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ABSTRACT 

 

Multiobjective optimization involves the simultaneous optimization of more than one 

objective function. This is quite commonly encountered in Chemical Engineering. A 

considerable amount of research has been reported in this area over the last twenty years. 

These are reviewed in the present paper. The general background of this area is presented at 

the beginning, followed by a description of how the results can be described in terms of 

Pareto sets. We then present the several methods available for generating these optimal 

solutions. Applications of optimization in Chemical Engineering wherein multiple 

objectives are encountered, as well as special adaptations of the basic algorithms required 

to solve these problems, are then discussed. Some comments are also made on possible 

directions that future research may take in this area. 

 

Keywords: Multiobjective optimization, Pareto sets, ε-constraint technique, Genetic 

Algorithm, Non-dominated sorting genetic algorithm. 
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1. INTRODUCTION 

 Present day chemical engineering is associated with core competencies in four 

major areas: reaction engineering, transport phenomena, separations science, and 

computational and systems science. Several paradigm shifts have taken place in this 

discipline over the years. These include the introduction of mathematical modeling in its 

various forms (including process control, systems approach, etc.), the shift from unit 

operations to transport phenomena, the recent transition towards biosystems, etc. However, 

one facet of chemical engineers remains unchanged, namely, that they have a responsibility 

of integrating the chemical engineering core constituencies with economic parameters so as 

to achieve commercial success. In this context, optimization of chemical processes plays a 

key role in chemical engineering. Optimization techniques have been applied to problems 

of industrial importance ever since the late 1940s and several excellent texts (Beveridge 

and Schechter, 1970; Bryson and Ho, 1969; Edgar and Himmelblau, 1988; Lapidus and 

Luus, 1967; Ray and Szekely, 1973) describe the various methods with examples. The 

complexity of the problems studied has increased as faster and more powerful 

computational hardware and software have become available. We believe that solutions of 

even more sophisticated optimization problems will become available as complex 

biosystems are studied and get exploited commercially in the future. In this decade, 

particularly, several industrial systems have been optimized, which involve multiple 

objective functions and constraints, using a variety of mathematical techniques and robust 

computational algorithms. In a few cases, the optimal solutions have been implemented in 

industry with some success. This short review describes these recent studies, and illustrates 

them with their adaptations and applications. Some conjectures at a conceptual level are 
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presented thereafter, and it is hoped that these will mature to fruition as more work gets 

reported in this interesting area of activity. 

Optimization of chemical processes has been a fascinating field of study for several 

decades. Until about 1980, virtually all problems in chemical engineering were optimized 

using single objective functions. Often, the objective function (also called the cost function) 

accounted for the economic efficiency only, which is a scalar quantity. The reason for 

solving such relatively simple optimization problems was possibly, the limitations posed by 

the technology of computing systems. Most real-world chemical engineering problems 

require the simultaneous optimization of several objectives (multiobjective optimization) 

which cannot be compared easily with each other (are non-commensurate), and so cannot 

be combined into a single, meaningful scalar objective function. Examples include 

reliability, safety, hazard analysis, control performance, environmental quality, etc., apart 

from the major goal of achieving economic efficiency. Until a few years ago, these several 

objective functions were combined into a single scalar objective function, using arbitrary 

weightage factors, so that the problem could become computationally tractable. This 

‘scalarization’ of what is really a vector objective function suffers from several drawbacks. 

One is that the results are sensitive to the values of the weighting factors used, which are 

difficult to assign on an a-priori basis. What is even more important is the less-recognized 

fact that there is a risk of losing some optimal solutions (Chankong and Haimes, 1983; 

Haimes, 1977). This happens if the non-convexity of the objective function (a set is said to 

be convex if the line joining two points of the set lies within that set) gives rise to a duality 

gap. [Numerically, a duality gap is the difference between the primal and the dual objective 

values (Farber, 1986; Goicoechea et al., 1982). Dual is another mathematical program with 
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the property that its objective is always a bound on the original mathematical program, 

called the primal. If the primal is feasible, the dual cannot be unbounded, and vice versa; if 

the dual is feasible, the primal cannot be unbounded. A dual provides a sufficiency test for 

optimality, for if feasible x and y can be found such that f(x) = F(y), it follows that x is 

optimal in the primal and y is optimal in the dual]. Therefore, it is necessary that a vector 

form of all the objective functions be used in formulating and solving real-life optimization 

problems. Such multiobjective optimization problems form the subject of this review.  

The concept of multiobjective optimization is attributed to the economist, Pareto 

(1896). After several decades, this concept was recognized in operations research and has 

recently become popular in engineering. Extensive literature is now available on 

multiobjective optimization but we limit ourselves to problems of Chemical Engineering 

interest only. 

 We start with a discussion of a simple example of a multiobjective optimization 

problem to illustrate some elementary concepts. Most techniques of solving such problems 

comprise of two phases---an objective phase, which is more precise and mathematical, 

followed by a subjective phase, which is statistical in nature and involves intuition and 

interaction with human beings (called decision-makers, DMs) who are familiar with the 

industrial operation being studied. In the first phase, a set of several optimal solutions is 

generated. This is referred to as the Pareto set. For example, a typical two-objective 

function minimization problem can be represented mathematically as  

Min I (x) ≡ [ I1(x), I2(x)]  (a) 

subject to (s.t.): 

  Model equations;   (b) 

 5



gj(x) ≤ 0, j  = 1, 2, …, J;  (c) 

hk(x) = 0, k = 1, 2, …, K;       (d)                                      (1) 

In Eq. 1, x represents a p-dimensional set (vector) of p design or decision variables. One 

needs to obtain the optimal values of x, which will minimize the two individual objective 

functions, I1 and I2 (which are constituents of the vector, I), while satisfying the 

requirements on gj and hk. gj(x) and hk(x) represent several inequality and equality 

constraints which limit the choices of x.  

 It is found that the solution of Eq. 1 often (but not always) comprises of several sets 

of optimal values of x, and is not necessarily a unique, single point in the p-dimensional x-

space. These several solutions correspond to different values of I1 and I2. Figure 1 shows 

the optimal solutions of Eq. 1 schematically, for a typical problem. Each point in the I2 vs. 

I1 plot in Figure 1 corresponds to an optimal solution, x (≡[x1, x2,…, xp]) of Eq. 1. The 

curve in Figure 1 is referred to as the Pareto set (Chankong and Haimes, 1983). If we 

consider two points, A and B, on this Pareto set, we find that on moving from one to the 

other, one objective function improves (decreases) while the other one worsens (increases). 

It is, therefore, not possible for us to identify which of these two points is superior to the 

other. Such points are called as non-inferior or non-dominating points since they are 

equally good. More formally and generally, non-inferior (or non-dominating) points are 

those for which, on moving from one point to the other, an improvement in one objective 

function cannot be obtained without deterioration in the other. Of course, several additional 

solutions, x, also exist which satisfy all the constraints in Eq. 1, but these are not optimal in 

any manner, and are excluded from Figure 1, since these are inferior to (or are dominated 

over by) the points shown in this diagram. We illustrate this using point C. If we compare 
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points A and C, we observe that these two points are non-dominating. However, point C is 

not a member of the Pareto set because point B is superior to C in terms of both the 

objective functions. The Pareto set narrows down the choices available to a decision-maker, 

who has to consider only these points for further evaluation. The Pareto set is obviously the 

first step for an optimization problem and is extremely useful.  

Point, U, in Figure 1, is referred to as the utopia. This is the point at which the two 

asymptotes of the Pareto set, meet. The asymptote, Ii = Ii * = constant, can be obtained by 

solving the single objective function optimization problem in which we minimize only Ii(x). 

Thus, Eq. 1a is replaced by Min Ii(x), with Eqs. 1b-d unchanged. It is clear that point U is 

not a solution of Eq. 1 [else it would have dominated over all the points of the Pareto set, 

and would have been the only (unique) solution to the problem], but represents an ‘ideal’. 

This point is a reference point used quite often for comparing optimal solutions. Pareto sets 

where one objective function is to be minimized while the other is to be maximized, or 

where both the objective functions are to be maximized, can be drawn in a manner similar 

to Fig. 1. In this review, however, we will discuss problems involving the minimization of 

all the objective functions only. This does not lead to any loss of generality since it is 

known (Deb, 1995) that one can easily replace the maximization of any objective function, 

say, Ii, by the minimization of a function, Fi. Several possible functions could be used 

(which do not change the location of the optima), and a simple and popular transformation 

is Fi  ≡ 1/(1 + Ii). 

A classic example of a 2-dimensional Pareto set (two-objective function problem) in 

Chemical Engineering is provided by an isothermal batch reactor in which the following 

series reaction is taking place: 
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C2k
B1k

A ⎯→⎯⎯→⎯       

 (2)   

We are interested in maximizing both the yield and the selectivity of the desired product, B, 

simultaneously. These are defined by  

Yield of B  =  
fedreactant ofmol

 produced B, product, desired of mol
  

Selectivity of B =  
formed  products all of mol

 produced B, product, desired of mol
  (3) 

Maximization of the yield is important since it leads to higher amounts of B. Maximization 

of the selectivity is desired since it leads to a reduction in the downstream separation costs. 

The yield and selectivity can be computed quite easily as a function of time, t, for any feed 

and temperature, by integrating the mass balance equations for this system. If we consider 

the simple problem where t is the only decision variable, and select a feed of pure A, and 

with temperature selected such that k2/k1 = 0.1 and k1 = 0.1, we obtain the results shown in 

Figure 2 (curve PQR, for 0 ≤ t ≤ 50). In region PQ, point Q dominates over all the other 

points and so would be the natural choice for the point of operation. However, the choice of 

the operating point is not as easy in region QR. In this region, one objective improves and 

the other worsens as we move from one point to another. Thus, QR is the Pareto set of 

equally good, optimal points for this problem. The associated values of the decision 

variable, t, for each of these points is also shown in Figure 2. The choice of the operating 

point is to be decided based on some additional criteria. Point U represents the utopia. The 

existence of a Pareto set even in such simple problems is not usually recognized or 
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discussed in Chemical Engineering texts. Some more classical multiobjective optimization 

problems in Chemical Engineering have been presented by Seinfeld and MacBride, 1970; 

Nishitani and coworkers, 1979, 1980, 1981; Shieh and Fan, 1980; Umeda et al., 1980 and 

Grossmann et al., 1982. 

