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a b s t r a c t

In the current work, the nonlinear vibration of an embedded double-walled carbon nanotube (DWCNT)

aroused by nonlinear van der Waals (vdW) interaction forces from both surrounding medium and

adjacent tubes is studied. Using both Euler–Bernoulli and Timoshenko beam models, the relation

between deflection amplitudes and resonant frequencies of the DWCNT is derived through harmonic

balance method. It is found that the nonlinear vdW forces from the surrounding medium result in

noncoaxial vibration of the embedded DWCNT. The noncoaxial vibration includes both uni-directional

and bi-directional vibration modes. It is found that the surrounding matrix has more prominent effect

on the uni-directional vibration in comparison to the bi-directional vibration. The axial load effect on

the vibrational behavior of the embedded DWCNT is also discussed. Due to the influence of the

surrounding polymer, the prediction on the resonant frequencies of embedded CNTs is quite different

from that for free-standing CNTs. A softening behavior for the deflection amplitude-resonant frequency

relation is observed for the first time in the bi-directional vibration of the embedded DWCNT, which

can only be obtained using the Timoshenko beam theory.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Since the discovery of carbon nanotubes (CNTs) by Iijima [1],
these novel materials have attracted tremendous attention from
research communities. CNTs are found to possess superior
mechanical, electrical and thermal properties [2–7], which makes
them as promising candidates in the applications of nanocompo-
sites, nanoelectronics and nanodevices [8–15]. To make the full
potential applications of CNTs, understanding their mechanical
behavior is essential and has become a hot topic. In particular,
considerable efforts have been devoted to understand the vibra-
tional behavior of CNTs recently [16–20].

During the past decade, several methods have been pursued to
investigate and characterize the mechanical behavior of CNTs.
Since controlled experiments are difficult for nanoscale materials
and atomic studies are computationally expensive, many
researchers have resorted to continuum mechanics models to
study the mechanical behavior of CNTs. For example, elastic beam
models [16–23] and elastic shell models [24–26] have been
effectively used to predict resonant frequencies of CNTs. These
studies, among others, have demonstrated the powerfulness of
continuum mechanics, i.e., using simple formula offered by these
continuum models, key parameters that affect the mechanical
ll rights reserved.
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behavior of CNTs can be easily discovered to predict new physical
phenomena. Most existing studies in literature are linear analysis
on the vibrations of CNTs. However, there are much fewer studies
on the nonlinear mechanical behavior of CNTs. Until recently,
different aspects of nonlinearities have been explored by
researchers. Considering the geometric nonlinearity caused by
large transverse displacement, Yan et al. [26] predicted the
nonlinear vibration behavior of a DWCNT based on the Donnell’s
cylindrical shell model. A similar problem was analyzed by Ke
et al. [23] using nonlocal Timoshenko beam theory. For an
embedded MWCNT within a polymer matrix, the surrounding
medium effect on the nonlinear vibration of the CNT aroused by
the geometric nonlinearity has been studied using a multiple
beam model [16]. It was found that the nonlinear free vibration of
the embedded CNT was significantly affected by the surrounding
medium. In these studies, the interaction pressure between two
adjacent tubes of the MWCNT governed by the van der Waals
(vdW) was assumed to depend linearly on the difference of the
radial deflections. For embedded CNTs, the surrounding medium
effect was described by the Winkler model originally developed
for a fiber composite [27], in which the surrounding medium was
assumed to act as linear springs and the pressure exerted on the
outer tube is linearly proportional to the deflection of the
outermost tube.

