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Abstract By shielding zinc stannate (ZTO, viz.,

Zn2SnO4) nanoparticles with reduced graphene oxide

(RGO) as well as multi-wall carbon nanotubes

(MWCNTs), we have successfully created ZTO/RGO/

MWCNTs composites via a facile hydrothermal process. In

the designed hybrid nanostructure, acting as the strut and

bridge to open the graphene sheets, 3D RGO/MWCNT nets

not only tackle the problem of volume expansion and the

aggregation of ZTO nanoparticles, but also maintain the

integration of anode materials for high electrochemical

performance. As a result, the resultant anode material

shows high reversible capacity, superior rate capacity and

long-running cycle performance for lithium ion batteries

(LIBs). For instance, a excellent reversible capacity of

915.9 mAh g-1 was obtained at the current density of

100 mA g-1 after 340 cycles. Our study demonstrates

significant potential of ZTO/RGO/MWCNTs as anode

materials for LIBs.
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1 Introduction

As one of the most popular commercial energy storage

devices, lithium-ion batteries (LIBs) attract huge attention

in both industries and academe due to their large-scale

applications [1–3]. The increasing requirements of power

rate, cycle lifetime, and safety make it urgent to find a

substitute for traditional graphite anode materials in LIBs.

At full lithiation, graphitic carbon can only reveal a limited

capacity of 372 mAh g-1 [4, 5]. Therefore, numerous

practical operations have been directed to the development

of new electrode materials with superior reversible capac-

ities. Due to the high natural abundance and theoretical

capacities [6] ([600 mAh g-1), metal oxides (Co3O4 [7] ,

Mn2O3 [8], ZnO [9], SnO2 [10], NiO [11], et al.) are

supposed to be the possible anode candidates for high-

performance LIBs. By contrast, tin-based materials attrac-

ted considerable attention with the high theoretical specific

capacity but relatively low working potentials. Moreover,

by the introduction of transition elements Zn, the working

potentials and energy densities of tin-based materials can

be effectively controlled. For example, Zn2SnO4 (ZTO)

possesses unique properties of high theoretical irreversible

capacity of 1231 mAh g-1, superior electron mobility of

10–15 cm2v-1s-1 and a wide band gap of 3.6 eV. How-

ever, the inevitable restriction of pulverization disadvan-

tage resulting from the high volume changes has been still

a bottleneck during the alloying reactions with lithium.

Consequently, a lot of efforts have been contributed to

stabilizing the structures of anode materials as well as

engineering the interfaces with electrolyte. For instance,

nano-crystallized materials, nanotubes, hollow spheres and

nestlike nanospheres were already widely reported [12–

14]. Other conventional methods of volume change control

consist of surface chemistry modification, coating modifi-

cation, and so on.

Reportedly, there are various extrinsic designs of

hybrid structures applied in the electrode for LIB anodes.

