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» Demonstrate the significance of considering nonlinearity of vdW forces for embedded GS.
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Nonlinear vibration and postbuckling behavior of a single layer graphene sheet (SLGS) embedded in a
polymer matrix aroused by the nonlinear van der Waals (vdW) forces are investigated using the
Kirchhoff plate theory. The interfacial vdW forces are described by a nonlinear function in terms of the
graphene deflection. Through harmonic balance method, the nonlinear relation between deflection
amplitudes and resonant frequencies of free vibrations of the SLGS and its postbuckling equilibrium
path are derived. It is found that variation of resonant frequencies of an embedded SLGS is less
dependent on the graphene aspect ratio and mode numbers as compared with a free-standing one.
In-plane load effects upon the vibrational behavior of the SLGS and its postbuckling are also discussed.
Simulation results have demonstrated the significance of considering the surrounding medium effect
and its nonlinearity in the study of the vibration and buckling of the embedded graphene with

applications in nanocomposties.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Up to now, different allotropes of carbon, ranging from diamond
and graphite (3D), to graphene (2D) [1], to nanotubes (1D) [2],
and to fullerenes (0D) [3], have been reported and attracted
tremendous attention from research communities to explore their
properties. Among these novel materials, the discovery of gra-
phene [1] is considered as a breakthrough in the nanotechnology
era due to its extraordinary mechanical, electrical and thermal
properties [4-6]. These superior properties have foreseen the
potential applications of graphene in nanocomposites and as a
revolutionary substitute of silicon in electronics. When graphene
is incorporated into polymer matrices, the properties of host
materials manifest remarkable improvement [7,8], for example,
the mechanical and thermal properties of these materials rank
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among the best in comparison with other carbon-based compo-
sites [8]. Emerging as a new class of materials, these graphene-
based composites may hold promise for many applications, such
as photocatalysis [9], lithium-ion batteries, fuel cells, and sensors
[10], electronics [11], transparent conductors [12], and super-
capacitors [13].

To make the full potential applications of graphene-based
polymer composites, it is essential to understand their mechanical
behavior, which has become a hot topic recently. Due to extreme
difficulties in conducting experiments on nanoscale materials and
computing expensiveness of atomistic studies, many researchers
have pursued continuum mechanics models for the analysis of
graphene. In particular, considerable efforts have been devoted to
understanding vibrational and buckling behavior of graphene or
graphene-based composites. The vibrational behavior of multi-layer
graphene sheets (MLGSs) embedded in a polymer medium was
investigated by considering the vdW forces from both adjacent
layers [14,15] and surrounding medium [16,17]. Wang and He [18]
studied the effect of initial stress on the vibration of MLGSs with the
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consideration of interlayer vdW forces. The influence of boundary
conditions on the vibration of the embedded MLGSs was studied in
Ref. [19]. Pradhan and Kumar conducted the vibration analysis of a
single layer graphene sheet (SLGS) embedded in an elastic medium
considering orthotropic properties of graphene [20]. In order to
incorporate the small scale effects, the nonlocal elasticity theory has
also been adopted by some researchers to study the vibrational
and buckling behavior of graphene or graphene-based composites
[19-28]. It has been reported that the nonlocal plate model is
necessary in vibration analysis of graphene sheets with a length less
than 8 nm [21]. It is expected that with the increase of the graphene
size, the nonlocal effect becomes less. For example, the fundamen-
tal resonant frequencies calculated by the local plate theory and
nonlocal plate theory are very close when the plate side size equals
to 10 nm as shown in Fig. 2 of Ref. [21]. Among these studies, the
higher order shear deformation plate theory in which the displace-
ment field is expanded up to the third-order of the thickness
coordinate was used by Pradhan and coworker [24,25] to get more
accurate prediction on the vibrational and buckling behavior of a
graphene sheet.