It should be mentioned that in the absence of covalent chemical
bonds and mechanical interlocking, the interaction between the
CNT and the surrounding medium at interface is governed by the
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vdW force. This vdW force estimated by the Lennard-Jones
potential is intrinsically nonlinear [28], as well as the vdW
interaction between adjacent tubes of MWCNTs [29]. Therefore,
it is natural to believe that the nonlinearity of vdW forces might
play an important role in the vibrational behavior of MWCNTs. The
nonlinear vibration of a double-walled carbon nanotube (DWCNT)
aroused by the nonlinear interlayer vdW forces between adjacent
tubes was studied by Xu et al. [21]. The deflection amplitude was
revealed to depend on the nonlinear factor of the vdW forces,
which was found to have little effect on the coaxial free vibration
but a great effect on the noncoaxial free vibration. The effect of
nonlinear interfacial vdW forces from surrounding medium on the
vibrational behavior of a single-walled carbon nanotube (SWCNT)
embedded in a polymer matrix was studied by Mahdavi et al. [20]
using both the Euler–Bernoulli and Timoshenko beam theories. It
was found that the nonlinear vdW forces from the surrounding
medium have significant effect on the resonant frequencies of the
embedded SWCNT. These existing studies clearly indicate the
significance of considering the nonlinearity of vdW forces in the
study of the vibrational behavior of CNTs.

However, it appears that the influence of these nonlinear vdW
forces on the dynamic property of embedded MWCNTs have not
been investigated thus far. Hence, the objective of the current
work is to study the nonlinear vibrational behavior of an
embedded DWCNT by considering the nonlinear vdW interactions
between the outer tube and the surrounding medium, and
between adjacent tubes as well. Using the Euler–Bernoulli and
Timoshenko beam models, the relation between the deflection
amplitude and the resonant frequency will be derived. The effects
of axial load and the CNT size on the nonlinear vibration of the
embedded DWCNT will also be examined. The results indicate that
these nonlinear vdW interaction forces existing in the embedded
DWCNT have a substantial effect on its vibrational behavior.
2. Formulation of the problem

The resonant frequencies of the embedded DWCNT will be
firstly studied by the Euler–Bernoulli beam model, which is easy
to employ and can give a reliable prediction on the mechanical
behavior of CNTs under some circumstances. Since rotary inertia
and shear deformation have significant effect on the frequency
analysis either at ultrahigh frequencies or for CNTs with low
length-to-diameter aspect ratio [19], the Timoshenko beam
model is also utilized for comparison. Based on the interfacial
cohesive law [28], the nonlinear resultant pressure exerted by the
surrounding medium to the embedded CNT has been derived in
our previous work [20], i.e., the interfacial force per unit area
exerted on the outer layer of the DWCNT is expressed in terms of
the interfacial cohesive energy F

PIFðdÞ ¼
@F
@d

ð1Þ

in which F is expressed in terms of the interfacial spacing d as

FðdÞ ¼ KIF
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where KIF is calculated as 0.101 874 J/m2 and d0¼0.3825 nm if the
surrounding polymer matrix is taken as polyethylene for exam-
ple. The equilibrium interfacial spacing de can be determined by
PIF(d¼de)¼0 as

de ¼
2

5

� �1=6

d0 ð3Þ

As argued by Ru [30], the resultant interaction pressure
exerted on the CNT defined per unit length should be proportional
to the circumferential dimension, i.e., the outer radius R2 of the
DWCNT. Thus one can assume that the resultant interaction
pressure per unit axial length between the CNT and the surround-
ing polymer matrix can be assumed as pIF¼�2R2PIF(de). The
Taylor expansion of pIF at de can be expanded up to the lowest-
order nonlinear term as [20]
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where PIF9d¼de¼0 and
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are the equivalent linear and nonlinear stiffness of the surround-
ing medium. The interfacial spacing change equals to the deflec-
tion w2 of the outer layer of the DWCNT, i.e., d�de¼w2.

Similarly, the resultant interaction pressure per unit axial
length between adjacent tubes of the DWCNT due to the vdW
forces can be expressed in terms of the deflection w1 and w2 of
the inner and outer tubes from the interlayer cohesive energy U

[21], i.e.,

pIL ¼�c1ðw2�w1Þ�c3ðw2�w1Þ
3

ð6Þ

in which

c1 ¼ 2R1
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and U is expressed in terms of the interlayer spacing D as in
Ref. [29],

UðDÞ ¼ KIL
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where KIL is calculated as 0.408 910 1874 J/m2, and D0¼0.34 nm
and the equilibrium interfacial spacing is De¼D0. In the following
analysis, both the linear and nonlinear parts of the vdW forces
will be incorporated, which will induce the nonlinear vibration of
the DWCNT.