Wang et al. proposed SnO2@CNT with a reversible

capacity of 880 mAh g-1 after 200 cycles at 100 mA g-1,

where monodispersed SnO2 nanoparticles existed within

3D connected carbon networks, by dexterously utilizing

the porous structures and adsorption properties of MOFs

[15]. Zhong et al. proposed a two-stage calcination pro-

cess to successfully synthesize Sn@graphene-based

nanosheets incorporating of optimized nitrogen species,

and this anode delivered the discharge capacity of

890 mAh g-1 after continuous tests from 0.1 to 1 A-1

cycle at 100 mA g-1 [16]. By contrast, our strategy to

design a ZTO/GRO/MWCNTs nanocomposite via a facile

hydrothermal process with primary calcination is more

inexpensive and tunable as well as much easier to per-

form, more importantly, the superior performance

915.9 mAh g-1 after 340 cycles at 100 mA g-1 was

achieved. Therefore, on the basis of highly-efficient

electron conductivity and flexible and robust mechanical

properties, carbon allotropes, such as graphene and carbon

nanotubes were focused on the composite design with

proper incorporation to further strengthen the Li storage

performance [17]. Graphene, as an excellent carbonaceous

material, was reported to mitigate aforementioned obsta-

cles due to its essential virtue, such as large surface area,

high mechanical strength, strong chemical stability and

superior electrical conductivity [18, 19]. As for the

composites of metal oxide/RGO, the subdued volume

change and improved electrical conductivity efficiently

facilitate the electron transport rate and maintain the

integration of the electrodes in LIBs. For instance, a

SnO2–graphene nanocomposite exhibited a higher capac-

ity of 520 mAh g-1 compared with the SnO2 nanoparti-

cles failing completely after 100 cycles [20]. The RGO/C/

ZnO anode materials exhibited the reversible capacity of

600 mAh g-1 after 50 cycles, and this value was far more

than bare ZnO aggregates [21]. Another type of CoMoO4/

rGO composite revealed the better cycling performance

(628 mAh g-1 in the 100th cycle) than CoMoO4 elec-

trodes with only 321 mAh g-1 [22]. However, it

is inevitable to prevent the forming of solid-electrolyte-

interphase (SEI) film on the surface of anode in the initial

stage and the aggregation due to the p–p stacking inter-

action in the later drying process of graphene. Therefore,

some researchers reported that the incorporation of carbon

nanotubes (CNT) can physically separate the graphene

nanosheets, and alleviate these problems in certain extent

in LIB utilization. For example, graphene–MWCNT

reveals a specific capacity of 768 mAh g-1 at the current

density of 100 mA g-1 after 100 cycles, which is 2.5

times superior to that of pure graphene [23]. TiO2/RGO/

CNT was demonstrated to exhibit the capacity loss of

8.7 % after 100 cycles, less than that of TiO2/RGO

(11.5 %) and pristine TiO2 (14.7 %) [2]. It was found that

without adding CNT, Ge/RGO maintains a specific

capacity of 863.8 mAh g-1 after 100 cycles at the current

density of 100 mA g-1, but exhibits a inferior cycle life

performance compared with Ge/RGO/CNT [24].
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In this work, we construct a novel nanocomposite fea-

turing carbon nanotubes cross-linked Zn2SnO4 nanoparti-

cles/graphene network. It not only favors the electrolyte ion

and electron transfer, but also prompts the closer contact

area between the electrolyte and electrode. More impor-

tantly, RGO and CNT play a vital role to tackle some

handicaps including the volume expansion as well as the

aggregation of ZTO nanoparticles. As a result, it is

believed that the anode nanocomposite shows enhanced

electrochemical performance for LIBs.

2 Experimental

2.1 Materials Synthesis

The graphene oxide was obtained by a modified Hummers’

method, which has been previously reported by our group

[25, 26]. In a typical experiment, GO dispersion

(3 mg mL-1) was obtained by ultrasonic of the resultant

dry graphite oxide powder in deionized water for 30 min.

Then the desirable dispersion was centrifuged for 30 min

(10000 r/min) to wipe out some aggregates, afterwards

repeating sonicating the GO aqueous dispersion with

extraneous MWCNTs. Subsequently, Zn(CH3COO)2�2H2O

and SnCl4�5H2O with the mole ratio: 2: 1 were added into

the solution, diethanol amine, 1,2-propanediol and GO

solution (3 mg/mL) with volume ratio of 1: 2: 2, under

vigorous stirring for 30 min, and the as-prepared disper-

sions were transferred to a Teflon-lined autoclave (50 mL)

and maintained at 200 �C for 24 h. Then the as-obtained

product was filtered and washed with ethanol and deion-

ized water for several times, and freeze-dried overnight.

Finally, the resultant materials were calcined at 600 �C for

3 h under an argon atmosphere labeled as ZTO/RGO/

MWCNTs. For comparison, the product without MWCNTs

or only Zn(CH3COO)2�2H2O and SnCl4�5H2O was syn-

thesized under the same conditions, which was labeled as

ZTO/RGO and ZTO, respectively.

2.2 Materials characterization

The powder XRD patterns of the products were recorded

with an X-ray diffractometer (Germany, D8 Advance of

Bruker) using Cu/Ka radiation between 5o and 85o. The

FT-IR spectra were obtained on an IRAffinity-1 FT-IR

spectrometer (Shimadzu), and the samples were prepared

for FT-IR measurement by grinding the KBr dried powder

with and compressing into the pellets. The morphologies of

the samples were verified using field-emission scanning

electron microscopy (FE-SEM, Hitachi, SU8010) as well

as high-resolution transmission electron microscopy (HR-

TEM, JEM-3000F).