It should be mentioned that most existing continuum studies
of graphene are linear analyses. Until recently, there have been
several investigations on the matter of different aspects of non-
linearities for carbon nanotubes (CNT) and graphene. Regarding
CNTs, the nonlinearity due to large deformation [29-31], interlayer
nonlinear vdW interactions between adjacent tubes [32,33], and
nonlinear interfacial vdW forces from surrounding medium [33,34]
has been accounted in studying the vibrational and buckling
behavior of CNT or CNT-based composites. In addition, there are
also a few numbers of nonlinear studies on graphene. For example,
Sadeghi and Naghdabadi [35] introduced a hybrid atomistic-
structural element based on the empirical inter-atomic potential
function for modeling the geometrical and material nonlinearity in
dynamic response of a graphene sheet. Shen et al. [36] studied the
nonlinear vibration behavior of a simply supported SLGS with
geometric nonlinearity under different temperatures. In their work,
the nonlocal parameter was obtained by matching the natural
frequencies of graphene sheet obtained from the molecular
dynamics simulation results with the numerical results obtained
from the nonlocal plate model. Recently, Jomehzadeh and Saidi
[37] studied large amplitude vibrations of MLGSs based on the von
Karman plate model and the Eringen’s nonlocal elasticity theory.
The harmonic balance method was used to find the solutions of
free nonlinear vibration for single, double, and triple layer gra-
phene sheets with different boundary conditions. With the con-
sideration of nonlinear vdW interaction between any two adjacent
layers of MLGSs and large deformation of each individual layer,
Wang et al. [38] developed a continuum mechanics model to
analyze the vibration of MLGSs. The nonlinear amplitude-
frequency relations of double layer graphene sheets (DLGSs) were
derived in their study. Mianroodi et al. [39] introduced a mem-
brane model which is capable of modeling the nonlinear vibration
of SLGS by including the effects of stretching due to large deflec-
tion. In their work, the finite difference method was used to solve
the nonlinear governing equation numerically with different
boundary and initial conditions.

For the embedded graphene in polymer matrix, the surround-
ing medium was usually described by a Winkler model in most
existing studies. In such a model, the surrounding medium
was assumed to act as linear springs exerting pressure on the
graphene sheet, which is linearly proportional to the deflection of
the graphene. Different arbitrary values for the stiffness of spring
could be assigned to represent the stiffness of the surrounding
medium. In order to accurately account for the nanoscale inter-
action at the interface between graphene sheet and polymer
medium, Behfar and Naghdabadi [16] calculated the exact value

for the stiffness of such a linear spring based on the vdW
interaction forces. However, this interfacial vdW force governed
by the Lenard-Jones potential is intrinsically nonlinear [40].
The effect of such nonlinear interfacial vdW forces from the
surrounding medium on the vibrational behavior of a single-
walled carbon nanotube (SWCNT) embedded in a polymer matrix
was studied by Mahdavi et al. [34] using conventional beam
theories. It was found that the nonlinear vdW forces from the
surrounding medium had significant effect on the resonant
frequencies of the embedded SWCNT. Hence, it is natural to
believe that this nonlinear vdW force might play an important
role on the vibrational and buckling behavior of the embedded
graphene. To the authors’ best knowledge, such an atomistic-
based nonlinear interaction effect on the vibration and buckling of
embedded graphene has not been studied thus far. Therefore, the
objective of the current work is to investigate the nonlinear
vibration and postbuckling of an embedded SLGS aroused by the
nonlinear vdW interaction forces from the surrounding medium
using classic plate theory. The effect of in-plane load on such
nonlinear vibration and postbuckling behavior will also be exam-
ined. Simulation results will demonstrate the significance of
considering the surrounding medium effect and its nonlinearity
in the study of the vibration and buckling of the embedded
graphene.

2. Problem formulation

The resonant frequencies and the buckling of the embedded
SLGS will be studied by the classical Kirchhoff plate theory [41] in
this work. Since the nonlinearity source is from the interfacial
vdW forces, the nonlinear expression of the resultant pressure
exerted by the surrounding polymer matrix to the graphene will
be firstly derived from the interfacial cohesive law based on the
vdW forces [40]. Using harmonic balance method, an explicit
expression for the resonant frequencies of the nonlinear vibration
of the embedded SLGS with simply supported boundary condition
will be derived correspondingly.