2.1. Euler–Bernoulli beam model

Using the Euler–Bernoulli beam theory, the nonlinear free
vibration of an embedded DWCNT under a compressive axial
load can be described by the following coupled nonlinear differ-
ential equations:

EI1
@4w1

@x4
þF1

@2w1

@x2
þrA1

@2w1

@t2
þpIL ¼ 0 ð9aÞ

EI2
@4w2

@x4
þ
@2w2

@x2
þrA2

@2w2

@t2
�pIL�pIF ¼ 0 ð9bÞ

in which E and r are the Young’s modulus and mass density of the
CNT, Fi(i¼1,2) is the axial load applied on each individual tube,
and I and A are second moment of inertia and cross-sectional area
for the hollow cylinder. The indices 1 and 2 refer to the inner and
outer tube, respectively.

If these two nested tubes are assumed to have the same end
boundary conditions, they have the same vibrational modes [17].
With the consideration of the first-order vibration mode y1(x)
only, the solution of Eq. (9) can thus be expressed as wiðx,tÞ ¼
aiy1ðxÞsinotði¼ 1,2Þ with a1 and a2 representing the deflection
amplitude of the inner and outer tube, respectively. Substituting
this solution into Eq. (9) results in

EI1a1y00001 ðxÞþF1a1y001ðxÞ�rA1o2a1y1ðxÞ�c1ða2�a1Þy1ðxÞ
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�c3ða2�a1Þ
3y3
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3y3

1sin2ot þa1a2y1 xð Þþa3a3
2y3
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where a prime denotes the derivative with respect to x. The
governing equations for the linear vibration of the embedded
DWCNT can be obtained simply by letting c3¼a3¼0 in Eq. (10).
Assuming y1ðxÞ ¼ expðl1xÞ in which l1 is the first eigenvalue of the
characteristic equation for the linear vibration, two resonant
frequencies corresponding to the first-order vibration mode can
be determined provided the end conditions of the CNT are given.
However, for such a nonlinear vibration, the deflection amplitude
is frequency-dependent and can be determined with approximate
analytical solutions. Following the same procedure of applying
harmonic balance method [20,21,26,31], Eq. (10) becomes

g1a1þF1ba1�o2Z1a1�n1ða2�a1Þ�n3ða2�a1Þ
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in which
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Thus, the relation between the deflection amplitude and the
resonant frequency can be obtained from Eq. (11). If the
surrounding medium effect and the axial load are ignored, i.e.
F1¼F2¼m1¼m3¼0, Eq. (11) is reduced to the same equation
derived in Ref. [21]. Without considering the axial load effect, for
the case of a linear vibration of the embedded DWCNT (both vdW
interactions between two adjacent tubes and between the outer
surface of the CNT and the surrounding medium are assumed as
linear, i.e., c3¼0 and a3¼0), the resonant frequencies oLE corre-
sponding to the first-order mode are determined by the following
equations:

det
EI1l

4
1�rA1o2

LEþc1 �c1

�c1 EI2l
4
1�rA2o2

LEþc1þa1

2
4

3
5¼ 0 ð13Þ

which gives the same formula developed by Yoon et al. [17] and
Amin et al. [19]. It is obvious from Eq. (13) that there are two
resonant frequencies, the lower and the upper resonant frequen-
cies, for each vibration mode number.

2.2. Timoshenko beam model

Double Timoshenko beam model is also adopted in the current
work in order to consider the effects of shear deformation and
rotary inertia. Using this beam theory, the vibration of the
embedded DWCNT under a compressive axial force and the
nonlinear interlayer and interfacial vdW forces is described by
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where ci (i¼1,2) is the rotation angle of the cross section of each
individual tube due to bending and G¼0.5(E/(1þu)) is shear
modulus with u being the Poisson’s ratio. For each CNT layer
treated as a single beam with hollow annular cross section, the
shear correction factor K is given as K¼2((1þu)/(4þ3u)) [32].
The harmonic solutions of a double Timoshenko beam for the
first-order mode can be expressed as

wiðx,tÞ ¼ aiy1ðxÞsinot ð16aÞ

ciðx,tÞ ¼ biC1ðxÞsinot ð16bÞ

where i¼1,2 represents the inner and outer tube, respectively.
Substituting Eq. (16) into Eqs. (14) and (15) and making lengthy
manipulation results in the following governing equations:
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in which s1¼KA1G and s2¼KA2G. Similarly, by applying the
harmonic balance method, the relationship between the ampli-
tudes a1, a2 and the resonant frequency o of the first vibration
mode can be obtained from the following two equations:

T11o4þT12o2þT13 ¼ 0 ð19aÞ

T21o4þT22o2þT23 ¼ 0 ð19bÞ

in which
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It should be noted that the linear resonant frequencies of the
embedded DWCNT calculated by the Timoshenko beam theory
can be reduced to the results obtained in Ref. [19] by letting
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F1¼F2¼c3¼a3¼0 in Eq. (19). It is anticipated that Eq. (19) gives
as many as four different resonant frequencies for the first-order
mode vibration.
3. Numerical results and discussions

In order to investigate the effects of the polymer matrix
interfacial vdW forces (a1 and a3) and the interlayer vdW forces
(c1 and c3) on the vibrational behavior of the embedded CNT, the
relationship between the deflection amplitude and the resonant
frequency of the embedded DWCNT with simply support (S–S)
end boundary condition will be presented. In case study, it is
assumed that the Young’s modulus, Poisson’s ratio, effective tube
thickness and mass density for the embedded CNT are E¼1 TPa,
t¼0.35 nm, u¼0.34 and r¼2.3 gcm�3, respectively [17–20], and
the surrounding medium of the CNT is polyethylene. For a beam
with S–S end boundary condition, the first vibration mode is
y1ðxÞ ¼ sinl1x with l1¼(p/L). Accordingly, the deflection-depen-
dent resonant frequencies can be determined using the
Euler–Bernoulli and Timoshenko beam models from Eqs. (11)
and (19), respectively.

Without considering the axial load effect Fig. 1 shows the
deflection amplitude of vibration versus the resonant frequency o
for an embedded DWCNT based on the Euler–Bernoulli beam
model. The inner and outer diameters of the DWCNT are
d1¼0.7 nm and d2¼1.4 nm, and the length is L¼20d2. The lower
resonant frequency corresponds to a uni-directional vibration as
shown in Fig. 1(a), in which the deflections of both tubes have the
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Fig. 1. Effect of interfacial and interlayer vdW forces pIF and pIL on the nonlinear

vibrational mode of a DWCNT with S–S end boundary condition (d2¼1.4 nm and

L¼20d2) (a) uni-directional mode and (b) bi-directional mode.
same direction, the higher resonant frequency corresponds to a
bi-directional vibration as shown in Fig. 1(b), in which the
deflection of the tubes are in the opposite direction. These two
vibration modes for the embedded DWCNT are all noncoaxial. If
the DWCNT is modeled as a single beam for simplicity [20], it will
vibrate coaxially (w1¼w2). As a consequence, pIL becomes zero.
Under such situation without considering any vdW interactions,
there only exists one vibration mode as shown in Fig. 1(a) and the
bi-directional mode is missed. The discrepancy observed between
the curve (pIL¼0) and the others indicates the importance of
considering pIL in our work to model each tube as a single beam
with intertube interactions. Compared with the results for the
vibration of a free DWCNT (pIF¼0), it is found that the effect of
the surrounding polymer medium on the resonant frequency is
very significant for the uni-directional vibration. For example, the
linear resonant frequencies corresponding to the linear vdW
interactions are determined as 0.1171 and 2.5625 THz for the
free and the embedded DWCNT, respectively. However, the
surrounding medium has less effect on the bi-directional vibra-
tion of the DWCNT. The linear resonant frequencies for the free
and the embedded DWCNT are very close, i.e., 7.0659 and
7.3491 THz, respectively.

For the uni-directional vibration, it is found in Fig. 1(a) that the
resonant frequency for the free DWCNT is almost invariable when
the deflection amplitude increases from 0 to 0.08 nm. In addition,
the deflection amplitude ratio of the inner tube to the outer tube
is approximately 1.0003, which means a coaxial vibration. On the
other hand, the dependence of the resonant frequency on the
deflection amplitude for the embedded CNT is more sensitive,
especially for the outer tube. It should also be noted that the
deflection amplitude ratio of the inner tube to outer tube for the
embedded DWCNT keeps changing with the resonant frequency
and does not equal to 1, which indicates a noncoaxial vibration.
However, for the bi-directional mode, both the free DWCNT and
the embedded DWCNT experience noncoaxial vibration.