2.3 Electrochemical characterization

The lithium storage performance of as-obtained samples was

investigated utilizing CR2032 coin-type cells. The manu-

facture of working electrode was prepared via mixing active

material, acetylene black (Super-P) and polyvinylideneflu-

oride (PVDF) binder according to the ratio of 7.5:1.5:1 in N-

methyl-2-pyrrolidinone (NMP). Then the mixture was sub-

sequently coated on the copper foil following the dry process

in vacuums at 90 �C for 12 h. The coin cells assembled in a

glove box filling with purity argon, employing pure lithium

as counter electrode and reference electrode, 1 M LiPF6 was

added in a solution containing dimethyl carbonate and

ethylene carbonate as electrolyte. Cyclic voltammograms

(CV) were tested using an electrochemical workstation

(Princeton Applied Research Versa STAT 4) at a scan rate of

0.1 mV s-1 within the voltage range of 0.01–3.0 V (vs. Li/

Li?). The electrode performance was symbolized by the

galvanostatic discharge–charge curves in a voltage range

from 0.01 to 3.0 V (vs. Li/Li?) with the battery testing sys-

tem (LANHE CT2001A). The data of the electrochemical

impedance spectroscopy (EIS) was obtained by Princeton

Applied Research (Versa STAT 4) at a frequency from

0.01 Hz to 100 kHz.

3 Results and discussion

Scheme 1 depicts the synthesis process of ZTO/RGO/

MWCNTs network nanocomposite. The oxidation exfoli-

ation of graphite produces graphite oxide through the

modified Hummers’ method. First, ultrasonic treatment

benefits to uniformly mix GO and MWCNTs, and a cross-

linked appearance with the individual interacted MWCNTs

adsorbed onto the GO surface by p-stacking is observed.

Then, a certain amount of Zn(CH3COO)2�2H2O and

SnCl4�5H2O was added into the GO/MWCNTs suspension

and mixed equally. Finally, the products were fabricated

via one-step hydrothermal reaction combined with sequent

thermal treatment. Delightedly, the cross-linked structure

consisting of ZTO, RGO and MWCNTs was expected to

exhibit enhanced performance.

The XRD patterns of ZTO/RGO and ZTO/RGO/

MWCNTs clarifying the phase purity and crystallographic

structure were shown in Fig. 1a. Perfectly assigned to the

ideal cubic inverse spinel, the standard data (PDF#24-

1470) indexed by the correlative diffraction peaks indicates

high pure ZTO. The lattice planes of (111), (220), (311),

(222), (400), (422), (511), (440) and (533) are located at

17.7�, 29.1�, 34.2�, 35.9�, 41.6�, 51.6�, 55.0�, 60.4� and

71.3� respectively. The (002) peak of ZTO/RGO/

MWCNTs is not observed in ZTO/RGO, which may be due

to the deposition of MWCNTs on the surface of graphene.
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To evaluate the interactions between C-, O-, Zn- and Sn-

during the synthetic process of ZTO/RGO and ZTO/RGO/

MWCNTs, FT-IR spectra were measured within the range

of 4000–500 cm-1, as revealed in Fig. 1b. The absorption

peaks are related to chemical composition and crystalline

structure. As previously reported [27], the bands located at

3488, 1400 and 6387 cm-1 are the regions of remark-

ableness, corresponding to the stretching vibration of H–O,

O–C and O–Sn, respectively. These results prove a com-

posite of ZTO/RGO/MWCNTs rather than ZnSn(OH)6 and

other heterostructures symbolized by the Sn–O–H and

[Sn(OH)6]
2- etc. [28]. Additionally, the oxygen-containing

functional groups in the graphene and CNT surface were

found.

Figure 2a, b shows SEM images of ZTO/RGO/

MWCNTs at high and low magnifications. It can be iden-

tified that the nanocomposites were wrapped around by

graphene with the typical rippled and crumpled structure,

as well as MWCNTs with longer length uniformly dis-

persed in the surface of RGO [25]. More importantly, in
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Fig. 2b, ZTO nanoparticles were routinely anchored on

CNT and graphene layers. In this design, MWCNTs were

used as the strut and bridge to open the graphene sheets,

which avoids agglomerating with each other, and facilitates

the diffusion of lithium ion and electrons. Moreover, gra-

phene was utilized as the substrate materials for the deposit

of ZTO nanoparticles. This unique structure can mitigate

the particle-fracture in electrode materials, and thus slow

capacity fade of the anode materials for lithium-ion

batteries.