2.1. Nonlinear expression of interfacial pressure from vdW
interaction forces

In the absence of mechanical interlocking and covalent bonds
at the graphene/polymer interface, the interfacial interaction
between the graphene and the polymer comes from vdW forces.
This interaction can be well described by the cohesive energy per
unit area between a graphene and a polymer matrix as derived by
Jiang et al. [40] based on the Lennard-Jones potential, i.e.,

2 2 /50\° [d0)\®
P©) = 5 pepcedy [15 (g") —(3") } 8))

where ¢ is the interfacial spacing, € and Jo are Lenard-Jones
potential parameters, and pp and pc are volume density of
polymer molecules and area density of carbon atoms on the
graphene, respectively. The values of all these parameters vary
with the interacting atoms or molecules. For example, if the
polymer matrix is taken as polyethylene with the composition of
repeating —-CH,- units, these parameters are calculated as
£=0.004656 eV, 5,=0.3825 nm, pp=0.3052 x 10%° molecules/m>
and pc=3.8177 x 10'° atom/m?. The equilibrium interfacial spa-
cing d. can be easily found from Eq. (1) as d.=(2/5)"/%5¢, and the
interaction force per unit area exerted on the graphene surface is
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derived as
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Notice that the above equation is derived for a graphene
resting on a polymer matrix, while in this study the graphene is
embedded in a polymer matrix, the resultant pressure on the
graphene layer is from both upper and lower matrices as shown
in Fig. 1a. Therefore, this resultant pressure is an odd function of
deviation of the graphene about the interfacial equilibrium
distance J., and its Taylor expansion can be expanded up to the
third-order nonlinear terms as
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which are the equivalent linear and nonlinear stiffness of the

surrounding medium. The interfacial spacing change equals to the
transverse deflection w of graphene, i.e., 0 —de=w.

2.2. Model development for equation of motion

For an isotropic SLGS with length a along x-axis, width b along
y-axis and thickness h, as shown in Fig. 1b, in general case, it is
subjected to biaxial compressive in-plane loads Ny and N, on
edges and distributed transverse load p per unit area due to the
surrounding medium effect as given in Eq. (3). The governing
equation for the vibration of a SLGS based on the Kirchhoff plate
theory [41] can therefore be derived as
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Fig. 1. (a) A single layer graphene sheet embedded in a polymeric matrix. In
equilibrium state, the distance between the graphene sheet and the upper and
lower matrix is de, (b) schematic of a SLGS under in-plane loading Ny and N, and
interfacial pressure p(x,y,t) from the surrounding medium.

where w is the transverse deflection of the sheet which is
assumed to be positive in the upward direction, D is the bending
stiffness of the plate defined as Eh/12 (1—v?) with E and v being
Young’s modulus and Poisson’s ratio. p is the mass density and V?
is the Laplace operator defined as

2
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3. Solutions

It is known that exact analytical solutions are not available for
the governing Eq. (5), therefore, approximate analytical solutions
are pursued to characterize the vibration and postbuckling
behavior of the embedded SLGS. By assuming harmonic solution
w(x,y,t) = AW(x,y)sin ot with A and W(x,y) representing the
deflection amplitude and the vibration mode of the graphene,
Eq. (5) can be rewritten as

oW W

4 21473 cin2 2
DVIW +oq W+ as AW sin® t—pha™W + Ny =z +Ny 55 =0

)

Eq. (7) reduces to the governing equation of a linear system
simply by ignoring the nonlinear term os. In the linear vibration
analysis the deflection amplitude of the vibration is independent
of frequency. However, the deflection amplitude in a nonlinear
analysis is frequency-dependent and can be determined by
different numerical or analytical approaches. In order to find the
nonlinear resonant frequencies of the embedded SLGS, the har-
monic balance method (HBM) [30,32-34,42] is employed, which
is an approximate analytical approach for solving nonlinear
oscillators generally with zero initial conditions. Following the
same HBM procedure, Eq. (7) becomes

7+ 71+ A3A° = Bw? —Nyi,—Nyn, =0, ®)
in which
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~(@/2) J=b/2) 0
a/2 b/2 21/
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@/2) J-b/2) 0
ra/2 b2 2n/w
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a —(a/2) J~(b/2) 0

~a/2 2T/
= <E> / / W2(x,y)dy dx x / sin® wt dt (9f)
b/ Jwm J-w2 0

Therefore, the relation between the resonant frequency and
the deflection amplitude of an embedded SLGS subjected to in-
plane load can be obtained from Eq. (8) if the vibration mode
W(x,y) is provided. In this study the SLGS is assumed to be simply
supported on all edges, the corresponding vibration mode satisfy-
ing such boundary conditions is

mnx nmy

W(x,y) = sin 0 sin B (10)



M.H. Mahdavi et al. / Physica E 44 (2012) 1708-1715 1711

Substituting this harmonic solution into Eq. (8) results in the
corresponding deflection dependent nonlinear resonant fre-
quency wyy as

27 1

a)ﬁ,Lza)f+@ﬁo¢3A2 (11)

in which @  is the linear resonant frequency represented by

5, 1 mm2 2] mm 2 nm 2
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Assuming no in-plane load, i.e., Ny=N,=0, Eq. (12) is reduced
to the same expression for the linear resonant frequency derived
in Ref. [17], when transverse shear stress in their modeling is
ignored. In addition, without surrounding medium effect by
assuming o7 =0, Eq. (12) can be simplified to the vibration of a
free-standing SLGS as

2 212
R me= o | () +(5) a3)
which is the same as that of a simply supported SLGS obtained in
Refs. [14,15].