The generation of the Pareto set (QR in Figure 2) was quite easy, and was done 

using qualitative arguments once the yield vs. selectivity plot (PQR in Figure 2) was 

obtained by integrating the mass balance equations. No sophisticated optimization 

algorithm was required for this simple problem. Several techniques are available to 

generate the Pareto sets for the more general problems. These are discussed later in this 

review.  

The generation of the Pareto completes the more precise Phase I of the optimization 

process. In the more subjective Phase II of the study, one has to use additional information 

that is often intuitive and non-quantifiable in nature, to choose an operating point from 

among the entire Pareto set, for operation. This point is referred to as the preferred solution. 

A few methods are available for obtaining this point. One is to ask several decision-makers 

to rank the points on the Pareto set on a 10-point scale, using their intuition or ‘gut’ feeling. 

A weighted-average ranking is then computed and the ‘best’ point is selected. This second 

phase of the optimization procedure is not discussed here in too much detail.  

It is to be noted that multiobjective optimization is becoming quite popular in 

Chemical Engineering. In this review, we shall attempt to describe the various techniques 

and their adaptations, which have been used to obtain the Pareto solutions for several 

interesting and complex problems of interest to chemical engineers. It is hoped that this 

review would spur more activity in this area and also help in the recognition of Pareto sets 
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where these have, indeed, been obtained by experimentation or simulation. Table 1 

summarizes the several multiobjective optimization problems studied in Chemical 

Engineering and classifies them into different areas. Table 2 provides more details on the 

techniques used for optimization, methods used for the generation of the non-inferior 

Pareto set and for decision-making, and also gives some important comments on the 

problem studied. 

 
 

2. TECHNIQUES OF GENERATING PARETO SETS 

 Extensive research has been reported on the algorithms used for generating the non-

inferior Pareto solutions. These are described in several textbooks (Zeleny, 1974, 1982; 

Cohon, 1978; Hwang and Masud, 1979; Steuer, 1986; Haimes et al., 1975, 1990; Chankong 

and Haimes, 1983; Goicoechea et al., 1982) and research and review articles (Geoffrion, 

1967a-c; Geoffrion et al., 1972, Zionts and Wallenius, 1976, 1980, Hwang et al., 1980, 

Clark and Westerberg, 1983, Srinivas and Deb, 1995). We present a short summary of the 

different techniques used.  

2.1 Utility Functions 

In this technique, one defines a scalar utility function, u(I), of the different objective 

functions, I1, I2,…, In:  

u (I) = f (I1, I2,..., In)      (4) 

The utility function is optimized to obtain the preferred solution. The utility function is an 

abstract variable indicating goal attainment. For a chemical engineer, the objectives in a 

typical industrial setting could either be quantifiable quantities, as, for example, 

minimization of the cost of production while meeting specifications on the products and 
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effluents, etc., or, a decision maker (DM) could define the utility to include intuitive 

quantities, e.g., operability and controllability of the plant, reliability of the process, etc. In 

this interpretation, the possibility of measuring the utility does exist, though formal 

techniques are not available. Thus, the utility is a way of allowing the decision maker to 

describe his goals in an abstract way. The drawback of this technique is that the utility 

function, usually, cannot be determined systematically (Haimes et al., 1975). No Chemical 

Engineering examples have been solved using this method, to the best of our knowledge. 

2.2 Indifference Functions 

This method is based on a relative comparison of the objectives. The DM is 

expected to specify the preference of one objective over the other. Indifference 

functions/curves (Chankong and Haimes, 1983) are usually plotted to obtain the relative 

worth of the individual objective functions. The indifference trade-off or the marginal rate 

of substitution (which is always present for any two points on the indifference curve) is 

defined as the amount of degradation of one objective the DM is willing to tolerate in 

exchange for the amount of improvement in the other objective while the preferences for 

the two points on the indifference curve remain the same. The application of this technique 

is limited to a maximum of two or three objectives, since a geometrical representation and 

analysis is required. Some form of reduction of the dimensionality is necessary when there 

are more than three objective functions, which makes this procedure quite cumbersome. 

Again, this technique has not been applied to problems in Chemical Engineering. 

2.3 Lexicographic Approach 

The objective functions are classified (by ‘priority’) by the DM and the preferred 

solution is defined as that which simultaneously optimizes as many of the objectives as 
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,…, I

possible, hierarchically. The DM is asked to rank the criteria in terms of decreasing 

importance (say, I1, I2 n). Only the alternatives that yield the most ‘preferred’ value for 

I1 are used for further evaluation. This solution set is used for the next round to get the most 

preferred value of I2. This procedure is repeated until all the criteria are satisfied to yield 

the best solution. If the best solution is not unique, then additional attributes are used to 

choose the best solution. This approach generated considerable interest because it mimics 

the process of human decision-making. But the problem with this approach is that the 

solution is very sensitive to the ranking of the objectives by the DM and, therefore, one 

should be careful in applying this technique to objectives having almost equal importance. 

Different results may be obtained for such cases depending upon the ranking of such 

objectives by the DM [Haimes et al., 1975; Chankong and Haimes, 1983]. Recently, the 

lexicographic technique was used by Meadowcraft et al., 1992, for the design of a modular 

multivariable controller (MMC). Both steady state and dynamic characteristics were 

considered. The controller thus designed could handle the list of desired operational 

objectives, re-prioritization of the control objectives and constraints. The controller also 

provided explicit fault-tolerant control in the presence of instrument failures and allowed 

manual control of the failed subsystems. The controller finds the solution where as many 

objectives are satisfied as possible, in order of importance, by using a combination of 

lexicographic technique and the generalized goal programming approach (discussed in Sec 

2.6). Inequality constraints are classified into hard and soft constraints depending on their 

relative importance to the other objectives and are incorporated into the design procedure. 
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2.4 Parametric Approach 

This is the simplest of all the techniques. The objective functions, Ii, are combined into 

a single overall scalar objective, I: 

                                      (5) 

1
n

1i i
w

1
i

w0

) (
i

I
n

1i i
wI

=∑
=

≤≤

∑
=

= x

where x ∈ X, X being the feasible optimum region. A non-inferior point is generated by 

changing the relative weights, wi. The solutions may be viewed as points in the optimum 

search-space that offer the least conflict among the objectives. Least conflict is possible 

when the weights used are equal for all the objectives, which is not a practical, satisfying 

solution for a real system. The relative weights need to be assigned to each of the objective 

functions based on the individual optimum solution. The major drawback of this technique 

is that it cannot generate the entire non-inferior set when “duality-gaps” exist, which means 

that the problem is non-convex (Haimes et al., 1975; Chankong and Haimes, 1983; Srinivas 

and Deb, 1995). It is well known that verifying the convexity requirement for large-scale 

systems is quite difficult. Also, for such systems, a-priori knowledge of the weights is 

practically not possible. Though this method gives a solution to the overall objective, the 

insight into the conflicts among the objectives is lost in the process. Some of the classical 

examples in Chemical Engineering have used the parametric approach in solving the 

multiobjective problem. Seinfeld and MacBride, 1970 have used a modification (Geoffrion, 

1967c) of this method to minimize the parametric sensitivities in a refinery. A simplified 

refinery model was formulated and the objectives considered were (i) maximization of the 
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total yearly profit and (ii) minimization of the sensitivity of the profit to variations in 

refinery conditions. Ten constraints (both equality and inequality) were imposed and twelve 

decision variables were considered in this study. Fan et al., 1984, have used this approach 

in the optimization of batch polymerizations involving chain propagation with monomer 

termination. Trade-offs among the monomer conversion and the mean and the standard 

deviation of the molecular weight distribution (MWD) of the polymer, have been explained 

using a triangular graph. Though the method is fairly simple to use, the accuracy of the 

solution is not guaranteed.  

2.5 The ε-Constraint Approach 

This approach is one of the most popular methods that have been applied for solving 

multiobjective optimization problems. This technique was proposed by Haimes et al., 1971 

and is described in detail by Haimes et al., 1975 and Chankong and Haimes, 1983. This 

technique does not require the existence of supporting hyper-planes and overcomes duality-

gaps in non-convex sets. These advantages have made this approach very useful and 

popular.  

In this technique, we optimize a single objective function (chosen from among the 

original ones) while treating all the remaining objectives as inequality constraints. A 

multiobjective optimization problem defined similar to the two-objective function problem 

defined in Eq. 1 is, thus, reformulated in this technique as  

Min      I1 (x)    

s.t.: 

  Ii (x) ≤ εi i = 2, 3,…, n  
  

gj(x) ≤ 0 j = 1, 2,…, J 
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hk(x) = 0 k = 1, 2,…, K                                            (6) 

It is to be mentioned that any one of the n objective functions, I1, I2,…, In, can be selected 

as the single objective function to be minimized (and is referred to as I1) [we shall assume 

that all the objective functions are to be minimized, since maximization problems can 

easily be transformed into minimization problems, as discussed earlier]. 

By varying the constraint-levels, εi , one can generate the entire Pareto optimal hyper-

surface in the n-dimensional I-space. The minimum values of the individual εi have to be 

obtained by solving simpler, 1-objective function optimization problems (Chankong and 

Haimes, 1983). Any appropriate technique can be used to solve the optimization problem in 

Eq. 6. It is clear that this simpler optimization problem (Eq. 6) has to be solved several 

times to generate the Pareto set, and so this method is quite compute-intensive. 