TEM and HR-TEM images were shown in Fig. 3 to

further investigate the morphology of carbon nanotubes

cross-linked Zn2SnO4 nanoparticles loading on graphene

network. The lattice fringe of about 0.306 nm corresponds

to the (220) plane of ZTO. From the architecture of the

composite assembled by the uniformly distributed ZTO

nanoparticles attaching on the MWCNTs and graphene

surface, one can verify the successful incorporation of our

product rather than several individuals.

Figure 4a compares the cycling performance of ZTO

nanoparticles, ZTO/RGO and ZTO/RGO/MWCNTs elec-

trodes at a current density of 100 mA g-1. It can be found

that in the initial cycle, high discharge capacities of ZTO

nanoparticles (1678.6 mAh g-1), ZTO/RGO (1499.6 mAh

g-1) and ZTO/RGO/MWCNTs (1507.6 mAh g-1) were

obtained. Clearly, the three samples delivered various

Fig. 2 Typical SEM images of ZTO/RGO/MWCNTs

Fig. 3 a, b, c TEM and d HRTEM images of ZTO/RGO/MWCNTs
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cyclability upon cycling. The ZTO nanoparticles anode

shows the worst performance with a low discharge capacity

of 167.8 mAh g-1 within 20 cycles. It is widely docu-

mented that this poor performance may be related to the

irreversible formation of Li2O matrix and the active

interreaction between the compounds of Li–Sn and Li–Zn

[26–31], as well as the pulverization problem and the

sustainable consumption of lithium-ion by the breaking and

reforming of solid electrolyte interphase (SEI) films. Take

advantages of RGO, the ZTO/RGO anode shows a specific

discharge capacity of 608.6 mAh g-1 at the 100th cycle

benefiting from the 3D conductive graphene network. After

introduction of MWCNTs, capacity fading of the anode

material was further greatly alleviated, for instance, it

revealed a super reversible capacity of up to 915.9 mAh

g-1 after 330 cycles. The main reasons of the capacity

improvement may be ascribed to the functions of the

acceptable electronic conduct, high specific surface area

and the specific porous structure [32].

Figure 4b shows the rate performances of ZTO/RGO/

MWCNT anode at the varied current density range of

100–1000 mA g-1. The specific capacities reduced pro-

gressively as the current density increased, but the anode

worked stably at each current density. It is noteworthy that

at the highest current density of up to 1000 mA g-1, a

reversible capacity of 283.8 mAh g-1 was still obtained.

When the current density returns to 100 mA g-1, it retains

a discharge capacity of 923.5 mAh g-1 in the 385th cycle,

which demonstrated the significant function of the capa-

bility of the ZTO/RGO/MWCNTs electrodes with long life

cycle. The superior rate properties ought to be attributed to

the synergetic effects deriving from ZTO, graphene and

MWCNTs which build the efficient connections in the

novel 3D conductive network to protect the integrity of

electrode material.

To identify the electrochemical reactions in the initial

five cycles, cyclic voltammetry (CV) was conducted at

ambient temperature at a scan rate of 0.1 mV s-1 in the

voltage ranging from 0.01 to 3.0 V, as shown in Fig. 4c.

Based on the electrochemical process of ZTO/RGO/

MWCNTs, a proposed Li storage mechanism is listed as

follows [33]:

4Liþ þ Zn2SnO4 þ 4e� ! Sn þ 2Li2O þ 2ZnO ð1Þ

8Liþ þ Zn2SnO4 þ 8e� ! 2Zn þ Sn þ 4Li2O ð2Þ

xLiþ þ Snþ xe� $ LixSn 0� x� 4:4ð Þ ð3Þ

yLiþ þ Znþ ye� $ LixZn 0� x� 4:4ð Þ ð4Þ

It can be found that, with Li metal used as the counter

electrode, an intensive reduction peak located at 0.39 V

disappears in the following cycles. It corresponds to the

forming of SEI films on the electrode surface as well as the

decomposition of the electrolyte. The evident cathodic

peak appearing at 0.8 V and the anodic peaks at 1.25 and

0.56 V in the first cycle match with the process of multi-

step lithium insertion reaction (Eqs. 1 and 2), which elab-

orates the irreversible reduction of Zn2SnO4 to Sn or Zn

generating the amorphous Li2O and delithiation respec-

tively. In the subsequent anodic scan, the extended peaks

occur at 0.30 and 0.60 V as well as the anodic peaks at 0.55

and 1.5 V correspond to certain reversible reactions and the

de-alloying process of LiyZn and LixSn (Eqs. 3 and 4).