In order to reveal the CNT size effect on the nonlinear resonant
frequencies and the deflection amplitudes of the embedded
DWCNT, the deflection amplitude-frequency curves of the
embedded DWCNTs with different diameters for both uni-direc-
tional and bi-directional vibration modes are depicted in Fig. 2 for
comparison based on the Euler–Bernoulli beam model. The
length-to-diameter ratio is kept constant as (L/d2)¼20 and
d1¼d2�2t. It is found in Fig. 2(a) that the deflection amplitude
at a given resonant frequency for the uni-directional vibration
increases with the tube diameter, which has the similar trend as
an embedded SWCNT observed in Ref. [20]. However, the CNT
diameter effect on the bi-directional vibration of the embedded
DWCNT is different. For a given resonant frequency, the deflection
amplitude of the inner tube decreases with the increasing of the
CNT tube diameter, while the deflection amplitude of the outer
tube layer becomes more complicated. It decreases with the
increasing of the CNT diameter as long as the resonant frequency
is smaller than a specific value, while this situation is completely
reversed once the frequency is bigger than this value. For both
uni-directional and bi-directional vibrations, when the diameter
is large enough, for example, d2¼3.5 nm in the current case, the
CNT size effect on the resonant frequencies is not significant,
while these results are not shown in these figures. Fig. 3 shows
the CNT length effect on the nonlinear resonant frequencies of the
embedded DWCNT for both uni-directional and bi-directional
mode vibrations. The inner and outer diameters of the CNT are
kept constant as d1¼0.7 nm and d2¼1.4 nm. It is indicated in this
figure that the resonant frequencies of the embedded DWCNT
decrease with the increasing of the CNT length for both of these
two modes. However, when the CNT length-to-diameter ratio is
relatively big, for example, (L/d2)430, the CNT length effect upon



Fig. 2. CNT size effect on the nonlinear resonant frequencies of an embedded

DWCNT with S–S end boundary condition (L¼20d2 and d1¼d2�2t) (a) uni-

directional mode and (b) bi-directional mode.

Fig. 3. Effect of CNT length-to-diameter ratio on the nonlinear resonant frequen-

cies of an embedded DWCNT with S–S end boundary condition (d1¼0.7 nm and

d2¼1.4 nm) (a) uni-directional mode and (b) bi-directional mode.
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the resonant is not obvious. It is found in Figs. 2 and 3 that the
CNT size effect on the deflection amplitude-resonant frequency
relation of the embedded DWCNT has the similar trend as that for
the embedded SWCNT in Ref. [20].

Fig. 4 demonstrates the effect of the axial load on the vibra-
tional behavior of the embedded DWCNT with d1¼0.7 nm,
d2¼1.4 nm and length L¼20d2 predicted by the Euler–Bernoulli
beam model. The axial load is applied as a compressive strain e.
Since this applied compressive load softens the CNT; the resonant
frequency of the embedded DWCNT for both uni-directional and
bi-directional modes decreases with the increasing of the axial
compressive strain, as expected. This axial load effect on the
uni-directional vibration is more significant. Particularly, the
linear resonant frequencies corresponding to e¼0, 0.05 and
0.1 are 2.5625, 2.5086 and 2.4534 THz for the uni-directional
mode and 7.3491, 7.3304 and 7.3117 THz for the bi-directional
mode, respectively.