Three different adaptations of this technique are available: the equality constraint 

approach, the inequality constraint approach and the hybrid (weighting-constraint) 

approach. The equality constraint has the added advantage that analytical solutions for 

small-size problems can be obtained. Wajge and Gupta, 1994a, used this form to optimize a 

non-vaporizing nylon 6 batch reactor. They minimized the (i) reaction time, tf, and (ii) 

concentration, [C2]f, of the undesired side product, the cyclic dimer, in the product, while 

requiring the monomer conversion and the number average chain length in the product to 

lie at design or desired values (xm,d and µn,d, respectively). The temperature history, T(t), 

was used as the decision variable. Pontryagin’s minimum principle was used with the first-

order control vector iteration method (Ray and Szekely, 1973) to solve the problem with 

the ε-equality constraint incorporated. These workers reported some numerical oscillations 

in the Pareto sets. They also encountered convergence problems when using larger values 
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of ε. Sareen and Gupta, 1995, used the same objective functions and end-point constraints 

(on the product) to optimize an industrial semi-batch nylon 6 reactor. In this reactor, 

monomer and water vaporize and build up the pressure in the vapor space above the liquid 

reaction mass, at a rate depending on the release of the vapor mixture through a control 

valve. They used the jacket-fluid temperature, TJ (a scalar value), as well as the pressure 

history, p(t) (a continuous function of time, t), in the reactor as the decision variables. The 

pressure history was parametrized (shape fixed) and was represented in terms of five 

parameters (constants, rather than a function). Sequential quadratic programming (SQP), 

developed by Gill et al., 1981 (which has a first-order convergence), was used for solving 

the single objective function problem obtained with the ε-equality constraint method. Some 

amount of scatter was obtained in the Pareto set. A ‘smoothening procedure’ was used to 

get sub-optimal but smoother Pareto sets. Substantial improvements in the operation of the 

industrial reactor were indicated when operating the reactor at any of the points on the 

Pareto set.  

The inequality form in Eq. 6 is very useful when the DM wishes to solve the problem 

interactively. The Kuhn-Tucker (positive) multipliers associated with the optimization 

problem reflect the sensitivity of the primary objective, I1, to the active constrained 

objectives, Ii, and so give an indication of the trade-offs among the objectives. The values 

of the Kuhn-Tucker multipliers indicate the price that one needs to pay in terms of one 

objective, if one wishes to improve another, while still remaining on the non-inferior set. 

The drawback of this technique is that the test of non-inferiority needs to be performed. 

This leads to an increase in the computational time. This method also locates some of the 

points that are inferior (Chankong and Haimes, 1983; Clark and Westerberg, 1983). This 
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method has been used extensively (Sophos et al., 1980; Tsoukas et al., 1982; Fan et al., 

1984; Farber, 1986; Palazoglu and Arkun, 1986; Videla et al., 1990; Luyben and Floudas, 

1994 a, b) in Chemical Engineering. 

Sophos et al., 1980, optimized a petrochemical industry using multiple objectives. 

These were to optimize (i) the energy utilization (which included maximization of the 

change in the thermodynamic availability and minimization of lost work) and (ii) carbon 

utilization efficiency (which is equivalent to minimization of the feed stock consumption). 

Compromise ‘bounding structures’ (optimal solutions of each objective) were generated for 

the system studied. The two objectives given above were considered first and a Pareto set 

was obtained between the feed consumption and the lost work. Pareto surfaces were also 

generated for a three objective function problem using linear programming. Two preferred 

solutions were identified from the Pareto surface. In one case, the method used was goal 

programming (discussed in Section 2.6) while in another, commensuration of the objective 

functions for a specific case was used before solving a single objective function 

optimization problem. 

Tsoukas et al., 1982, were the first to introduce the concept of multiobjective 

optimization in polymerization reactors, where the presence of conflicting objectives is 

common. Pareto optimal solutions were determined for the dual objectives of (i) narrowing 

the copolymer composition and (ii) narrowing the molecular weight distribution for 

styrene-acrylonitrile (SAN) copolymerization in a semi-batch reactor. Temperature, 

initiator concentration and monomer addition histories (functions of time) were used as the 

decision variables. Farber, 1986, extended this work to continuous copolymerization 

reactors. They considered both methyl methacrylate-vinyl acetate (MMA-VA) as well as 
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SAN systems.  Pareto sets were obtained [composition vs. molecular weight; conversion vs. 

molecular weight] for the MMA-VA system using the temperature history of the reactor as 

the decision variable. In the SAN system, a Pareto optimal set was obtained for conversion 

vs. molecular weight by using both temperature history and residence time as decision 

variables. Fan et al., 1984, also used this technique for chain polymerizations in a batch 

reactor (the same as discussed in the previous study) and compared the results with those 

obtained using the parametric approach. 

Palazoglu and Arkun (1986) studied the problems of operability associated with 

improper design, modeling and control system design in the presence of uncertainties. They 

proposed a process design methodology to find optimal operating regions for chemical 

units. This approach guides the designer towards process designs with improved dynamic 

operability and economics. Characterization of dynamic operability was done using an 

index for robustness. The ellipsoid algorithm (Ecker and Kupferschmidt, 1983) was used 

for solving the optimization problem interactively. The optimization problem consists of 

non-linear problems with an infinite number of constraints that are frequency dependent, 

and are handled using a discretization procedure developed by these workers. A symbolic 

logic language, MACSYMA, was used to get the design variables transferred from the non-

linear plant equations to the transfer function, thereby avoiding successive linearizations. A 

system of three isothermal CSTRs was used as an example. 

A modified ε-constraint approach has been used for the optimization of an anaerobic 

digester treating the leachate from a controlled solid urban waste landfill. Videla et al., 

1990, considered the (i) maximization of the net production of energy from biogas, (ii) 

maximization of the percentage removal of chemical oxygen demand (COD), and (iii) 
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minimization of the capital outlay, as the three objective functions. The constraints imposed 

were  

(i) the percentage COD removal must be at least 50%;  

(ii) the digester must treat a specified flow rate of leachate per day; and  

(iii) all the individual objective functions must be positive.  

The decision variables were the residence time, the temperature of operation and the 

diameter to height ratio. The weighted sum of the deviations from the respective optima of 

the individual objective functions was minimized. Pareto optimal solutions were generated 

for the net biogas production vs. the percent COD removal, for different volumes of the 

digester. An interactive, iterative optimization procedure, based on the solution of the non 

linear programming (NLP) problems was used to obtain the preferred solution for the two 

cases. The first of these involved the minimization of the cost while the other involved the 

maximization of the net energy production with at least 75% of COD removal.  

Luyben and Floudas (1994 a, b) analysed the interaction between process design and 

control using a multiobjective framework for two example systems, a binary distillation 

system and a reactor-separator-recycle system. They proposed a systematic approach to 

determine both the steady-state economic and open-loop controllability objectives within 

the mathematical programming framework of process synthesis. The possible design 

alternatives were translated to a multiobjective mixed-integer non-linear optimization 

problem. A non-inferior solution set was determined by applying the ε-constraint technique 

within the framework of the generalized Benders’ decomposition (Geoffrion, 1972; Paules 

and Floudas, 1989). A method based on the cutting plane algorithm (Geoffrion et al., 1972) 

was used to determine a best-compromise solution by the knowledge of trade-off weights 
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among the economic and control objectives. As explained earlier, this information is 

obtained by the partial derivatives from the non-inferior set. This procedure was applied for 

binary distillation synthesis involving multiple objectives, control configuration selection 

and possible heat integration. They also applied this procedure for the multiobjective 

optimization of a recycle system consisting of a reactor followed by a distillation column, 

where the distillate is recycled to the reactor. A non-linear model incorporating all possible 

design variables was used for optimization. It was found how specific changes in design 

affect both the economic and control objectives. The conflict between the process and 

disturbance gains was very well exhibited by the non-inferior solutions.  

The third type of the ε-constraint approach is the hybrid form that combines the 

principles of the parametric approach with the ε-constraint technique. The hybrid form can 

be represented as  

Max/Min      wTI (x)    

subject to: 
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   Ii (x) ≤ εi   

gj(x) ≤ 0 j = 1,2,…, J 

hk(x) = 0 k = 1,2,…, K     (7) 

The hybrid form does not require any non-inferiority tests and is, therefore, more efficient 

when the user is interested in generating only the Pareto optimal solutions numerically. 

Interactive decision making is not possible with this method. 
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Though the ε-constraint technique can also be used to solve problems which are non-

convex, the difficulty with this method is that an a-priori knowledge of the appropriate 

range of values of εi , is required. 

2.6 Goal Programming (Charnes and Cooper, 1961) 

 A preferred solution is obtained by minimizing a weighted average deviation of the 

objective functions from the goals set by the DM. This is represented mathematically as 

     Min , 1≤ r < ∞                    (8) ( )
r/1

n

1i

r
ii y)(II ⎥
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⎤
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⎣

⎡
−= ∑
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where x ∈ X (the feasible region), and yi is the goal or the demand-level of the ith 

objective. Usually, r takes the value of 2 with yi as the individual optimum of the ith  

objective. This represents the root mean square deviation from the goals. The arbitrary 

selection of the demand-level vector leads to a non-Pareto optimal solution. Equal weights 

for all the deviations of the objectives are normally assumed, as was assumed in Eq. 8. If 

weights are introduced, then the problem of a duality gap arises when the problem is non-

convex. Also, the DM has to be aware of the individual optimum of each objective prior to 

the selection of the values of the demand levels.  

A variation of this technique is the min-max formulation to solve multiobjective 

optimization problems. Nishida et al., 1974, formulated and solved the synthesis problem 

as a min-max formulation within the framework of optimal control.   The objective of this 

method was to minimize the relative deviations from the individual optimum of the single 

objective functions, when r = ∞.  The method tries to minimize the objective conflict. The 

best compromise solution is obtained when objectives with equal importance are optimized. 
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This method also suffers from the drawback of duality gaps and sometimes it locates 

solutions which are inferior.  

The technique of goal programming has been applied in Chemical Engineering by 

Kraslawski et al., 1991, Kraslawski and Pustelnik, 1991 and Smilgielski et al., 1992.  

Kraslawski et al., 1991, have used this technique for optimizing the operating conditions 

for self-sucking impellers in a bioreactor. The objectives were to (i) minimize the mixing 

power requirement and (ii) to maximize the mass transfer coefficient. The decision 

variables were the rate of rotation of the impeller, and the diameter to height ratio of the 

tank. The problem was transformed to a min-max formulation and the fuzzy weights 

determined based on the ‘linguistic’ variables (qualitative information such as small, large, 

very small, very large, etc.) used in the problem.  

