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A B S T R A C T   

Solid-state sodium-ion batteries exhibit a great promising opportunity for the future energy storage, and thus 
exploring a high-efficiency sodium-ion conductor is the urgent challenge. Covalent organic frameworks (COFs) 
have accurately directional and well-defined ion channels and are a promising and optimal platform for solid- 
state Na-ion conductor. In this work, we study the first example of carboxylic acid sodium functionalized pol-
yarylether linked COF (denoted as NaOOC-COF) as an advanced Na-ion quasi-solid-state conductor film. 
Benefiting from the well-defined ion channels, the functionalized NaOOC-COF exhibits an outstanding Na+

conductivity of 2.68 × 10− 4 S cm− 1 at room temperature, low activation energy (Ea) with 0.24 eV and high 
transference number of 0.9. Particularly, the NaOOC-COF shows long-time cycling performance in the assembled 
quasi-solid-state battery, and can restrain dendrite growth through interface regulation. Furthermore, the Na+

diffusion mechanism in whole-cell system is investigated thoroughly. Such extraordinary Na-ion transport result 
based on COFs is achieved for the first time. This novel strategy may exploit the new area of Na-ion quasi-solid- 
state electrolytic devices, and simultaneously accelerate the progress of functionalized COFs.   

1. Introduction 

Energy storage systems (EESs) increasingly play a crucial role in our 
daily life, which can provide us convenient and rapid functions [1–5]. 
Among them, sodium-ion batteries are a novel great promising energy 
storage system for the electric vehicles and smart grids, due to its low 
cost and sustainability. However, it encounters serious efficiency and 
safety troubles because sodium shows high activity and dendrite is easy 
formation in traditional liquid electrolyte system. Therefore, the 
development of solid-state or quasi-solid-state Na-ion batteries could 
avoid electrolyte leaking and restrain dendrite growth through interface 
regulation, and thus render the battery with more safety and high energy 
density and power [6–20]. 

Solid electrolytes (SEs) are the key bottleneck in solid-state NIBs. 
Though, inorganic solid electrolytes (ISEs) have high ionic conductivity, 
their poor electrode surface wettability would not only entail a large 
interface resistance, also cause the growth of Na dendrite along the grain 
boundary [21,22]. Contrast with ISEs, solid polymer electrolytes (SPEs), 

which are homogeneous mixtures of Na salts and solid polymers with 
relatively high molecular weight, are characterized by the excellent 
compatibility with electrode materials, flexibility, light weight and 
low-cost processing. However, the presence of freely mobile anions and 
organic solvents inevitably gives rise to unwanted interfacial side re-
actions, impedes the Na-ion migration and conductivity (Fig. 1a), thus 
leading to bad effects for the practical utilization. Moreover, SPEs are 
not steady in harshly chemical environment. 

To tackle these bottlenecks, designing a highly stable Na-ion 
conductor is the key technology. Except for conventional ISEs and 
SPEs, which are at the relatively mature studying stage, a new bur-
geoning type of solid-state ion conductor, covalent organic frameworks 
(COFs) based polymeric crystalline porous material are attracting more 
and more attention over the past decade. They are a sort of porous and 
crystalline 2D material with precisely chemical modification and 
applied in various fields [23–29]. Its outstanding structure stability of 
COFs can maintain service life of cells [30–32]. What is more, the 
well-defined ion channels can provide a favorable environment for the 
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metal ion migration, which is beneficial to enhance the ion conductivity 
[33–39]. Furthermore, the feature of easily chemical modification for 
COFs leads to the anionic segment easily covalently tethered in the 
cavity of COFs, improving Na+ ionic transference number. Meanwhile, 
the directional and well-defined ion channels play a crucial foundation 
for Na-ion fast transport and migration. As a consequence, COFs are a 
promising, ideal and optimal platform for solid-state Na-ion conductors. 
However, the related research on COFs-based SSEs still in its early 
stages. Particularly, most of COFs-based SSEs are focused on lithium-ion 
batteries, while little reports on NIBs. Meanwhile, they exist the draw-
backs of poor mechanical strength, high activation energy, and small 
ionic transference number. Moreover, the current reported COFs linked 
through C––N or C-N exhibit unstable structure performance in battery 

systems. Therefore, constructing unique COFs-based Na-ion conductor 
for solid-state NIBs, possessing high ion conductivity, enhanced mech-
anisms, flexible property, low activation energy and wide electro-
chemical widow, is a big challenge and highly desired. 