In the buckling analysis of structures, it is interesting to obtain
the postbuckling equilibrium path, which is defined as the
relation between the applied loads and the deflection amplitudes
[43] after the buckling load. Considering the compressive force
acting on a column, the equivalent stiffness of the column will
decrease with the increasing of the applied force and becomes
zero when the force is close enough to its critical value [44].
Accordingly, the resonant frequency of the column becomes zero
at this point. The same response is expected for plates. Therefore,
the postbuckling equilibrium path of the embedded SLGS can be
obtained by substituting w=0 into Eqgs. (11) and (12) for the
deflection-dependant postbuckling load and the critical buckling
load, respectively. By letting N,=0, the postbuckling load along
x-axis NP is determined in terms of the deflection amplitude as

27 s a2
PB_ \B, 27 2
N =N+ 5 () 5% 1

in which N® is the buckling load along x-axis,

= () {2+ (5] + as)

When N, =0, the postbuckling load along y-axis N;’B is derived as

27 (b\?
PB _ \B 2
Ny® =Ny + (nn> 3A?, (16)
Table 1

in which N} is the buckling load along y-axis,
b\? mm\ 2 mmy2]?
B_ (D o hadd
Ny_<m> {D{<a> +(3) } +o<1} a7
4. Numerical results and discussions

In order to investigate the effects of the interfacial vdW forces
(o7 and a3) on the vibrational behavior of the embedded SLGS, the
relationship between the deflection amplitude and the resonant
frequency of the embedded SLGS with simply support (S-S) end
boundary conditions will be presented. For a SLGS with S-S edges,
the vibration mode is expressed as in Eq. (10). In numerical
simulation, it is assumed that Young’s modulus, Poisson’s ratio,
sheet thickness and mass density for the embedded SLGS are
E=1.02TPa, h=0.34 nm, v=0.16 and p=2250 kgm >, respec-
tively [14,15,20,38], and the surrounding medium of the graphene
is taken as polyethylene. Accordingly, the deflection-dependent
resonant frequencies can be determined using Eq. (11).

Without considering the in-plane load effect, Table 1 presents
the linear resonant frequencies f=w/2n of a free-standing
(Eq. (13)) and an embedded SLGS (a3=0) with different aspect
ratio a/b for different mode numbers. It is inferred from this table
that the polymer matrix stiffness derived from the vdW interac-
tions has a prominent effect on the resonant frequency of the
embedded SLGS. For example, for a square SLGS with a/b=1,
the linear resonant frequencies of the free-standing and the
embedded SLGS corresponding to m=n=1 are 0.0665 THz and
1.3362 THz, respectively. However, this surrounding medium
effect varies with the mode numbers and the aspect ratio of the
graphene, i.e., the influence of the surrounding medium decreases
with the increase of mode numbers m and n. It is also found that
the resonant frequencies of both the free-standing and embedded
graphenes at any mode shape numbers m and n decrease with the
increase of aspect ratio a/b. The decrease rate is more pronounced
for the free-standing SLGS in comparison with the embedded one,
for example, with the increase of a/b from 1 to 10, the resonant
frequency according to m=n=1 decreases about 1.98 times
from 0.0665 THz to 0.0336 THz for the free-standing SLGS and
about 1.0009 times from 1.3362 THz to 1.3350THz for the
embedded one. Moreover, for any given value of a/b, the increase
of the resonant frequency with the mode shape numbers m
and n is more noticeable for a free-standing SLGS. Therefore, it
can be concluded from these data that the existence of the
surrounding polymer medium may significantly influence the
vibrational behavior of the embedded SLGS, which needs further
investigation.