The min-max problem-formulation was also used by Kraslawski and Pustelnik in 

determining the optimum values of the number of elements and the flow velocity for a 

kenics static mixer. The two objective functions used were: (i) minimization of the pressure 

drop and (ii) the maximization of the degree of mixing. The optimal solution was obtained 

by a sequentially-built compromise function method, which prioritizes the objective 

functions (a form of lexicographic approach) a-priori. Both the methods used experimental 

data and the simplex method to arrive at the optimal solution.  The min-max formulation 

uses the weights decided by the DM whereas the latter method considers the solution to be 

feasible if the degree of mixing (first priority) attains 99% of the maximum degree of 

mixing. A complete analysis needs to be made by changing the weights and the priority 

levels to give an understanding of the non-inferior solutions. The reader does not get any 

insight about the nature and extent of the conflict between the two objectives in this case. 
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A multiobjective optimization study (using experiments) was carried out by Smigielski 

et al., 1992, on the electrochemical reduction of maleic acid to succinic acid. The objectives 

were to (i) maximize the degree of inversion and (ii) minimize the wastes produced in the 

process. The decision variables used were the concentrations of maleic acid and sulphuric 

acid, current intensity, temperature, and the electric charge. The optimum operating point 

was achieved by formulating a goal-programming problem, where the demand-level vector 

consists of values of the utopia of the individual objectives. Fuzzy set theory was applied to 

get the weights in the objective function. The method is termed as the utopia-point method. 

The simplex method was used to arrive at the best compromise solution. Based on 

investigations on a pilot plant, a design was suggested for the continuous production of 

succinic acid. This work did not use any mathematical model for the optimization. It used, 

instead, data obtained from experiments. The data did not cover the entire feasible region.  

2.7 Genetic Algorithm (GA) 

GA is a search technique developed by Holland (1975) that mimics the process of 

natural selection and natural genetics. In this algorithm, we code a set of values of the 

decision variables (a solution, x) in terms of a ‘string (or chromosome)’ of binary numbers, 

generated using random numbers. A ‘population (gene pool)’ of such binary strings is first 

generated. Each chromosome is then mapped into a set of real values of the decision 

variables, using the upper and lower bounds of each of these. This ensures that the decision 

variables lie within their bounds. Then, a model of the process is used to provide values of 

the objective function for each chromosome.  The value of the objective function of any 

chromosome reflects its ‘fitness’. The Darwinian principle of ‘survival of the fittest’ is used 

to generate a new and improved gene pool (new generation). This is done by preparing a 
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‘mating pool’, comprising of copies of chromosomes, the number of copies of any 

chromosome being proportional to its fitness (Darwin's principle). Pairs of chromosomes 

are then selected randomly, and pairs of daughter chromosomes generated using operations 

similar to those in genetic reproduction. The gene pool evolves, with the fitness improving 

over the generations. 

GA is noted for its robustness. This algorithm is superior to traditional optimization 

algorithms in many aspects, and has become quite popular in recent years. It is better than 

calculus-based methods (both direct and indirect methods) that generally seek out the local 

optimum, and which may miss the global optimum. Most of the older techniques require 

values of the derivatives of the objective functions, and quite often, numerical 

approximations of the derivatives are used for optimization. In most real-life problems, the 

existence of derivatives is questionable and often, the functions are discontinuous, multi-

modal and noisy. In such cases, calculus-based methods fail. Enumerative schemes, which 

are based on the point-by-point comparison of the values of the objective function in a 

discretized infinite (or even a finite) search space, are inefficient for large problems since 

the search space is often, too large. Random search techniques, too, suffer from a similar 

disadvantage since they work like enumerative techniques in the long run. GA is superior to 

these techniques since it is conceptually different from these traditional algorithms in 

several respects. It uses a population of several points simultaneously, as well as works 

with probabilistic (instead of deterministic) operators. In addition, GA uses information on 

the objective function and not its derivatives, nor does it require any other auxiliary 

knowledge.  

 24



Three common operators are used in GA [called simple GA (SGA), to distinguish it 

from its various adaptations] to obtain an improved (next) generation of chromosomes. 

These are referred to as reproduction, cross-over and mutation. Reproduction, as described 

above, is the generation of the mating pool, where the chromosomes are copied 

probabilistically, based on their fitness values. Then, a pair of daughter chromosomes are 

produced by selecting a cross-over site (chosen randomly) and exchanging the two parts of 

the pair of parent chromosomes (selected randomly from the mating pool), as illustrated 

below for two chromosomes carrying information about three decision variables, each 

represented by four binary digits: 

1001 1 100 0111                              1001 1 101 1100 

0011 0 101 1100          ⇒                0011 0 100 0111       (9) 

parent chromosomes    daughter chromosomes 

In Eq. 9, the crossover site for this pair of parent chromosomes is taken just after the fifth 

binary digit. It is hoped that the daughter strings are superior. If they are worse than the 

parent chromosomes, they will slowly die a natural death over the next few generations (the 

Darwinian principle at work).  

The mutation operator is required for the following reason. In Eq. 9, let us assume   that 

all the chromosomes in the gene pool have a 0 at the second position. There is a finite 

probability of this happening, since the generation of the binary numbers is done 

probabilistically. It is obvious that cross-over will never be able to generate chromosomes 

with a 1 at this position, and if it so happens that the optimum is, indeed, located at a point 

described by such a chromosome, GA will be unable to reach this solution. The mutation 

operator looks at each binary digit in every daughter chromosome in the gene pool, and 
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transforms a 0 into a 1 (or vice versa) with a small probability. In effect, it moves the 

chromosome locally in the x-space, to create a better chromosome. The entire process is 

repeated till some termination criterion is met (the specified maximum number of 

generations is attained, or the improvements in the values of the objective functions 

become lower than a specified tolerance). A more elaborate description of SGA is available 

in Holland, 1975, Goldberg, 1989, and Deb, 1995. 

We now turn our attention to extensions of SGA to solve problems involving 

multiobjective optimization. Since GA uses a population of points, it seems very natural to 

use GA for such problems to capture a number of solutions simultaneously. Schaffer (1984) 

was the first to apply an adapted vector evaluated genetic algorithm (VEGA) to solve 

multiobjective optimization problems. Though it was simple to implement, the method has 

a bias towards some Pareto-optimal solutions (Goldberg, 1989; Srinivas and Deb, 1995). In 

order to overcome this problem of bias with some of the optimal solutions, Goldberg 

proposed a non-dominated sorting procedure. The idea was implemented in different ways 

by Fonseca and Fleming (1993), Horn et al. (1994) and Srinivas and Deb (1995). The 

algorithm implemented by Srinivas and Deb (1995) is called the non-dominated sorting 

genetic algorithm (NSGA). It is to be noted that NSGA overcomes the pitfalls of the 

previous two techniques (Fonseca and Fleming, 1993, Horn et al. 1994). Fonseca and 

Fleming (1998 a, b) have recently extended their algorithm, applying the principles of niche 

and sharing. The concept of non-dominated sorting is first discussed and then we turn our 

attention to the applications of this technique in Chemical Engineering. It is interesting to 

note that most of the recent applications in Chemical Engineering have used NSGA 

(adapted as required by the problem). 
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NSGA uses a ranking selection method to emphasize the good points and a niche 

method to create diversity in the population without losing a stable sub-population of good 

points. Principally, NSGA differs from SGA only in the way of selection. A check for non-

dominance is first carried out among all the chromosomes in the gene pool before 

reproduction is performed. All the non-dominated chromosomes from the entire population 

are first identified and assigned a front number (Front No. = 1). These non-dominated 

chromosomes are then assigned a dummy fitness value (which is usually the number of 

chromosomes, Np, but could be any other arbitrarily selected, large value instead). The 

dummy fitness value of any chromosome in this front is then modified according to a 

sharing procedure (Goldberg and Richardson, 1987; Deb, 1989; Deb and Goldberg, 1991) 

by dividing it by the niche count of the chromosome. The niche count of a chromosome 

represents the number of neighbors around it, with distant neighbors contributing less than 

those nearby.  The niche count, thus, gives an idea of how crowded the chromosomes are in 

the x-space . This is obtained, say, for the ith chromosome, by computing its distance, dij, 

from another, say, jth chromosome in the x-space, and using a sharing function, Sh, as 

given below  
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In Eq. 10, σshare, a computational parameter, is the maximum distance allowed between two 

chromosomes to qualify as neighbors. Obviously, if dij is larger than σshare, its contribution 

to Sh is zero (the jth chromosome is then not considered to be a neighbor of the ith), while 

if dij = 0, its contribution to Sh is 1. For intermediate values of the distance between the two 

chromosomes, Sh lies between 0 and 1. Thus, by summing up Sh(dij) for all values of j in 
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any front comprising of non-dominated chromosomes, one can get an idea of how crowded 

the ith chromosome really is. This summation is referred to as the niche count of 

chromosome i. The shared fitness value of chromosome, i, is the ratio of the common 

dummy fitness value assigned initially to each member of the front, and its niche count. 

Use of the shared fitness value for reproduction, thus, helps spread out the chromosomes in 

the front since crowded chromosomes are assigned lower fitness values. This procedure is 

repeated for all the members of the first front. Once this is done, these chromosomes are 

temporarily removed from consideration, and all the remaining ones are tested for non-

dominance. The non-dominated chromosomes in this round are classified into the next front 

(Front No. = 2). These are all assigned a dummy fitness value that is a bit lower than the 

lowest shared fitness value of the previous front. Sharing is performed thereafter. This 

procedure is continued till all the chromosomes in the gene pool are assigned shared fitness 

values. The usual operations of reproduction, cross-over and mutation are now performed. 

It is clear that the non-dominated members of the first front that have fewer neighbors, will 

get the highest representation in the mating pool. Members of later fronts, which are 

dominated, will get lower representations (they are still assigned some low fitness values, 

rather than ‘killed’, in order to maintain the diversity of the gene pool). Sharing forces the 

chromosomes to be spread out in the x-space. The population is found to converge very 

rapidly to the Pareto set. It is to be noted that any number of objectives (both minimization 

and maximization problems) can be solved using this procedure. A flowchart describing 

this technique is presented in Figure 3 (Mitra et al., 1998; Garg and Gupta, 1999). 

Additional details about the algorithm, its efficiency over other techniques and some 

 28



comments on the choice of the computational parameters to be used in NSGA, are 

described in Srinivas and Deb, 1995 and Deb, 1989. 

NSGA has been used to solve a variety of multiobjective optimization problems in 

Chemical Engineering in recent years, as for example, in the areas of polymer reaction 

engineering, catalytic reactors, membrane modules, cyclone separators and venturi 

scrubbers. Various adaptations of the basic NSGA were made in order to be able to obtain 

meaningful solutions, and these are described below along with the example problems 

studied.  It is hoped that such a discussion would enable a reader to be able to devise his 

own adaptations for the problem of interest.  