The electrochemical performance of the as-prepared

ZTO/RGO and ZTO/RGO/MWCNTs was evaluated by

galvanostatic discharge/charge testing at a current density

of 100 mA g-1. As shown in Fig. 4d, the capacities of

ZTO/RGO in the first discharge and charge cycles are

1304.06 and 655.91 mAh g-1 respectively, while the

introduction of MWCNTs increases both values, that is,

1507.6 and 828.84 mAh g-1, respectively. Notably, the

ZTO/RGO/MWCNTs electrode shows higher capacity, and

delivers a higher coulombic efficiency (54.97 %) over

ZTO/RGO electrode (50.30 %). These results highlight the

synergistic effect of the novel nanocomposite featuring

carbon nanotubes cross-linked Zn2SnO4 nanoparti-

cles/graphene network.

The electrochemical impedance spectroscopy (EIS) was

certified the improved electrical conductivity of ZTO/

RGO/MWCNTs (see the Nyquist plots in Fig. 4e). By fit-

ting the Nyquist plots via the equivalent circuit (Fig. 4f),

the impedance data were analyzed accurately. The circuit

include ohmic resistance (Rs), two RC parallel elements in

series demonstrating the SEI film on the surface (Rsf and

CPEsf), lithium ion charge transfer at interface (Rct and

CPEct), and Warburg impedance for solid state diffusion of

lithium ions. A constant phase element (CPE) was used in

the equivalent circuit instead of a pure capacitance due to

the inhomogeneous surface of the thin film working elec-

trode. CPEsf and CPEct are constant phase elements cor-

responding to the surface film and double layer

capacitance, respectively. According to the fitting results

presented in Table 1, ZTO/RGO shows a lower charge

transfer resistance (110.9 X) than ZTO nanoparticles

(411.6 X). By adding the MWCNTs, the ZTO/RGO/

Table 1 The typical fitted parameters in the electrochemical impe-

dance spectroscopy

Samples Rsf Rct CPEsf CPEct

ZTO 0.68 411.6 7.79E-06 4.54E-05

ZTO/RGO 1.33 110.9 1.08E-05 1.50E-05

ZTO/RGO/CNTs 1.2E-03 25.45 0.03 2.03E-05
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MWCNTs network with the superior conductivity delivers

the much smaller value of 0.0012 X for Rsf and 25.45 X for

Rct respectively which is favorable for the transport of Li

ions and the access of electrolyte as well as prompts in the

optimized electrochemical performance [9, 34].

Table 2 shows the comparison of the electrochemical

performance of the ZTO materials previously reported and

in this work. A series of researches were reported. The

original strategy is to design different novel nano/micro

structure of ZTO with relative stable structure and high

surface area, such as hollow box, octahedron or nano-

spheres. However, the low electrical conductive and large

volume change highly affect the performances of ZTO. As

a result, numerous additives with flexible structure and

high electrical conductive, such as graphene, N-doped

carbon and conductive polymer, have been introduced to

synthesize the composites with ZTO. Moreover, multi-

structure of ZTO composites have been developed with

two or more types of conductive and buffering matrix, like

the Co–ZTO–G–C and ZTO boxes@C/graphene. In this

study, we design a novel kind of RGO and MWCNTs

coexisted with ZTO nanocomposites. Compared with the

previous results (Table 2), the ZTO nanocomposites with

MWCNTs and cross-linked RGO network improve the

electrochemical performance, and it opens a new strategy

to develop tin-based based materials for LIBs.

4 Conclusion

In summary, we have developed a novel ZTO/RGO/

MWCNTs architectures by anchoring ZTO nanoparticles

on the surface of intertwined MWCNTs and wrinkled

graphene, to form an advanced electrode materials for

LIBs. The microstructures, compositions and electro-

chemical performance of the abtained product were

investigated in detail. The results reveal that the introduc-

tion of GO and MWCNTs effectively alleviate the capacity

fading and optimize the ZTO electrodes with considerable

electronic conduct, high specific surface area and novel

porous structure. It is trustworthy that the designed carbon

nanotubes cross-linked Zn2SnO4 nanoparticles/graphene

network holds great promise as durable anode materials in

LIBs.
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