There is an expectation that Timoshenko beam model, which
takes into account shear deformation and rotary inertia effects,
may provide more accurate prediction for the vibrational beha-
vior of a CNT with smaller length-to-diameter ratio. Table 1 lists
the linear resonant frequencies of both free and embedded
DWCNT predicted by the Euler–Bernoulli and Timoshenko beam
models. Since Timoshenko beam theory is capable of capturing
both bending and shear deformation modes [33], the present
double Timoshenko beam model for the embedded DWCNT is
expected to give as many as four different resonant frequencies
for a given mode number. It is found in Table 1 that the first two
resonant frequencies of the Timoshenko beam model are close
but smaller than those predicted by the Euler–Bernoulli beam
theory, which overestimates the resonant frequencies for a linear
vibration. It is noted that the difference between the values of the
resonant frequencies predicted by different beam models in this
study is larger for a free DWCNT in comparison with an
embedded DWCNT. In other words, the Euler–Bernoulli beam
model may provide as accurate prediction on the first-order mode
vibration for an embedded CNT as the Timoshenko beam model
even for the beams with smaller length-to-diameter ratios. This is
due to the medium effect and agrees well with the observations in
the existing studies [19,20].

It is also found in this table that the first resonant frequency of
the free DWCNT is corresponding to the coaxial vibration with
a1/a2E1, while the others correspond to the noncoaxial vibration.
Due to the constraint from the surrounding polymer medium, the
vibration of the embedded DWCNT is always noncoaxial. The
lowest resonant frequency corresponds to the uni-directional
vibration, while the upper resonant frequencies are related to
the bi-directional vibration. To clarify this Fig. 5 shows four
different modes of nonlinear vibration related to the first-order
mode number (n¼1) for the free and the embedded DWCNT with
d2¼1.4 nm and L¼10d2. The insets in this figure are used to
magnify the first and third modes. As can be seen in this figure,
the first and second modes, which can also be predicted by the
Euler–Bernoulli beam model exhibit a hardening nonlinearity, i.e.,
the deflection amplitude increases with the resonance frequen-
cies. However, the third and forth modes exhibit a softening
nonlinearity in which the deflection amplitude decreases with the
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resonant frequencies. This softening behavior can only be
captured by the Timoshenko beam theory, which is reported for
the first time in this work. It is obvious from Table 1 and Fig. 5
that the deflection of the inner and outer tubes differs more
prominent for the third and forth modes in comparison to the first
and second modes. Comparing the results of the free DWCNT in
Fig. 5(a) with the embedded one in Fig. 5(b), it can be concluded
that the surrounding medium has a very significant effect on the
relation between the resonant frequency and the deflection
amplitude for the uni-directional vibration in comparison to the
other bi-directional vibration modes. For example, the value of
the linear resonant frequency for the uni-directional vibration
Fig. 4. Effect of axial load on the nonlinear resonant frequencies of an embedded

DWCNT with S–S end boundary condition (d1¼0.7 nm, d2¼1.4 nm and L¼20d2)

(a) uni-directional mode and (b) bi-directional mode.

Table 1
The first-order (n¼1) resonant frequencies of a free and an embedded DWCNT with

models (d1¼0.7 nm and d2¼1.4 nm).

L/d2 Uni-directional mode

Euler Timoshe

Free DWCNT 10 o (THz) 0.4683a 0.4529

a1/a2 1.0041a 1.0037

20 o (THz) 0.1171a 0.1161

a1/a2 1.0003a 1.0002

Embedded DWCNT 10 o (THz) 2.5986 2.5859

a1/a2 1.2506 1.2487

20 o (THz) 2.5625 2.5596

a1/a2 1.2456 1.2452

a These values are calculated by the model in Ref. [21] using the parameters in Eq
mode increases from 0.4529 to 2.5859 THz and the amplitude
ratio changes from 1.0037 to 1.2487, and a coaxial vibration
changes to a noncoaxial vibration.

Up to now, all the analysis is related to the first-order vibration
mode y1(x) only. To further investigate the applicability of each
beam model for CNTs with smaller length-to-diameter ratio and
the effect of surrounding medium for higher vibration mode, the
linear resonant frequencies for the transverse vibration of a free
and an embedded DWCNT for different mode numbers n are
calculated by both the Euler–Bernoulli and Timoshenko beam
models and are listed in Table 2. The DWCNT has inner and outer
S–S end boundary condition predicted by Euler–Bernoulli and Timoshenko beam

Bi-directional mode

nko Euler Timoshenko

7.0760a 7.0506 18.9453 34.0226

�1.9919a
�2.0116 �0.1016 �68.1970

7.0659a 7.0591 18.4207 33.7317

�1.9995a
�2.0049 �0.1086 �67.2904

7.3601 7.3298 18.9490 34.0226

�1.5992 �1.6175 �0.1016 �67.5578

7.3491 7.3409 18.4218 33.7317

�1.6057 �1.6107 �0.1086 �66.6512

. (6) of the current work.