The first application of NSGA in Chemical Engineering was for an industrial nylon 6 

semi-batch reactor by Mitra et al. (1998). The industrial reactor model was validated 

(Wajge et al., 1994b) before it was used for multiobjective optimization. The two objective 

functions used were to minimize (i) the total reaction time, tf, and (ii) the concentration, 

[C2]f, of the cyclic dimer (an undesirable by-product) in the product. Equality constraints 

were imposed on the monomer conversion, xm,f, in the product stream, as well as on the 

number average chain length, µn,f, of the product, so that design values, xm,d and µn,d, are 

attained for these. The first constraint was taken care of by adding it in the form of a 

penalty function (Deb, 1995) to both the objective functions. The objective functions were, 

thus, modified to 

 Min I1 = tf + w1[1 - (xm,f/ xm,d)]2   (a) 

 Min I2 = [C2]f + w1[1 - (xm,f/ xm,d)]2   (b)  (11) 

The second equality constraint, µn,f = µn,d, was used as a stopping condition, i.e., integration 

of the model equations, a set of ordinary differential equations (ODEs), was stopped when 
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this constraint was met. The decision variables used in this study were (i) the rate of 

release, VT(t), of the vapor from the semi-batch reactor (a function of time, t) which 

influenced the pressure in the reactor, and (ii) the jacket fluid temperature, TJ (a scalar). 

NSGA had to be adapted to apply to decision variables that were continuous functions of 

time.  This was achieved by discretizing the continuous function into several, equi-spaced 

(in time) scalar values, VT,i;  i = 1, 2, …, Q, and constraining the value, VT,i, to lie within a 

small range of the previous value, VT,i-1. This ensured that the final continuous function, 

VT(t) [obtained by curve-fitting the digitized values] was implementable. Pareto-optimal 

solutions were obtained for a specified value of the feed water concentration (see Figure 4). 

These results were compared with the solutions obtained earlier by Sareen and Gupta, 

1995, who parameterized the pressure history, and so introduced some artificial constraints 

into the problem (since the shape of the pressure history was assumed to be fixed). Mitra et 

al. found that the solutions obtained by NSGA were superior. Interestingly, considerable 

improvement in the operation of the industrial reactor was indicated by this study, and we 

understand that these results were implemented on the industrial reactor.  

Gupta and Gupta (1999) extended this work on the industrial nylon-6 reactor system to 

consider the multiobjective optimization of the reactor-cum-control valve assembly. They 

considered the fractional-opening of the control valve as one of the decision variables 

(again, a function of time), instead of the rate of release of vapor from the reactor. The 

second decision variable was the temperature of the jacket fluid, a scalar value. The Pareto 

optimal solutions obtained for this system were found to be worse when compared to the 

solutions obtained by Mitra et al., who had studied the reactor alone (see Figure 4). This 

was because the operation of the control valve, which released the vapors, excluded certain 
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sets of values of VT(t), which were permitted in the study of Mitra et al. It is clear that for 

industrial systems, the optimization of the entire system is more valuable than that of its 

major parts (Aatmeeyata and Gupta, 1998). 

Garg and Gupta, 1999, applied NSGA to the multiobjective optimization of free radical 

bulk polymerization reactors, wherein diffusional effects (the Trommsdorff, cage and glass 

effects) are manifested. The two objective functions used were the minimization of (i) the 

total reaction time, tf, and (ii) the polydispersity index, Qf, of the product. The manufacture 

of polymethyl methacrylate in a batch reactor was chosen as the example system. Equality 

constraints were used on the value of the number average chain length, µn,f,  and the 

monomer conversion, xm,f, in the final product, similar to that for the nylon 6 reactor. 

Optimal temperature histories, T(t), were generated for a given initiator concentration in the 

feed. Interestingly, a unique optimal solution, instead of a Pareto set of several optimal 

solutions, was obtained. This was so for all the cases studied. This inference was of 

considerable importance since a controversy had existed on this point for several years, 

based on earlier optimization studies that used a scalar objective function comprising of a 

weighted sum of the two objectives.  

Rajesh et al. (1999) carried out the multiobjective optimization of a side-fired steam 

reformer using NSGA. This is a very important industrial process and there is an inherent 

trade-off between the objectives. Two objective functions were considered: (i) 

minimization of the methane feed rate (input to the reformer), FCH4,in,  for a specified rate of 

production of hydrogen, FH2,unit, from the industrial unit, and (ii) maximization of the rate 

of production of export steam (which was equivalent to maximization of the flow rate, 

FCO,out, of CO in the syngas). The optimization problem was solved using a pre-validated 
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model. An equality constraint was used on the rate of production of hydrogen (equated to a 

desired value), and an inequality constraint was imposed on the maximum wall temperature 

of the reformer tubes. The decision variables used were: the temperature of the gas mixture 

at the reformer inlet, pressure at the inlet of the reformer, steam to carbon (in the form of 

CH4) ratio in the feed, hydrogen (recycled H2) to carbon (as CH4) ratio in the feed, the total 

molar flow rate of the feed, and the temperature of the furnace gas. Pareto optimal solutions 

for specified rates of production of hydrogen were obtained (see Figure 5). Comparison of 

the current operating conditions of the industrial reformer studied (point Q in Figure 5, for 

FH2,unit  = 3450 kg/hr) with an arbitrary point, P, on the Pareto set (for the same FH2,unit)  

indicated scope for considerable improvement. In this problem, it was found that feasible 

values of one of the decision variables, the steam to carbon ratio in the feed, were within 

the bounds specified a-priori, and were, in fact, influenced by the values selected for the 

other decision variables. The code for NSGA had, therefore, to be adapted for this problem 

also. Values of all the decision variables except the steam to carbon ratio were first 

generated for every chromosome, following the normal procedure of mapping with the a-

priori bounds. The bounds for the steam to carbon ratio were then generated for each 

chromosome. The substring (of binary digits generated randomly) corresponding to this last 

decision variable was then mapped into a real number, using these chromosome-specific 

bounds for each chromosome. Similar procedures can be used whenever the bounds on 

decision variables are chromosome-specific, and need to be adapted continuously during 

the computation. 

Polyethylene terephthalate (PET) is another commercially important polymer, mostly 

used in the manufacture of synthetic fibers. Bhaskar et al. (2000a) formulated a 
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multiobjective optimization problem on the industrial, third stage wiped film reactor used 

to produce this polymer. The objective functions used in this problem were to minimize the 

concentrations of two undesirable side products, namely, that of the (i) acid end groups, and 

(ii) the vinyl end groups, in the output stream. An equality constraint was imposed on the 

degree of polymerization, DPout, of the product, so as to produce PET having a desired 

value, DPd (i.e., DPout = DPd). The acid end group concentration in the product was further 

restricted to lie below a certain value (an inequality constraint), while the concentration of 

diethylene glycol end group in the product was restricted to lie in a specified range (two 

inequality constraints). This was consistent with current industrial requirements. The three 

inequality constraints were taken care of by ‘penalty-killing’ of the chromosomes that 

violated these constraints, by adding on a heavy penalty value (104) to both the objective 

functions [similar to those in Eq. 11] when these constraints were violated. The solution of 

the problem was found to be a unique point, and no Pareto set of optimal solutions was 

obtained. It must be emphasized that it is almost impossible to predict on an a-priori basis 

whether a Pareto set would be obtained or not in any complex multiobjective optimization 

problem. In fact, our experiences with the simulation of this reactor (Bhaskar et al., 2000b) 

had suggested opposing effects and trends, and we were almost sure that a Pareto set would 

be obtained! The unique optimal solution was found to be superior to the current operating 

conditions in the industrial reactor studied. Solutions were generated for a few other 

choices of the objective functions, as for example, the minimization of the residence time 

and of the acid end group concentration in the product (which minimizes the concentration 

of the vinyl end group simultaneously), but Paretos were still not obtained.  
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The technique of instantaneously killing the chromosomes violating the inequality 

constraints, referred to as penalty killing, could lead to some amount of numerical scatter in 

the final results. Such scatter is less likely to be present in solutions obtained using the slow 

killing of such chromosomes using the more accepted penalty function method (Eq. 11). 

This is particularly true for complex problems where some amount of multiplicity and/or 

insensitivity (of optimal solutions) is present. This was encountered in the PET reactor 

optimization problem, and the unique solutions obtained for different values of DPd showed 

some scatter. The optimal results obtained in such problems can be smoothened out 

(Bhaskar et al., 2000a; Sareen and Gupta, 1995) for use in industry by solving an 

optimization problem having a smaller degree of freedom (e.g., one with fewer decision 

variables). Indeed, Goldberg (1989) has mentioned that GA (and so its various adaptations) 

could have premature convergence when used on complex problems, but that all the results 

still lie in the optimal ‘region’. 

Ravi et al. (2000a) performed multiobjective optimization of a train of identical cyclone 

separators operating in parallel, to process a specified flow rate of dust-laden gases. They 

considered two objective functions: (i) maximization of the overall collection efficiency, 

ηo, and (ii) minimization of the pressure drop, ∆p (related to the operating cost). The 

decision variables used for this problem are the number of cyclones, the diameter of the 

cyclones, and seven geometric ratios (shape) of the cyclones. The bounds on two of the 

geometric ratios were adapted (depending on the values selected for some of the other 

decision variables, chromosome-specific bounds) to ensure that the cyclone shape was 

physically meaningful. The technique used was similar to what was used in the 

optimization of the steam reformer. An upper limit was imposed on the inlet velocity of 
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gases (an inequality constraint). This constraint was implemented using penalty killing, as 

was done for the PET wiped film reactor optimization problem. ∆p vs. ηo Pareto sets were 

obtained (see Figure 6). It was found that the optimal values of the decision variables could 

not, at first sight, be explained physically. This problem is quite common in multiobjective 

optimization problems associated with a considerable amount of 'freedom'. One then needs 

to solve several simpler multiobjective optimization problems, each with only one, or, at 

most two decision variables, to find out which of the several decision variables in the 

original problem are the most sensitive and important in deciding the Pareto set. Such a 

study leads to considerable physical insight and, at times, even helps in developing 

appropriate bounds of the decision variables, as well as in selecting appropriate constraints 

to be used in solving the multiobjective optimization problem, which may not be known too 

precisely at the beginning. Such detailed studies also help in explaining the scatter that may 

be present in the final results--both in the Pareto set obtained as well as in the plots of the 

individual decision variables over the range of objective functions covered by the Pareto 

set. A similar study is being carried out (Ravi et al., 2000b) on the multiobjective 

optimization of venturi scrubbers. Pareto optimal solutions are being obtained in the 

preliminary studies completed till now. 