Linear resonant frequencies fi =(w/27) (THz) of a free-standing and an embedded graphene with S-S edges (b=10 nm).

alb m=1 m=2 m=3
n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
Embedded 1 1.3362 1.3449 1.3754 1.3449 1.3608 1.4029 13754 1.4029 1.4627
2 1.3352 1.3421 1.3696 1.3362 1.3449 1.3754 1.3390 1.3507 1.3860
3 1.3351 1.3416 1.3686 1.3355 1.3428 1.3710 1.3362 1.3449 1.3754
4 1.3351 1.3414 1.3682 1.3352 1.3421 1.3696 1.3356 1.3432 1.3720
5 1.3350 1.3413 1.3680 1.3351 1.3417 1.3689 1.3354 1.3424 1.3704
10 1.3350 1.3412 1.3678 1.3350 1.3413 1.3680 1.3351 1.3415 1.3684
Free- 1 0.0665 0.1663 0.3325 0.1663 0.2660 0.4323 0.3325 0.4323 0.5986
standing 2 0.0416 0.1413 0.3076 0.0665 0.1663 0.3325 0.1081 0.2078 0.3741
3 0.0369 0.1367 0.3030 0.0480 0.1478 0.3141 0.0665 0.1663 0.3325
4 0.0353 0.1351 0.3014 0.0416 0.1413 0.3076 0.0520 0.1517 0.3180
5 0.0346 0.1343 0.3006 0.0386 0.1383 0.3046 0.0452 0.1450 0.3113
10 0.0336 0.1333 0.2996 0.0346 0.1343 0.3006 0.0362 0.1360 0.3023
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Unlike the linear vibration, the resonant frequencies of the
embedded SLGS due to the nonlinear vdW forces are deflection
dependent. Fig. 2 shows the variation of the deflection amplitude
of the embedded SLGS with the resonant frequencies for different
aspect ratio a/b when mode numbers m=n=1. When the deflec-
tion amplitude is zero, the corresponding resonant frequencies
are aroused by the linear part of the vdW interaction forces. It is
clear that the nonlinear resonant frequency increases with the
increase of the SLGS deflection amplitude for any given aspect
ratio a/b, which exhibits a hardening nonlinearity. It is also
indicated in this figure that the resonant frequencies of the
embedded SLGS decrease with the increase of the aspect ratio
a/b for any given deflection amplitude. However, when the SLGS
aspect ratio is relatively big, for example a/b>5, the aspect
ratio effect upon the resonant frequencies is not significant. For
different mode numbers m and n, Fig. 3 shows the variation of the
deflection amplitude with the resonant frequency of an
embedded SLGS with a=b=10nm. As expected, the resonant
frequency increases with the increase of the mode numbers.
However, with the increase of the deflection amplitude, the

0.005 r

0.001
__0.004f |
E
£
<
S 0.003F 0ot ]
2 1.335  1.3351
-
£
[v]
§ 0.002f |
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] [ —a—a/b=3 |]
£801 —%— alb=4
—e— a/b=5
—sw— a/b=10
0 ‘ ; :
1.3345 1.3355 1.3365 1.3375

Resonant frequency fNL= mNL.f2n (THz)

Fig. 2. Variation of the deflection amplitude with the resonant frequency of an
embedded SLGS with S-S boundary conditions for different aspect ratio a/b
(m=n=1 and b=10 nm).
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Fig. 3. Variation of the deflection amplitude with the resonant frequency of the
embedded SLGS with S-S boundary conditions for different mode shapes numbers
(a=b=10 nm).

dependence of the resonant frequency on the mode numbers
becomes less for the nonlinear vibration. This result indicates that
the nonlinear vibrational behavior could distinguish significantly
from the linear vibrational behavior; therefore, it is essential to
incorporate the nonlinear vdW interactions in predicting the
mechanical properties of the embedded SLGS. In addition, it is
also observed from this figure that at a given value of the
nonlinear resonant frequency, the deflection amplitude for the
lower mode shape is larger, which means that the system is softer
at lower vibration modes.