Fig. 5. Nonlinear vibrational modes of a DWCNT related to the first-order mode

number (n¼1) predicted by the Timoshenko beam model (d1¼0.7 nm, d2¼1.4 nm

and L¼10d2) (a) free DWCNT and (b) embedded DWCNT.



Table 2
The resonant frequencies of a free and an embedded DWCNT with S–S end boundary condition predicted by Euler–Bernoulli and Timoshenko beam models for different

mode numbers (d1¼0.7 nm, d2¼1.4 nm and L¼10d2).

Mode

number n

Uni-directional resonant frequency o (THz) Bi-directional resonant frequency o (THz)

Free Embedded Free Embedded

Euler Timoshenko Euler Timoshenko Euler Timoshenko Euler Timoshenko

1 0.4683 0.4529 2.5986 2.5859 7.0760 7.0506 7.3601 7.3298

2 1.8611 1.6565 3.1106 2.9839 7.2385 7.1321 7.5378 7.4134

3 4.0581 3.3008 4.6063 4.0405 7.9706 7.5450 8.3317 7.8480

4 6.5654 5.1369 6.7052 5.5380 10.0944 8.4448 10.5199 8.7787

5 9.0116 7.0381 9.0335 7.2509 14.1713 9.8264 14.5281 10.1773
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diameters of d1¼0.7 nm and d2¼1.4 nm, and length of L¼10d2.
For simply supported DWCNT, its vibration modes are
ynðxÞ ¼ sinlnx with ln¼np/L (n¼1,2y). It is observed in
Table 2, as the mode number n increases from 1 to 5, the
difference between uni-directional resonant frequencies obtained
by the Euler–Bernoulli and Timoshenko bream models increases.
For example, the discrepancy is calculated to increase from 3.4%
to 28% for the free DWCNT and from 0.5% to 24.6% for the
embedded one. A similar trend on the discrepancy between the
Euler–Bernoulli and the Timoshenko predictions is also observed
for the bi-directional vibration. From the current analysis, it is
concluded that the applicability of different beam models highly
depends on the vibration mode numbers when they are applied to
predict the vibrational behavior of CNTs. Timoshenko beam
model is highly recommended for the higher-mode vibration
analysis of CNTs, for which the effects of shear deformation and
rotary inertia cannot be neglected.
4. Conclusion

In summary, the nonlinear free vibrational behavior of a
double-walled carbon nanotube (DWCNT) embedded in a
polymer matrix subjected to a compressive axial load has been
studied with the consideration of the nonlinear interlayer van der
Waals (vdW) forces between two adjacent tubes and the non-
linear interfacial vdW forces from the surrounding medium. Both
the Euler–Bernoulli and Timoshenko beam models are applied to
derive the deflection dependent resonant frequencies. The results
show that the surrounding medium has a significant effect on the
vibrational behavior of the embedded CNT, which are quite
different from that of the free CNT. Due to the surrounding
medium effect, all the vibration modes of the embedded DWCNT
are noncoaxial. It is also found that the surrounding medium
effect on the uni-directional vibration is more pronounced than
the bi-directional vibration.

A softening behavior on the deflection amplitude-resonant
frequency relation is captured by the Timoshenko beam theory,
which is reported for the first time in literature. Comparing the
results predicted by these two beam models, it is found that the
Euler–Bernoulli beam model may provide as accurate results for
the first-order mode vibration of the embedded CNT as the
Timoshenko beam model even for beams with smaller length-
to-diameter ratio due to the surrounding medium effect. How-
ever, the Timoshenko beam model is highly recommended for the
higher-mode vibration analysis of CNTs due to the effects of shear
deformation and rotary inertia. This comprehensive analysis on
the vibration of MWCNTs is expected to be helpful for the design
and applications of CNT-based resonators, sensors and
nanocomposites.
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