Multiobjective optimization of hollow fiber membrane modules was carried out by 

Chan et al. (2000), using the dialysis of beer to produce low-alcohol beer, as an example. 

The two objective functions considered were (i) the maximization of the removal of alcohol 

from the beer, and (ii) the minimization of the removal of 'taste chemicals (called extract)' 

by the module. Inequality constraints were imposed on the pressure drops on both the shell 

and the tube sides, as well as on the inner diameter of the shell. The decision variables 
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considered were the flow rate of water on the shell side, the length of the fiber, the 

fractional free area in the shell (related to the tube pitch), the internal radius of the 

individual hollow fibers and the thickness of the hollow fiber membranes. Again, this 

problem is associated with an immense amount of freedom, and several simpler one- and 

two- decision variable problems have been studied to develop physical insight. It was found 

that the internal radius of the membrane was the most important decision variable 

influencing the Pareto set. 

 Another application of considerable industrial importance is the optimization of the 

continuous casting of polymethyl methacrylate (PMMA) films. In this process, a 

prepolymer is first produced in an isothermal plug flow tubular reactor (PFTR).  The 

product from this reactor flows as a thin film through a furnace. The temperature, Tw(z), of 

the upper and lower surfaces of the polymer film varies with the axial location, z, in the 

furnace. The two objective functions (Zhou et al., 2000) are (i) the maximization of the 

cross section-average value of the monomer conversion at the end of the furnace, xm,av,f, 

and (ii) the minimization of the length, zf,  of the furnace. The end-point constraint used 

was that the section-average value of the number average chain length in the product, µn,av,f, 

should be equal to a desired value, µn,d. In addition, a 'local' constraint is to be satisfied in 

this problem. This takes the form that the temperature at any point in the film must be 

below an upper safe value, to prevent degradation (discoloration) of the polymer film. The 

decision variables used were the temperature of the isothermal PFTR, concentration of the 

initiator in the feed to the PFTR, monomer conversion at the end of PFTR, film thickness 

(all scalars), and the temperature programming, Tw(z), in the furnace (a continuous 

function).  In order to simplify the problem, the temperature of the surface of the film, 
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Tw(z), was assumed to be a cubic function of z. Thus, the continuous function was replaced 

by four constants. The local constraint was taken care of by using the penalty killing 

procedure. In this study, the requirement, µn,av,f = µn,d, was taken care of by using it both as 

a penalty function in the two objective functions, and also by using it as a stopping 

condition. This leads to faster convergence to the Pareto solution. 

2.8 Other Techniques 

Several other workers have used algorithms developed by them or adapted for their 

particular work to solve multiobjective optimization problems, which cannot be grouped 

into the above classifications. These are described here. Nishitani and Kunugita (1979) 

developed a code to determine the optimal flow pattern for multiple effect evaporator 

systems using a multiobjective approach. A modified parametric method is used in this 

work. All the objective functions are first represented in terms of a common scale. The 

problem is split into four simpler problems and solved. Pareto sets are generated between 

the energy consumption (steam consumption) and an economic objective (heat transfer 

area). The relationship between the solutions to the four simpler problems and the overall 

solution to the problem are discussed. Results are obtained for a process for concentrating 

milk. The conflict between the objectives is not quantitatively understood by this technique, 

though it is easy to implement for simple systems. 

A process design problem was solved by Umeda et al. (1980) using the simplex method 

(Beveridge and Schechter, 1970; Edgar and Himmelblau, 1988), a pattern search technique, 

interactively. The pattern search algorithm helps in adjusting the weights of the objectives 

to find the preferred solution. The proposed method starts with a set of Pareto optimal 

solutions obtained using a combination of the parametric method and goal programming 
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(the goal being the utopia point). Then, a more preferred Pareto optimal solution is 

generated than the existing non-inferior set using the simplex method. Sorting of the 

members of the subset is done by minimum pair-wise comparison in every iteration. 

Merging of the new solution with the ordered sub-set is done by the minimum comparison 

merging technique. Optimal design of a toluene-steam dealkylation process is performed to 

illustrate the usefulness of the procedure. The objectives considered were (i) the investment 

cost, (ii) the annual operating cost, and (iii) the reliability of the process. The major 

advantage of this procedure is that the decision maker (DM) has to put the current set of 

solutions into an order. The method requires the utopia to be determined before the 

multiobjective optimization problem can be solved.  

Takama and Umeda (1980) extended this approach for locating the non-inferior points 

by decomposing the original (upper-level or interior) problem into simpler (lower-level) 

sub-problems involving single objective functions. The algorithm generates alternative 

solutions by solving the sub-problems at lower levels, and performs a search to identify the 

best compromise solutions from among the alternatives. The DM adjusts the coupling 

variables at the upper-level and passes the values to each of the lower-level optimization 

problems, that are then solved. The process is repeated until the DM is satisfied with the 

solution. The choice of the coupling variables could pose problems because there is no 

guarantee that all the sub- problems will remain feasible for any set of values of the 

coupling variables. In addition, it is not necessary that all engineering problems can be 

decomposed. The authors have applied this algorithm to the optimal design of a water 

treatment system. 

 38



Lenhoff and Morari (1982) proposed a design approach which considers the economic 

as well as the dynamic aspects simultaneously in the design of resilient processing plants. 

They used a bounding technique based on the Lagrangian theory, taking advantage of the 

typical modular structure of processing units. They defined two performance indices: an 

economic performance index (EPI) and a dynamic performance index (DPI), to 

characterize a problem. Both of these were minimized and a Pareto set (called the 

performance index diagram) between the EPI and the DPI was obtained for a sample 

problem involving three configurations of a heat-integrated distillation column for the 

methanol-water system. Certain configurations could be eliminated since these were 

inferior solutions. The effect of changing the steady state design on the performance indices 

was studied using the bounding technique. A trade-off was found to exist between them, 

and three non-inferior designs were determined.  

Clark and Westerberg (1983) reviewed the mathematical tools used for multi-criteria 

decision making while addressing problems in design optimization where an ‘outer’ 

optimization problem is constrained by an ‘inner’ one (embedded optimization). They 

proposed a single level solution to locate the local optimum quickly. Two approaches to 

solve this problem were suggested. The first was based on the active set strategy for solving 

the inner problem, while the second involved the relaxation of complimentary conditions. 

The concept of embedded optimization was illustrated on the calculation of the equilibrium 

composition for multiphase, reacting systems. 

An interactive CAD tool, CONSOLE, was used by Butala et al. (1988) for the 

multiobjective optimization of a semi-batch reactor for the manufacture of styrene-

acrylonitrile (SAN) copolymer. Dynamic optimization was used to obtain the two decision 
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variables, the temperature and the monomer feed rate histories, to produce copolymer 

having specified values of the average copolymer composition and the average molecular 

weight. A third-order polynomial was assumed for the two decision variables and their 

coefficients were obtained using the feasible direction algorithm of Nye and Tits (1986). 

The problem specifications (both functions and numbers) were classified into objectives, as 

well as hard and soft constraints. The initial solution had to satisfy the hard constraints first. 

The soft constraints and the objectives compete simultaneously in the second phase of 

optimization. In the final phase, the objectives were improved till the DM is satisfied. This 

process was achieved by scaling of the specification space (GOOD/BAD) based on the 

DM’s knowledge of the process. It is to be mentioned here that this process is highly 

intuitive and the DM should have a very good knowledge about the problem, before he 

starts to solve it. Choi and Butala (1991) extended this work to develop open loop optimal 

control for a semi-batch methyl methacrylate-vinyl acetate (MMA-VA) co-polymerization 

reactor. The feed rates of the monomers and the temperature of the reactor (both functions 

of time) were used as decision variables. Copolymer having specified values of the average 

composition and molecular weight was to be produced. The optimal control policies were 

tested on an experimental stirred tank polymerization reactor. These workers experienced 

some plant-model mismatch. The need for improving the optimization method to minimize 

the plant-model mismatch was indicated. 

Ciric and Huchette (1993) tried to minimize the waste treatment costs and maximize the 

profits of a chemical process, by employing the basic relationship between the sensitivity 

problem and a multiobjective optimization problem. The proposed approach uses a 

modified form of the outer approximation method to identify discretely different regions of 
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the Pareto set. The complete solution set is generated using a sequential approximation 

algorithm (Ciric and Jia, 1992). The proposed algorithm was applied to the production of 

ethylene glycol from ethylene oxide and water. This approach is better than the 

conventional sensitivity analysis techniques such as linear sensitivity analysis and 

exhaustive search.  

Liu et al. (1997) applied the concepts of multiobjective optimization to the multimodel-

based minimum bias control of a benchmark paper machine process. They used modified 

goal programming for solving the problem.  

Köllner et al. (1989 a, b) determined the optimal process flow structure for the 

chlorination of benzene. They used the modified simplex method (Nelder and Mead; Box 

complex method; Beveridge and Schechter, 1970; Edgar and Himmelblau, 1988) 

incorporating the inequality constraints on the decision variables, with a stochastic global-

search method (Schammler, 1988). They obtained compromise solutions between the total 

investment cost and variable costs per annum for the optimal process flow structure. They 

could eliminate four heat exchangers in the process using their study involving 

multiobjective optimization.  

Dimkou and Papalexandri (1998) proposed a decomposition-based algorithm for 

solving convex MINLP (mixed integer non-linear programming) problems and identifying 

the Pareto sets. Parametric nonlinear optimization is used to identify the upper bounds of 

the optimal parametric solution. Lagrangian information from the deterministic non-linear 

programming (NLP) problems is used to determine the lower bounds to the solution, as is 

done in Benders’ decomposition method (Geoffrion, 1972). The algorithm is illustrated 

 41



using two simple examples. The assumption of convexity limits the applicability of the 

proposed algorithm for real life problems. 