The effect of in-plane loads on the vibrational behavior of a
simply-supported SLGS embedded in the polymer matrix with
a=b=10 nm for the first vibration mode (m=n=1) is presented
in Figs. 4 and 5. The in-plane loads N, and N, are along the x-axis
and the y-axis, respectively, and they are normalized by N® and
N? which are the buckling loads when a uni-axial load is applied
either along the x-axis or the y-axis direction as indicated in Eqs.
(15) and (17). Fig. 4 shows the effect of the uni-axial load (N, for
example) on the nonlinear resonant frequency of the embedded
SLGS. As expected, the resonant frequency decreases with the
compressive in-plane load while increases with the tensile one.
For example, at a given resonant frequency, the deflection
amplitude of the SLGS under compression is larger than the one
under extension. It means that the system under compression
load is softer than a system under extension. Particularly, when the
in-plane load decreases gradually from a tensile load of 0.75NE to
zero and then to a compressive load of 0.75NE, the linear resonant
frequency decreases from 1.7677 THz to 1.3362 THz and then to
0.6681 THz, respectively. It is concluded from this figure that the
in-plane load effect is significant for the linear vibrational behavior
of the embedded SLGS. However, with the increase of the deflec-
tion amplitude, the discrepancy among these curves becomes less
which means that the nonlinear resonant frequency at larger
deflection is less dependent on the in-plane load. Fig. 5 demon-
strates the effect of the bi-axial in-plane load on the nonlinear
resonant frequency of the SLGS. Similar trend to the results in
Fig. 4 is observed. In particular, when the in-plane load decreases
gradually from a tensile load of 0.75N§ to zero and then to a
compressive load of 0.49NE, the linear resonant frequency decreases
from 2.1128 THz to 1.3362 THz and then to 0.1890 THz. However,
when the bi-axial loads Ny and N, approach to half of their critical
values, the linear resonant frequency approaches zero, which can
be verified by substituting the half values of Eqs. (15) and (17) into
Eq. (12).

0.25 T :
. 0.2 |
E
=
<
8 015+ 5 —
= e Nx.'Nx=O.75 (Compression)
E s N_INB=0.50 (Compression)
m X X
5 01 N NB=0.25 (Compression) |1
3 N/N2=0 (No in-plane load)
© B_ )
B ol Nfog-fo,zs (Extension) | |
s x - N /N =-0.50 (Extension)
o N /NP=-0.75 (Extension)
0 4 " H e 1 1 1 1
0 1 2 3 4 5 6 7

Resonant frequency f =ay ."21'( (THz)

Fig. 4. Effect of uni-axial in-plane load N, on the resonant frequency of an
embedded SLGS with S-S boundary conditions (m=n=1 and a=b=10 nm).
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L

Fig. 5. Effect of bi-axial in-plane loads Ny and N,, on the resonant frequency of an
embedded SLGS with S-S boundary conditions (m=n=1 and a=b=10 nm).

When the applied uni-axial in-plane load equals to the buck-
ling load, the resonant frequency decreases to zero as derived in
the formulation section. In what follows, the postbuckling beha-
vior of the embedded SLGS due to the nonlinear vdW force from
the surrounding medium will be examined. Fig. 6a and b demon-
strate the postbuckling equilibrium paths for the embedded SLGS
with S-S end conditions for different aspect ratios a/b (b=10 nm)
when mode numbers m=n=1. In this figure, the postbuckling
load is normalized by the buckling load for a square SLGS, i.e.,
Ny op—1 and N¢ ,_; for Fig. 6a and b, respectively. It is found
that this postbuckling load increases with the increase of the
deflection amplitude and the aspect ratio has a significant effect
upon this postbuckling equilibrium path. When N, is set to zero,
the postbuckling load decreases modestly with the increase of the
aspect ratio a/b. Particularly, the values of the normalized buck-
ling load corresponding to a/b=1, 2, 3, 4 and 5 are 1, 0.99849,
0.99829, 0.99822 and 0.99819, respectively. On the other hand,
when N, is set to zero, the postbuckling load increases dramati-
cally with the increase of the aspect ratio a/b. For example, the
values of normalized buckling load corresponding to a/b=1, 2, 3,
4 and 5 are 1, 3.9939, 8.9846, 15.9715 and 24.9548, respectively.
Although this trend for both N, and N, is similar to what is
expected for a free-standing graphene as long as a/b is higher
than 1, the effect of the aspect ratio a/b on N, is more pronounced
than on N,. This is attributed to the significant surrounding
medium effect and indicates the necessity of considering the
surrounding medium effect in the postbuckling analysis of the
embedded SLGS.

