lining. Table 2 summarizes the soil properties assumed in
the analysis. Figure 2 shows the liner geometry.

For the present analysis, it is assumed that the tunnel
shown in Fig. 2 is situated above the groundwater table and
embedded in a soil of sufficient strength to preclude signifi-
cant plasticity in the soil mass. The inner lining is assumed
to comprise a 150 mm thick precast segmental concrete lin-
ing (8 segments) with radial joints situated at the springline
and crown and at 458 intervals from the springline. The in-
side and outside diameter of the segmental lining are 4.88 m
and 5.18 m, respectively, and the liner is assumed to possess
constant thickness. To illustrate composite lining behaviour,

it is also assumed that the inner lining is surrounded by a
grouted annulus. Solutions for displacement, moment, and
thrust of the inner lining are obtained for outer lining thick-
nesses, t2, ranging from 0 up to 300 mm. The properties of
the annulus grout are summarized in Table 2. Figures 10,
11, and 12 show the effect of t2 on the radial displacement,
moment, and thrust in the inner lining neglecting the effect
of the joints on the bending stiffness ðE1I1Þ. In this case, t2
represents the average thickness of grout since normally the
grout thickness will vary around a tunnel lining. In addition,
the grouted annulus would normally be neglected in design;
however, it may be useful to consider the contribution of the
grout when assessing the capacity of aging tunnel linings.

From Fig. 10, it can be seen that the radial displacement
at the crown (inner lining) decreases as the thickness of the

Fig. 12. Moment at the crown and the springline of the inner lining.

Fig. 13. Moment distribution in the inner lining for 50 mm thick grout.
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outer lining increases. The impact of the outer lining is gen-
erally small, however, it becomes more predominant as the
thickness exceeds about 200 mm. Figures 11 and 12, how-
ever, show the main features of the composite behaviour.
From Fig. 11, the thickness of the outer lining (in this case
a grouted annulus) has a pronounced effect on the magni-
tude of thrust in the inner lining at both the crown and
springline. In contrast, the moments in the inner lining (see
Fig. 12) are relatively insensitive to t2 for the geometries
considered here. From Fig. 12, it can be seen that the outer
lining begins to impact in the inner lining bending moments
only when t2 reaches about 175 mm, at which point the
bending stiffness of the outer and inner linings are similar.

Lastly, Figs. 13 and 14 show the distribution of moment
and thrust in the inner lining accounting for the effect of
joints. In this case, the impact of joints can be accounted
for by reducing the moment of inertia of the inner lining in
accordance with Muir Wood (1975) or Lee and Ge (2001).
In Figs. 13 and 14, the moment of inertia of the inner lining
has been reduced by a factor, �, of 0.5 to account for joint-
ing. As expected, the main influence of liner joints is to re-
duce the moments in the lining. This is evident from
Figs. 13 and 14, which show a negligible impact on thrust
in the inner lining but a 48% reduction of moment at the
springline.

Conclusions
In this paper, a closed-form solution has been presented

for displacements, moments, and thrusts in a composite tun-
nel lining. In the solution, the ground is treated as an infinite
elastic medium subject to an initial anisotropic stress field.
The tunnel lining is idealized as an outer thick-walled cylin-
der and an inner thin-walled shell. In general, the solution is
suitable for the analysis of composite lining systems in-
stalled in either intact rock or strong soils above the ground-

water table that remain predominantly elastic during
construction of the tunnel.

The general behaviour of the solution was demonstrated
for various cases involving both single and double linings.
From the analysis, it is shown that the solution can be used
to calculate displacements, moments, and thrusts in double
linings. The solution can also be used to approximately ac-
count for such factors as jointing of the inner lining and
some stress relief due to ground convergence prior to instal-
lation of the lining. In addition, a single-lining solution can
be obtained by assuming that the thickness of the outer lin-
ing is very small (e.g., 0.01 m). For this condition, the solu-
tion is comparable to the Einstein and Schwartz (1979)
solution. The main difference is the stress functions used to
analyze the ground response. Based on the analyses and dis-
cussions presented in this paper, it is concluded that the
composite lining solution is versatile, it covers several dif-
ferent lining geometries and conditions, and thus it should
be a useful tool for design considerations in tunnelling.
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List of symbols

y angle measured counter clockwise from the tunnel
springline

�v the initial vertical stress in the ground
�h the initial horizontal stress in the ground
K 0o the coefficient of lateral earth pressure at rest
Po (�v + �h)/2
Qo (�v – �h)/2
Eg elastic modulus of the ground
�g Poisson’s ratio of the ground
E2 elastic modulus of the outer liner
�2 Poisson’s ratio of the outer liner
E1 elastic modulus of the inner liner
�1 Poisson’s ratio of the inner liner
A1 cross-sectional area of the inner liner
I1 moment of inertia moment of the inner liner

R1 radius, inner liner intrados
R2 radius, inner liner extrados and outer liner intrados
R3 radius, outer liner extrados
Rcl radius, centerline of the inner liner
� Airy’s stress function