Tijsen et al. (1999) generated Pareto sets for the factors affecting the degree of 

substitution of the hydroxyl groups in starch by ether groups, using experimental data. They 

optimized the process conditions for the modification of starch. They found the important 

factors by a backward elimination strategy (Kleinbaum, 1994).  

Methods used for generating non-inferior solutions and their applications in Chemical 

Engineering have been discussed. This forms the objective phase of the decision-making 

process. A few methods are available to select the best (or preferred) solution from among 

the Pareto optimal points, using additional, and often non-quantifiable, information. This 

forms the second, subjective phase. In addition to the technique presented earlier, involving 

consultation with several DMs to obtain their rankings of the Pareto solutions, the surrogate 

worth trade-off method (Haimes and Hall, 1974) seems to be popular in Chemical 

Engineering (Nishitani et al., 1980; Wajge and Gupta, 1994a; Sareen and Gupta, 1995). 

This method uses the Lagrangian multipliers obtained while generating the Pareto sets, to 

analyze the trade-offs between the non-commensurate objectives. The preferred solution is 

usually the one at which the improvement in one of the objective functions is equivalent to 

the degradation that results in the other objectives. 

3. FUTURE DIRECTIONS  

Several approaches have been used to obtain solutions of multiobjective optimization 

problems in Chemical Engineering. It appears that the evolutionary algorithms (e.g., GA, 

NSGA) used in recent years are quite robust for generating non-inferior solutions for large-
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scale complex problems, and will, we expect, become even more popular in the future. 

These offer several advantages as described below (Deb, 1999): 

• Earlier methods have to be applied several times over to (hopefully) obtain a Pareto-

optimal solution.  

• Some of the methods are sensitive to the shape of the Pareto-optimal front. 

• The efficiency of the scalar objective optimization method determines the spread of 

the Pareto-optimal solutions. 

• Uncertainties and stochasticities cannot be handled efficiently using classical 

methods. 

• Problems with a discrete search space cannot be handled efficiently using classical 

single objective optimization methods (Deb, 1995). 

Though NSGA has been tested on several, reasonably large optimization problems in 

Chemical Engineering, it needs improvement in the area of constraint-handling for still 

larger and more complex problems. The equality constraints have been handled using the 

penalty function technique, while the inequality constraints have used penalty killing. In 

case of problems involving a very large number of constraints, the latter may not be too 

efficient since there exists a possibility of losing diversity in the gene pool. A better 

understanding of the values of the computational parameters used in GA and their effects is 

required to increase their speed of convergence. These have limited the use of NSGA to 

problems that are not as complex as otherwise possible.  

Simulated annealing (SA) is another emerging non-traditional algorithm (Kirpatrick et 

al., 1983; Aarts and Korst, 1989) which has been used in solving optimization problems in 

engineering in the recent years, and we expect, will become popular as newer developments 
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take place. SA mimics the cooling of molten metals in its search procedure. The procedure 

begins with the selection of an initial solution (called as a point). A neighbouring point is 

then created and compared with the current point. The algorithm of Metropolis et al. (1953) 

is used to determine whether the new point is accepted or not.  This technique, thus, works 

with a single point at a time, and a new point is created at each iteration according to the 

Boltzmann probability distribution. The method is found to be effective in finding global 

optimum solutions when a slow cooling procedure is used (Deb, 1995). Adaptations can be 

made in SA to solve multiobjective optimization problems using the concept of non-

dominance, somewhat along the lines of NSGA. We expect these adaptations to compete 

with NSGA in terms of speed of convergence and robustness.  

In the next several years, even more complex problems in which the constraints are not 

known in a very precise manner (as discussed in this review), will be solved. In fact, one 

could easily envisage a situation where a DM looks at two Pareto sets simultaneously, a 

Pareto between the objective functions, and another Pareto between the extents of 

constraint-violation, to decide upon the preferred solution. Obviously, NSGA will need 

adaptations to solve such problems, by classifying chromosomes into finer sub-fronts. The 

only conclusion we can make is that the future holds exciting promises. 
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NOMENCLATURE 

Symbol    Description 

[C2] Cyclic dimer concentration in nylon 6 manufacture, 

mol/kg 

dij  Dimensionless distance between the ith and jth 

chromosomes in the x-space 

DP     Degree of polymerization (= µn) 

FCH4,in     Flow rate of methane in the input stream, kg/hr 

FCO,out Flow rate of CO in the exit stream of the first reactor 

in the reformer plant (in the syngas), kg/hr 

FH2,unit Flow rate of H2 in the exit stream from the reformer 

plant, kg/hr 

g(x)     Vector of inequality constraints, gi(x) 

h(x)     Vector of equality constraints, hi(x) 

I     Vector of objective functions, Ii  

k1, k2     Rate constants in Eq. 2 

Ng     Generation number in GA 

Np Number of chromosomes in the population in GA 

p     Pressure 

∆p     Pressure drop in cyclone, Pa 

Q     Polydispersity index of polymer 

Sh     Sharing function (Eq. 10) 

t     Time 
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T     Temperature 

u(I)     Utility function 

VT Rate of release of vapor mixture from nylon 6 reactor 

through control valve, mol/hr 

w     Vector of weightage factors, wi

xm     Monomer conversion 

x     Vector of decision variables, xi   

X     Feasible region of x 

y     Vector of goals, yi 

z     Axial position in furnace reactor 

Subscripts / Superscripts 

av     Cross-section average value 

d     Desired or design value 

f, out     Final, outlet value 

J     Jacket-fluid value 

ref Reference value (currentlyused in industrial reactor)  

T     Transpose 

w     Wall or surface value 

Greek  

εi     Constants in ε-constraint method 

ηo     Overall collection efficiency in cyclone 

µn     Number average chain length of polymer 

σshare     Computational parameter in Eq. 10 
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TABLE 1: MULTIOBJECTIVE OPTIMIZATION IN CHEMICAL 

ENGINEERING: BASED ON AREAS IN CHEMICAL ENGINEERING 

PROBLEM DESCRIPTION CONTRIBUTORS 

PROCESS DESIGN AND CONTROL 

Multicriteria optimization in chemical processes Seinfeld and MacBride, 1970 

Optimal process systems synthesis Nishida et al., 1974 

Multiple effect evaporator design Nishitani et al., 1979 

Aeration vessel for waste water treatment Nishitani et al., 1980 

Optimal synthesis of methanation process Shieh and Fan, 1980 

Toluene –steam dealkylation process Umeda et al., 1980 

Modeling petrochemical industry Sophos et al., 1980 

Energy resource conservation –Evaporator system Nishitani et al., 1981 

Process design with dynamic aspects Lenhoff and Morari, 1982 

Chemical complexes Grossmann et al., 1982 

Design of chemical plants with robust dynamic operability 

characteristics 

Palazoglu and Arkun, 1986 

Complex chemical process system: Benzene chlorination 

process 

Köllner et al., 1989 

Modular multivariable controller Meadowcraft et al., 1992 

Binary distillation synthesis Luyben and Floudas, 1994a 

Reactor-separator-recycle system Luyben and Floudas, 1994b 

Minimum bias control of a paper machine process Liu et al., 1997 
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POLYMERIZATION REACTION ENGINEERING 

Multiobjective dynamic optimization of semibatch 

copolymerization reactors/process. 

Tsoukas et al., 1982,  

Butala et al., 1988,  

Choi and Butala, 1991 

Optimization of chain propagation with monomer termination 

in a batch reactor 

Fan et al., 1984 

Steady state optimization of continuous co-polymerization 

reactors 

Farber, 1986 

Dynamic optimization of a Nonvaporizing nylon 6 batch 

reactor 

Wajge and Gupta, 1994 

Optimization of an industrial semibatch nylon 6 batch reactor Sareen and Gupta, 1995 

Dynamic optimization of an industrial nylon 6 semibatch 

reactor using genetic algorithm 

Mitra et al., 1998 

Free radical bulk polymerization reactor using genetic 

algorithm 

Garg and Gupta, 1999 

Industrial nylon 6 semibatch reactor system using genetic 

algorithm 

Gupta and Gupta, 1999  

Industrial wiped film PET finishing reactor Bhaskar et al., 2000 

PMMA reactors and film production Zhou et al., 2000 

BIOCHEMICAL ENGINEERING / WASTE TREATMENT 

Waste water treatment system Takama and Umeda, 1980 

Design and operation of anaerobic digesters using 

multiobjective optimization criteria 

Videla et al., 1990 
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Fuzzy multiobjective optimization for self-sucking impellers 

in a bioreactor 

Kraslawski et al., 1991b 

Waste treatment costs in discrete process synthesis and 

optimization problems 

Ciric and Huchette, 1993 

Carboxy-methylation of starch Tijsen et al., 1999 

MIXING 

Kenics static mixers Kraslawski and Pustelnik, 

1991a 

CATALYTIC REACTORS 

Steam reformers optimization using GA Rajesh et al., 2000 

ELECTROCHEMICAL PROCESS 

Electrochemical reduction process of maleic-acid to succinic 

acid 

Smigielski et al., 1992 

AIR POLLUTION CONTROL 

Cyclone separators Ravi et al. 2000a 

Venturi scrubbers Ravi et al. 2000b 

MEMBRANE SEPARATION MODULES 

Beer dialysis Chan et al. 2000 

GENERAL 

Tools for multicriteria decision making Clark and Westerberg, 1983 

Parametric optimization approach for multiobjective 

engineering problems involving discrete decisions 

Dimkou and Papalexandri, 

1998 
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Table 2

Contributors Objective functions Optimization 
technique used

Technique used for 
generation of Pareto set

Technique used for 
decision making

Remarks

1 Nishitani and 
Kunugita, 1979

Minimization of energy consumption and 
minimization of the total cost (capital and 
operating costs) in a multiple effect 
evaporator system

The algorithm has been applied to milk 
concentration process. 

2 Umeda et al., 1980 Minimization of investment and annual 
operating costs and Maximization of 
reliability in a chemical plant

A multiobjective optimization algorithm 
is proposed and applied for a toluene-
steam dealkylation process. Method of 
object weighing is used to scalarize the 
objective functions

3 Takama and Umeda, 
1980

Minimization of the amount of the pollutant 
discharge and Maximization of the reliability 
in a waste water treatment unit

A multilevel, multiobjective 
optimization algorithm is proposed and 
applied for a waste water treatment 
process.The authors claim that the 
method of trade-off applied in this work 
is superior than the method of objective 
weighing in terms of the physical 
significance of the decision variables.