Fig. 7 shows the postbuckling equilibrium paths of the
embedded square SLGS (a=b=10nm) with S-S end conditions
for various buckling mode shapes when subjected to a uni-axial
load N,. In this figure, the postbuckling load N® is normalized
with respect to NE_ m=n—1 Which is the buckling load of a square
SLGS when m=n=1. It is found that both the buckling and
postbuckling loads increase with the increase of the mode
number in the direction perpendicular to the applied load direc-
tion (i.e. n in this case), while the dependence of the buckling load
on this mode number is not significant. However, an opposite
trend is observed for the variation of both the buckling and
postbuckling loads when the mode number along the applied load
direction (i.e. m in this case) increases. Moreover, such depen-
dence of the buckling load upon this mode number is much more
prominent. For different mode numbers m and n, the normalized
buckling loads (N¥/N2 . _ . _ ;) of the embedded square SLGS are
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Table 2

The normalized uni-axial buckling load (NE/NE, m—n1.Ny=0) of a free-standing
and an embedded square SLGS with S-S boundary conditions for different mode
numbers (a=b=10 nm).

Embedded Free-standing

n=1 n=2 n=3 n=1 n=2 n=3
m=1 1.0000 1.0130 1.0595 1.0000 6.2500 25.0000
m=2 0.2533 0.2593 0.2755 1.5625 4.0000 10.5625
m=3 0.1177 0.1225 0.1331 2.7778 4.6944 9.0000

listed in Table 2 for further comparison with the free-standing
SLGS. For a free-standing SLGS, when the mode number perpen-
dicular to the applied loading direction increases (i.e., n in this
case), the buckling load increases, which is the same as what is
observed for an embedded SLGS. Unlike the embedded graphene,
the dependence of the buckling load on this mode number is very
significant for the free-standing SLGS. However, when the mode
number along the applied load direction increases (i.e., m in this
case), the buckling load of a free-standing SLGS decreases as long
as m < n, while increases when m > n. This discrepancy observed
from the current study is believed to attribute to the substantial
effect of the surrounding medium, i.e., the terms including o, and
a3 in Egs. (14) and (16) are dominant. If the surrounding medium
effect is not that big, i.e. «; and o3 representing the linear and
nonlinear interaction forces are small, the commonly accepted
relation between the buckling loads and the mode numbers is
expected to be the same as for a free-standing SLGS. With the
consideration of the surrounding medium effect, it can also be
concluded that the lowest buckling load for the uni-axial loading
condition may not correspond to the first-order mode numbers
(i.e., m=n=1), but corresponds to the lowest mode number
perpendicular to the loading direction and decreases as long as
the mode number along the loading direction increases depend-
ing on how big the exerted pressure is from the surrounding
medium.

5. Conclusions

In summary, the nonlinear free vibration of an embedded
single layer graphene sheet (SLGS) due to the nonlinear van der
Waals interaction forces from its surrounding polymer matrix is
studied through the classical Kirchhoff plate theory. Uni-axial and
bi-axial in-plane load effect on the nonlinear vibration of an
embedded SLGS and its postbuckling behavior are also investi-
gated. The results show that the surrounding medium has a
significant effect on the vibrational behavior of the embedded
SLGS, which is quite different from that of the free-standing SLGS.
The main results of the current work are summarized as follows:

1. Due to the nonlinear interaction forces, the resonant frequen-
cies of the embedded SLGS are deflection-dependent and
exhibit a hardening nonlinearity.

2. The dependence of the resonant frequencies of an embedded
SLGS upon the graphene aspect ratio and mode numbers is less
as compared with that for a free-standing SLGS due to the
surrounding medium effect. When the SLGS aspect ratio is
relatively big, for example a/b > 5, its effect upon the resonant
frequencies is not significant.

3. The in-plane load and mode numbers have great effect upon
the resonant frequencies of the embedded SLGS. However,
with the increase of the deflection amplitude, such depen-
dence of the nonlinear resonant frequencies on these factors
becomes less.

4. The nonlinear van der Waals interaction forces arouse the
dependence of the postbuckling load on the deflection ampli-
tude. The postbuckling behavior of the embedded SLGS is also
significantly affected by the SLGS aspect ratio and mode
numbers. The critical buckling load prediction is quite differ-
ent from that of a free-standing SLGS. For example, the critical
buckling load of an embedded SLGS under uni-axial loading
condition corresponds to the lowest mode number perpendi-
cular to the loading direction and decreases as long as the
mode number along the loading direction increases depending
on how big the interaction pressures are exerted by the
surrounding medium.

This analysis on the vibration and postbuckling behavior of the
embedded SLGS is expected to be helpful for the design and
application of graphene in nanocomposites.
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