A, B, C, D constants of Airy’s stress function (hydrostatic com-
ponent)

�R radial stress
�y tangential stress
�Ry shear stress

��R change in radial stress
��y change in tangential stress

��Ry change in shear stress
"R radial strain
"y tangential strain
ug radial ground displacement
vg tangential ground displacement

ug react radial ground displacement due to the liner reac-
tions

vg react tangential ground displacement due to the liner re-
actions

ugap radial gap displacement
vgap tangential gap displacement
uL1 radial displacement of the inner liner
vL1 tangential displacement of the inner liner
uL2 radial displacement of the outer liner
vL2 tangential displacement of the outer liner

�DF/Do tunnel convergence at springline due to full stress
relief

�DP/Do tunnel convergence at springline due to partial
stress relief

� fraction of the full stress relief solution caused by
convergence of the tunnel before installation of the
lining

�H
N1 radial reaction between the inner and outer liners

due to the hydrostatic component
�H

N2 radial reaction between the outer liner and the
ground due to the hydrostatic component

�D
N1 the maximum radial reaction between the inner and

outer liners due to the deviatoric component
�D

N2 the maximum radial reaction between the outer
liner and the ground due to the deviatoric compo-
nent

�T1 the maximum tangential reaction between the inner
and outer liners due to the deviatoric component

�T2 the maximum tangential reaction between the outer
liner and the ground due to the deviatoric compo-
nent

h (R2/R3)2

Dc compressibility constant of the inner liner
Df flexibility constant of the inner liner
M moment
T thrust
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Appendix A: Equations for stresses and displacements of the outer liner
This section summarizes the solutions developed by Yuen (1979) and Ogawa (1986) for the stresses and displacements in a

thick walled cylinder subject to both normal and tangential external loads.

Hydrostatic component
In a similar manner to that used for the ground, the radial, tangential, and shear stresses in the outer lining can be solved

for using Airy’s stress function and, eqs. [2–3a, 3b, and 3c], respectively. For the boundary conditions, �R ¼ �H
N2 at r ¼ R3

and �R ¼ �H
N1 at r ¼ R2, the Airy’s coefficients A and C in eq. [2] are

½A1� A ¼ �
H
N2 � �H

N1h

2ð1� hÞ

½A2� C ¼ R2
2ð�H

N2 � �H
N1Þ

ð1� hÞ

where h ¼ ðR2=R3Þ2. The resultant stresses in the outer lining are

½A3� �H
RL2
¼ �H

N1

ðR2=rÞ2 � h

1� h

� �
þ �H

N2

1� ðR2=rÞ2
1� h

� �

½A4� �H
�L2
¼ ��H

N1

ðR2=rÞ2 þ h

1� h

� �
þ �H

N2

1þ ðR2=rÞ2
1� h

� �

and

½A5� �H
r�L2
¼ 0

From generalized Hooke’s law, it can be shown that the radial displacement of the outer lining, uH
L2, is

½A6� uH
L2 ¼

Z
"H
�2dr ¼ ð1þ �2Þr

E2ð1� hÞ �R2
2

r2
� ð1� 2�2Þh

� �
�H

N1 þ
R2

2

r2
þ ð1� 2�2Þ

� �
�H

N2

� �

For r ¼ R2 and r ¼ R3, the radial displacements at the intrados and the extrados are

½A7� uH
L2ðr ¼ R3Þ ¼

ð1þ �2ÞR3

E2ð1� hÞ f½�2ð1� �2Þh��H
N1 þ ðhþ 1� 2�2Þ��H

N2g

½A8� uH
L2ðr ¼ R2Þ ¼

ð1þ �2ÞR2

E2ð1� hÞ f½�1� ð1� 2�2Þh��H
N1 þ ½2ð1� �2Þ��H

N2g

Deviatoric component
For the deviatoric component, Qo, the Airy’s stress function is given by eq. [6] and the radial, tangential, and shear stresses

are governed by the equilibrium eqs. [7a–c], respectively. Referring to Fig. 5, the boundary conditions for the outer lining are

½A9� �R ¼ �D
N2cos2� at r ¼ R3

½A10� �R� ¼ ��T2sin2� at r ¼ R3

½A11� �R ¼ �D
N1cos2� at r ¼ R2

and
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½A12� �R� ¼ ��T1sin2� at r ¼ R2

where �D
N1 and �D

N2 are the maximum radial stresses acting on the outer lining at the intrados and the extrados, respectively,
and �T1 and �T2 are the maximum tangential shear stresses acting at the intrados and the extrados, respectively. Again, Fig. 5
shows the assumed stress conditions at the two interfaces.