Hence, we report carboxylic acid sodium functionalized COF as an 
advanced Na-ion conductor flexible film (Fig. 1b-g) used in quasi-solid- 
state organic sodium metal batteries for the first time as far as our 
knowledge. The C–––N modified COF (NC-COF) is obtained by ether 
linkage between 2,3,6,7,10,11-hexahydroxytriphenylene hydrate 
(HHTP) and tetrafluoroterephthalonitrile (TFTPN) in the triethylamine 
as base at 120 ◦C for 3 d. Then, after hydrolysis of NC-COF in aqueous 
NaOH, the NaOOC-COF can be obtained. The carboxylic acid group is 
covalently tethered in the cavity of COF to enable Na+ conduction [40, 

Fig. 1. Na-ion conductor supported by organic polymers with addition of sodium salts and solvents (a); single Na-ion conductor based on COF (b); synthetic route of 
NC-COF and NaOOC-COF (c); top views of NC-COF (d) and NaOOC-COF (f) and side views of NC-COF (e) and NaOOC-COF (g). 
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41]. Compared with previous reported COFs containing B-O, C––N and 
C-N bonds, this unique framework assembled by ether bonds (C-O-C) 
connection illustrates highly chemical stability in various harsh envi-
ronment, and mechanical robustness [42]. In consequence, the prepared 
NaOOC-COF is reasonably made to weaken the side reaction between 
electrode and electrolyte, and thus impede the growth of sodium 
dendrite. Simultaneously, this COFs could make amends for the flam-
mable drawback of polymer SSE. Meanwhile, NaOOC-COF establishes 

an anionic skeleton with directional ion channel, generating free single 
Na+ migration. Therefore, it is benefit for the enhancement of sodium 
ionic transference number, and reduces the polarization resulted from 
different ion concentration gradient as well, thus increasing the stability 
of electrode/electrolyte interface. Furthermore, this COF exhibits 
unique two-dimensional extended layered structure and self-assembled 
well-defined one-dimensional ion channels. These features can 
enhance the content of Na-ion in SSE, improve the Na-ion dynamic 

Fig. 2. PXRD patterns of NC-COF with experimental, simulated Pawley refined results (a); PXRD patterns of NaOOC-COF with experimental, simulated Pawley 
refined results (b); solid-state 13C NMR spectrum of NC-COF (c) and NaOOC-COF (d); N2 adsorption-desorption isotherm for NC-COF (e) and NaOOC-COF (f). Inset: 
pore size distribution from fitting the NLDFT model to the adsorption data. 
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behavior, promote the Na-ion migration and shorten the Na-ion hopping 
distance, thereby further improve the Na-ion conductivity and decrease 
the activation energy. So, the prepared COFs-based Na-ion conductor is 
assembled into quasi-solid-state organic Na-ion batteries to expect 
enhanced electrochemical performance. The degree of negative charge 
delocalization, diverse skeleton structure and charge difference have 
great influence on the electrochemical behaviors, and thus these factors 
are studied through DFT theoretical calculation deeply. Moreover, a 
clear understanding of the mechanism of Na-ion transportation is pro-
vided to thoroughly break through the key bottlenecks of COFs-based 
structured Na+ conductor electrolytes in SSNIBs. 

2. Results and discussions 

Powder X-ray diffraction (PXRD) is carried out to study the crystal-
linity of synthesized NC-COF and NaOOC-COF. As exhibited in Fig. 2a, 
the PXRD pattern of NC-COF presents relevant peaks at 2θ = 4.2, 7.23, 
8.51, 11.05 and 26.51◦, attributed to the (100), (110), (200), (210) and 
(001) planes, respectively [40,41]. Moreover, the experimental result 
matches commendably the simulated pattern (AA stacking), but is not 
well satisfied another alternative arrangement (AB stacking), meaning 
the AA stacking drives the structure of NC-COF (Fig. S1− 3). After hy-
drolysis of NC-COF, the PXRD pattern of production of NaOOC-COF can 
also show these same peaks at 2θ = 4.23, 8.5, 11.13 and 26.12◦, which 
implies that NaOOC-COF has similar crystalline structure with NC-COF. 
We also launch the calculated PXRD pattern of NaOOC-COF, demon-
strating the AA stacking drives the structure (Fig. S4− 6). In addition, the 
simulated patterns of NC-COF and NaOOC-COF almost have the same 
profile (Fig. S7). Finally, we launch the full profile pattern matching 
(Pawley) refinements versus the experimental PXRD patterns of NC-COF 
(Fig. 2a, red and black curve) and NaOOC-COF (Fig. 2b, red and black 
curve), which yields good result of refinement and experiment. This 
result can be further proved the crystalline structure. On the basis of 
above consequences, the chemical modification of NC-COF does not 
alter the eclipsed stacking architecture. And this eclipsed stacking ar-
chitecture is mainly generated by the vigorous trend of hexahydroxy-
triphenylene centers aggregates [40]. 