4 Sophos et al., 1980 Maximization of the thermodynamic 
availability change, Minimization of the lost 
work and minimization of the feed stock 
consumption

ε-constraint approach Minimization of the 
deviation from the 
single objective 
optimum values with 
equal weights and the 
second by 
commensurating all the 
objectives and solving a 
scalar optimization 
problem

Pareto surfaces determined for three 
objective function case. Two objective 
function problem has also been solved.

Pattern search algorithm (Simplex method) used to adjust the weights to 
find the optimal non-inferior solution

Linear search based algorithm which seeks compromise solution by 
repeating pairwise comparison.

A new algorithm developed to generate the non-inferior set of solutions
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Table 2 continued

5 Lenhoff and Morari, 
1982

Optimal economic and dynamic performance 
indices among various configurations of 
binary distillation with heat integration

Details of the insight on the trade off 
policies are exemplified. The interaction 
between design and control is explained 
with the help of multiobjective 
optimization concepts.

6 Tsoukas et al. 1982 Minimization of copolymer composition and 
molecular weight distributions in styrene-
acrylonitrile system

Optimal control 
theory: Powell’s 
conjugate direction 
search, algorithm 
restarted by steepest 
descent method 

ε-constraint approach Penalty multiplier method used to 
transform the constrained problem to an 
unconstrained one. Pareto sets 
generated.

7 Minimizing mean and variance of molecular 
weight distribution of the polymer
Maximizing the monomer conversion for a 
chain propagation polymerization in a batch 
reactor.

8 Methyl methacrylate- Vinyl acetate system 

1. Maximization of composition and 
molecular weight
2. Maximization of conversion and 
molecular weight

Styrene-acrylonitrile system
1. Maximization of conversion and 
molecular weight

9 Palazoglu and Arkun, 
1986

Optimum design of the chemical process with 
robust dynamic operability

Ellipsoid algorithm 
(modified gradient 
search technique)

ε-constraint approach Discretization techniques employed to 
circumvent the problem of infinite 
number of constraints in the 
optimization problem

Fan et al., 1984 Value function approach 
and ε-constraint 
approach

Reactor temperature is the single 
variable used for MMA-VA system, 
whereas for SAN system residence time 
and temperature are considered

A new technique, decomposition technique with bounding properties of 
the Lagrangian was used in the study. 

MWD & other criterion functions 
estimated using numerical solution, 
continuous variable approximation and 
discrete exact approach method.

ε-constraint approach Farber, 1986
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Table 2 conituned

10 Butala et al., 1988 Minimization in deviation of product 
specifications from their set values and 
reaction time.

Interaction with the 
decision maker (DM)

CONSOLE, an interactive optimization 
based design tool was used. 
Classification of the constraints done a 
priori. Optimal open-loop composition 
& molecular weight control for 
copolymerization of SAN system.

11 Videla et al., 1990 1.Maximize the net production of energy in 
terms of biogas 2. Maximize the Percentage 
COD removal 3.Minimize the capital costs 
for an anaerobic digester

MINOS IV ε-constraint approach Surrogate Trade-offs 
based on priorities by 
DM

Optimal solutions generated for 
minimum cost and maximum net biogas 
production with at least 75% COD 
removal. Weights are changed based on 
the physical significance.

12 Choi and Butala, 
1991

Minimization in deviation of product 
specifications (composition and MWD) from 
their set values for fixed reaction time.

Interaction with the 
decision maker (DM)

Experimental study, carried out for both 
isothermal and non-isothermal 
copolymerization.CONSOLE, an 
interactive optimization based design 
tool was used. Classification of the 
constraints done a priori. Optimal open-
loop composition & molecular weight 
control for copolymerization of MMA-
VA system.

13 Kraslawski et al., 
1991

Maximization of kLa, the mass transfer 
parameter for aeration and minimization of 
the power consumption

Two level process observed. In the first 
level, the type of of the mixing 
equipment was chosen and in the second 
level, the optimum operating conditions 
for this type is determined using the 
fuzzy weights assigned to each of the 
objective functions.

14 Kraslawski and 
Pustelnik, 1991

Minimize pressure drop and Maximize the 
degree of mixing in Kenics static mixer

Assumption of weights is arbitrary for 
the objective functions and a complete 
study needs to be done with various 
other weightage factors.

Nye and Tits technique (1986)

Nye and Tits technique (1986)

Modified Goal Programming 

Min-Max method & Sequentially built compromise function
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Table 2 continued

15 Smigielski et al., 
1992

Maximization of the degree of inversion from 
maleic to succinic acid and minimization of 
the amount of wastes produced in the 
electrochemical reduction process

Optimization carried out without using a 
mathematical model using utopia points 
and the weights, selected by fuzzy set 
theory. 

16 Ciric and 
Huchette,1993

Maximize net profits before waste treatment 
and minimize waste production

Generalized 
Bender's 
Decomposition 
Algorithm for 
MINLPs

Modified outer 
approximation technique 
identifies the non-inferior 
set and the full curve is 
identified by Sequential 
approximation algorithm

Novel approach to identify the Pareto 
set in a discrete multiobjective 
optimization problem proposed and 
applied to the production of ethylene 
glycol from ethylene oxide and water.

17 Luyben and Floudas, 
1994

Total cost (operating and capital costs) / year 
and the open-loop controllability objectives 
considered in application to binary 
distillation synthesis

ε-constraint approach Cutting Plane Method Various possible control configurations, 
objectives and heat integration modes of 
the binary distillation synthesis 
considered and a the best compromise 
solution found using the information on 
the slope of the Pareto set.

18 Luyben and Floudas, 
1994

Steady state economic gain and the open-loop 
controllability objectives analyzed for reactor-
separator-recycle system

ε-constraint approach Cutting Plane Method Various possible control configurations 
and objectives of the system considered.

19 Minimization of the
1.      Concentration of unreacted 
monomer in the product
2.      Dimer concentration
3.      Reaction time 

for producing nylon 6 of specified average 
molecular weight.

Generalized 
Bender's 

Decomposition 
Algorithm for 

MINLPs.MINOS 
5.2 (Murtagh and 
Saunders, 1988)

Goal Programming

Two problems studied with two 
objective functions at a time. Pareto sets 
generated for the same and optimal 
temperature histories generated.

Wajge and Gupta, 
1994

Pontryagin's 
minimum principle 
combined with 
Lagrange multipliers

ε-constraint approach Surrogate Worth Trade-
off method 
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Table 2 continued

20 Sareen and Gupta, 
1995

Minimization of the reaction time and the 
cyclic dimer concentration in an industrial 
semibatch nylon 6 reactor for three different 
grades. 

Sequential 
Quadratic 
Programming 
(SQP). Hessian 
update by modified 
BFGS quasi-
Newton method

ε-constraint approach Surrogate Worth Trade-
off method 

Equality constraint on  the desired 
number average molecular weight and 
Stopping condition on the desired 
conversion imposed. Smoothening of 
the Pareto sets to yield suboptimal 
solution sets carried out.

21 Mitra et al., 1998 Minimization of the reaction time and the 
cyclic dimer concentration in an industrial 
semibatch nylon 6 reactor. 

Equality constraint on  the desired 
number average molecular weight and 
Stopping condition on the desired 
conversion imposed. Adaptation made 
to give optimal vapor release rate history
(continuous variable rather than a 
discrete point). Also, optimal value of 
the jacket fluid temperature generated.

22 Garg and Gupta, 
1999

Minimization of total reaction time and the 
polydispersity of the PMMA product

Endpoint constraints on the number 
average chain length and the monomer 
conversion incorporated. Unique 
optimal solution obtained. 

23 Gupta and Gupta, 
1999

Minimization of the reaction time and the 
cyclic dimer concentration in an industrial 
semibatch nylon 6 reactor system. 

Equality constraint on  the desired 
number average molecular weight and 
Stopping condition on the desired 
conversion imposed. Optimal fractional 
control valve opening and the optimal 
value of the jacket fluid temperature 
generated.

Nondominated Sorting Genetic Algorithm 
(NSGA)

Nondominated Sorting Genetic Algorithm 
(NSGA)

Nondominated Sorting Genetic Algorithm 
(NSGA)
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Table 2 continued

24 Rajesh et al., 2000 Minimization of the methane feed rate and 
maximization of the flowrate of CO in the 
syngas for a fixed production rate of 
hydrogen in an existing side-fired steam 
reformer

Mapping of the decision variable values 
done inside the NSGA code to make the 
bounds chromosome specific(depending 
on the choice of other decision 
variables).

25 Bhaskar et al., 2000 Minimization of the residence time of the 
polymer melt and the concentrations of the 
undesirable side products formed in the 
industrial continuous wiped film PET 
reactor.Equality constraint on the desired 
degree of polymerization imposed.

NSGA adapted to use inequality 
constraints on certain product properties 
by "artificial killing" of the 
chromosomes in the process of 
optimization. Unique optimal solution 
obtained. 

26 Ravi et al., 2000 Maximization of the overall collection 
efficiency and minimization of the pressure 
drop / overall cost of the cyclone separators

Additional bounds and over-riding 
constraints needed to be imposed. 
Bounds were made chromosome 
specific.

27 Chan et al., 2000 Maximization of the percentage removal of 
the alcohol from beer and minimization of the 
removal of the 'extract' (taste chemicals) 

Procedure to develop useful design 
charts representing trade-offs developed 
and few other optimization problems 
studied.

28 Zhou et al., 2000 Maximization of the monomer conversion 
(cross-section average value) and 
minimization of the length of the film reactor 
in the continuous casting process for PMMA

Constraints on the number average 
molecular weight and the temperature 
imposed.

Nondominated Sorting Genetic Algorithm 
(NSGA)

Nondominated Sorting Genetic Algorithm 
(NSGA)

Nondominated Sorting Genetic Algorithm 
(NSGA)

Nondominated Sorting Genetic Algorithm 
(NSGA)

Nondominated Sorting Genetic Algorithm 
(NSGA)
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Figure 2
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Figure 3 
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