For the above boundary conditions, the constants A, B, C, and D of the Airy’s stress function are

½A13� A ¼ 1

2ð1� hÞ3 ½�ð2h2 þ hþ 1Þ�D
N2 � 2h2�T2 þ ðh3 þ h2 þ 2hÞ�D

N1 þ 2h�T1�

½A14� B ¼ 1

6ð1� hÞ3R2
3

½ð3hþ 1Þ�D
N2 þ ð3h� 1Þ�T2 � ðh2 þ 3hÞ�D

N1 þ ðh2 � 3hÞ�T1�

½A15� C ¼ h2R4
3

6ð1� hÞ3 ½�ðhþ 3Þ�D
N2 � 2h�T2 þ ð3hþ 1Þ�D

N1 þ 2�T1�

½A16� D ¼ hR2
3

2ð1� hÞ3 ½ðh
2 þ hþ 2Þ�D

N2 þ ðh2 þ hÞ�T2 � ð2h2 þ hþ 1Þ�D
N1 � ðhþ 1Þ�T1�

Using generalized Hooke’s law, the radial and tangential displacements of the outer lining are

½A17� uD
L2 ¼

Z
"rdr ¼ 2ð1þ �2Þr

E2

�A� 2�2Br2 þ C

r4
þ 2ð1� �2Þ

D

r2

� �
cos2�

and

½A18� vD
L2 ¼

Z
"� �

uD
L2

r
rd�

� �
¼ 2ð1þ �2Þr

E2

Aþ ð3� 2�2ÞBr2 þ C

r4
� ð1� 2�2Þ

D

r2

� �
sin2�

Accordingly, the stresses and displacements at the interface between the ground and the outer lining (at r ¼ R3) due to the
reactive force, �D

N1; �
D
N2; �T1; and �T2 are

½A19� �D
RL2
ðr ¼ R3Þ ¼ � 2Aþ 6

C

R4
3

þ 4
D

R2
3

� �
cos2� ¼ �D

N2cos2�

½A20� �D
�L2
ðr ¼ R3Þ ¼ 2Aþ 12BR2

3 þ 6
C

R4
3

� �
cos2�

½A21� �D
R�L2

¼ 2Aþ 6BR2
3 � 6

C

R4
3

� 2
D

R2
3

� �
sin2� ¼ ��T2sin2�

½A22� uD
L2ðr ¼ R3Þ ¼

ð1þ �2ÞR3

3E2ð1� hÞ3 ½�2�
D
N2 þ �2�T2 þ �2�

D
N1 þ 	2�T1�cos2�

and

½A23� vD
L2ðr ¼ R3Þ ¼

ð1þ �2ÞR3

3E2ð1� hÞ3 ð 2�
D
N2 þ 
2�T2 þ �2�

D
N1 þ !2�T1Þsin2�

where

�2 ¼ ð5� 6�2Þh3 þ ð9� 6�2Þh2 þ ð15� 18�2Þhþ ð3� 2�2Þ

�2 ¼ ð4� 6�2Þh3 þ ð12� 6�2Þh2 � 6�2hþ 2�2
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�2 ¼ �4ð1� �2Þhð3h2 þ 2hþ 3Þ

	2 ¼ �4ð1� �2Þhðhþ 3Þ

 2 ¼ ��2


2 ¼ �ð5 � 6 �2Þh3 � ð9 � 6 �2Þh2 þ ð9 � 6 �2Þh� ð3 � 2�2Þ

�2 ¼ 4ð1� �2Þh2ð3hþ 1Þ

!2 ¼ 8ð1 � �2Þh2

Similarly, at the intrados of the outer lining ðr ¼ R2Þ, the stresses and displacements are

½A24� �D
RL2
ðr ¼ R2Þ ¼ � 2A þ 6

C

h2R4
3

þ 4
D

hR2
3

� �
cos2� ¼ �D

N1cos2�

½A25� �D
�L2
ðr ¼ R2Þ ¼ 2Aþ 12BhR2

3 þ 6
C

h2R4
3

� �
cos2�

½A26� �D
R�L2
ðr ¼ R2Þ ¼ 2Aþ 6BhR2

3 � 6
C

h2R4
3

� 2
D

hR2
3

� �
sin2� ¼ ��T1sin�

½A27� uD
L2 ðr ¼ R2Þ ¼

ð1þ �2ÞR2

3E2ð1� hÞ3 ½�1�
D
N2 þ �1�T2 þ �1�

D
N1 þ 	1�T1�cos2�

and

½A28� vD
L2ðr ¼ R2Þ ¼

ð1þ �2ÞR2

3E2ð1� hÞ3 ½ 1�
D
N2 þ 
1�T2 þ �1�

D
N1 þ !1�T1�sin2�

where

�1 ¼ ��2=h

�1 ¼ �2=h

�1 ¼ �ð3� 2�2Þh3 � ð15� 18�2Þh2 � ð9� 6�2Þh� ð5� 6�2Þ

	1 ¼ �2�2h
3 þ 6�2h

2 � ð12� 6�2Þh� ð4� 6�2Þ

 1 ¼ 	2=h


1 ¼ �!2=h

�1 ¼ �	1

!1 ¼ ð3� 2�2Þh3 � ð9� 6�2Þh2 þ ð9� 6�2Þhþ ð5 � 6�2Þ
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