Fourier-transform infrared (FTIR) spectroscopy is used to analyze 
these characteristic peaks of − OH, − C–––N and − C––O groups. Fig. S8 
displays the adsorption peaks at wavenumber of 1261 and 1019 cm− 1. 
The two peaks are generated from the asymmetric and symmetric vi-
bration of ether bonds on the NC-COF. Additionally, the peak at 
2241 cm− 1 of NC-COF is ascribed to the C–––N stretching, and the 
obvious weaken of OH peak at 3429 cm− 1 can be found in the initiatory 
substance of HHTP [40,41]. These results can present a powerful evi-
dence that starting materials of HHTP and TFTPN have been highly 
transformed into the polymerizations of NC-COF. Noteworthily, the 
adsorption peak of C–––N disappears distinctly after the hydrolysis of 
NC-COF and another new peak appears at 1685 cm− 1 in the final 
product of NaOOC-COF, implying thorough conversions from the 
NC-COF to NaOOC-COF (Fig. S9) [40,41]. Based on the above analysis, 
we further evaluate the chemical conversions procedure by the 
solid-state 13C cross-polarization magic-angle spinning (CP-MAS) NMR. 
As shown in Fig. 2c, the chemical shift at ~110 ppm is attributed to C 
specie in C–––N segment [40,41]. When the C–––N group is hydrolysed, a 
fresh peak can be observed at ~164 ppm (Fig. 2d), corresponding to the 
carboxylic acid [41]. This important result can further prove above 
conclusion. 

The porousness of synthesized samples NC-COF and NaOOC-COF are 
measured by the nitrogen adsorption–desorption implemented at 77 K. 
An apparent type I isotherm can be seen for NC-COF material, indicating 
microporous feature (Fig. 2e) [40,41]. Similar nitrogen adsorp-
tion–desorption curve appears for NaOOC-COF sample (Fig. 2f), which 
illustrates that the chemical modification does not affect for the 
microporous trait. According to the non-local density functional theory, 
the pore size distribution of NC-COF shows pore with diameter of 

~1.6 nm (Fig. 2e, inset). However, the pore size slightly decreases for 
NaOOC-COF from 1.6 to 1.56 nm (Fig. 2f, inset), which might assign to 
the distributions of Na-ions in the framework of NaOOC-COF. BET plot 
of NC-COF reveals a surface area of 785 m2 g− 1 calculated from N2 
adsorption isotherm at 77 K. The NaOOC-COF has relative lower surface 
area of 102 m2 g− 1 than NC-COF, this change can be attributed to 
enhancing the amount density of Na-ions and the crystallinity for 
NaOOC-COF is inevitably decreased than NC-COF, caused by the 
chemical modification. From the CN group to the COONa group, the 
volume of metal Na-ion and carboxyl is obviously larger than CN group. 
Therefore, the crystallinity, BET surface and pore size for NaOOC-COF 
slightly decreases. X-ray photoelectron spectroscopy (XPS) is used to 
certify this chemical modification procedure. As demonstrated in 
Fig. S10, the XPS survey for NC-COF displays C, N, O elements and little 
F. The limited F reveals complete conversation of starting materials of 
TFTPN and HHTP. XPS of C 1 s for NC-COF illustrates C–––N, C––C and 
C–O bonds, implying high accordance with the chemical composition 
(Fig. S11). More importantly, after hydrolysis of NC-COF, XPS survey of 
NaOOC-COF shows C, O and Na elements, and the almost no N element 
can be detected, which is caused by the fact that –CN groups in NC-COF 
are completely conversed into –COONa groups (Fig. S10). In addition, 
XPS of C 1 s for NaOOC-COF reveals C––C, C–O and –O–C––O bonds 
(Fig. S12). Moreover, the O 1 s for NaOOC-COF reveals C–O–C and 
–O–C––O (Fig. S14) comparison with NC-COF (Fig. S13). These results 
can further suggest the successful synthesis of NaOOC-COF. Thermal 
stability of prepared COFs is studied by thermogravimetric analysis 
(TGA). Both NC-COF and NaOOC-COF display superior thermal stability 
at 250 ◦C under N2 atmosphere (Fig. S15). This excellent thermal sta-
bility of NaOOC-COF might play a crucial role in the long-term and safe 
using of battery. 

The phase purity of synthesized NC-COF and NaOOC-COF is inves-
tigated by scanning electron microscopy (SEM). As a result, the NC-COF 
(Fig. S16) displays similar flake-like morphology [40,41]. In addition, 
transmission electron micrographs (TEM) images of NC-COF can further 
suggest the morphology (Fig. S17). After chemical modification for 
NC-COF material, the morphology of product NaOOC-COF is similar 
with the NC-COF proved by the SEM (Fig. 3a) and TEM (Fig. 3b). No 
metal particles can be found from the high resolution TEM image of 
NaOOC-COF (Fig. 3c), suggesting uniform Na-ions coated on the 
framework of NaOOC-COF. The elements content of NaOOC-COF are 
measured by energy-dispersive X-ray spectroscopy (EDS), revealing the 
content of 5.37 wt% Na in NaOOC-COF (Fig. S18), which is similar with 
the result of inductively coupled plasma evaluation (5.28 wt%). More 
importantly, EDS mappings imply that C, O and Na are uniformly 
dispersed in NaOOC-COF (Fig. 3d-g). 

Fig. 4a shows the magnetic resonance 23Na NMR spectrum of 
NaOOC-COF and a singlet presents at ~0.2 ppm, implying that Na-ions 
exist an equivalent chemical environment. Based on above results of 
successful preparation abundant Na-ions modified COF, we evaluate the 
electrochemical performance of NaOOC-COF. The Na-ion conductivity is 
carried out by the stainless-steel die. Self-standing pellet of NaOOC-COF 
is made by cold-pressing method. The synthetic pellet shows with 
proximate 200.0 µm thickness measured by a calliper. The interfacial 
contact always plays a crucial issue for the solid batteries between 
electrode and electrolyte, and the interfacial compatibility can be 
improved by some methods [35,43]. Consequently, for the outstanding 
interfacial contact of solid electrolyte and electrode, the liquid electro-
lyte (10.0 μL, 1.0 M) of NaPF6 (in propylene carbonate, PC) was added 
into the NaOOC-COF solid electrolyte in order to enhance the interfacial 
contact and compatibility, promote the dissociation of COONa in COF 
and ultimate ion conduction [44,45]. 

Firstly, we measure the conductive behavior of Na-ions in NaOOC- 
COF using the electrochemical impedance spectroscopy (EIS), which is 
carried out at various temperatures from 20 ◦C to 80 ◦C. The Nyquist 
plot of NaOOC-COF does not demonstrate a semicircle at high frequency 
and a linear tail at low frequency at various temperatures (Fig. S19). 
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Because the semicircular impedance responses cannot be found in the 
EIS. Therefore, the respective resistance contribution of grain boundary 
and bulk is not divisional. Under the condition, the resistance is calcu-
lated by extrapolating the electrode spike to the “real” x-axis of the 
Nyquist plot (Fig. 4b) [35,46]. Consequently, ionic conductivity is 
creased with the enhance of temperature, affording values of 
2.68 × 10− 4, 2.83 × 10− 4, 3.22 × 10− 4, 3.63 × 10− 4, 3.98 × 10− 4, 
4.31 × 10− 4 S cm− 1 and 4.63 × 10− 4 S cm− 1 at 20, 30, 40, 50, 60, 70 
and 80 ◦C for NaOOC-COF, respectively. As a result, a prominent 
advancement of NaOOC-COF is an ionic conductivity of 
σ = 2.68 × 10− 4 S cm− 1 at 20 ◦C (Fig. S20). This excellent Na-ion ionic 
conductivity is the result of the well-defined ion channels of 
NaOOC-COF material and the favourably interfacial contact and 
compatibility supported by the negligible electrolyte addition. The Ea 
for NaOOC-COF can be obtained to be 0.24 V according to the Arrhenius 
plot (Fig. 4c), which suggests a proportional enhancement in the loga-
rithmic ionic conductivity with an increase in heating [37 − 39]. The 
extraordinarily small Ea value is lower than previous works of Na-ions 
conductivity (Table S1), certifying the mobility pathway of Na-ions in 
NaOOC-COF with directional ion conduction pathways. The Na-ion 
conductivity of NaOOC-COF is compared to others polymer materials 
contained extra Na salts or solvent (Table S2), implying a superior ion 
conductivity performance at 20 ◦C. Notably, there are almost no re-
searches based on Na-ion conductivity COF materials at present. 
Therefore, our results are mainly compared to others materials con-
tained Na-ions conductivity and without COFs materials. This satisfied 
result generates from those facts that well-defined ion channels are 
constructed and abundant Na-ions are anchored in NaOOC-COF. In 
order to describe the Na-ion conduction behavior of NaOOC-COF, we 

assess its tNa⁺ using potentiostatic polarization strategy. A tNa⁺ value of 
0.9 can be obtained from Fig. 4d, revealing the highlighted contribution 
of Na-ion to ion conductivity. Especially, the tNa⁺ value is obviously 
better than the reported Na-ions conductivity materials, benefiting from 
the structure advantage of NaOOC-COF with well-defined ion channels 
medication and abundant carboxylic acid sodium group embedding. 
Moreover, the excellent interfacial contact and compatibility between 
metal Na electrode and solid electrolyte NaOOC-COF are regulated by 
the NaPF6. Although the presence of freely mobile anions PF6

− , the 
NaOOC-COF is an anionic framework. Therefore, the anions PF6

− is 
repulsed by electrostatic interaction between PF6

− and NaOOC-COF. As 
a result, the quasi-solid-state NaOOC-COF conductor shows high tNa⁺ 
value. The detailed comparison with main focuses on these values of σ, 
Ea and tNa⁺ of our results with others Na-ions conductivity polymer 
electrolytes are shown in Table S2. Additionally, the electrochemical 
stability of Na-ion conductor is investigated using linear sweep vol-
tammetry (LSV) test. As demonstrated in Fig. S21, an electrochemical 
stability window about 4.2 V is found for NaOOC-COF, suggesting 
correspondingly broad electrochemical window. 

With the excellent ion conduction behavior in mind, we evaluate the 
practical application of NaOOC-COF that is acted as a fresh solid-state 
electrolyte for solid organic battery. The 1,4-benzoquinone (BQ) has 
attractively electrochemical performance as the cathode material in the 
batteries [47]. Nevertheless, the capacity dramatically decays and the 
cyclic performance is poor, which is caused by the dissolution of BQ in 
organic liquid electrolyte. These issues can be perfectly solved in the 
solid-state or quasi-solid-state batteries. We assemble the BQ | 
NaOOC-COF | Na quasi-solid organic Na-ion battery, which the BQ acts 
as the cathode, metal Na as the anode and the NaOOC-COF as solid 

Fig. 3. SEM image of NaOOC-COF (a); TEM image of NaOOC-COF (b); high resolution TEM image of NaOOC-COF (c); EDS mappings of C, O and Na (d-g).  
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electrolyte. Similarly, the liquid electrolyte of NaPF6 (10.0 μL, 1.0 M in 
PC) is added in order to enhance the interfacial contact and compati-
bility, promote the dissociation of COONa in COF and ultimate ion 
conduction. Fig. 4e displays the galvanostatic charging-discharging 
process at a current density of 200 mA g− 1, and the cathode material 
of BQ presents a discharging specific capacity of 149 mAh g− 1. In 
addition, the assembled battery has a salient rate performance at various 

current density (Fig. 4 f). More importantly, the BQ | NaOOC-COF | Na 
battery demonstrates outstanding cyclic performance for 600 cycles at 
current density of 200 mA g− 1 and 87.2% capacity retention (Fig. 4 g). 
However, by comparison, the assembled liquid organic electrolyte bat-
tery BQ | NaPF6 | Na exhibits poor and unsatisfied cyclic and low ca-
pacity performance (Fig. S22) [48]. 

Moreover, we further study the NaOOC-COF performance in the Na/ 

Fig. 4. Solid-state CP/MAS 23Na NMR characterization of NaOOC-COF material (a); EIS measurements made over a range of temperatures from 20◦ to 80◦C (b); 
Arrhenius plot of ionic conductivity as a function of temperature (c); Na-ion transference number calculated using the Bruce-Vincent-Evans technique (d); galva-
nostatic charging-discharging curves of BQ | NaOOC-COF | Na cell at a current density of 200 mA g− 1 (e); charging-discharging profiles of BQ | NaOOC-COF | Na cell 
at different rates (f); cycling performance of BQ | NaOOC-COF | Na cell at current density of 200 mA g− 1 (g); Na stripping-plating test of Na | NaOOC-COF | Na at a 
current density of 50 μA cm− 2 for 1 h per cycle (h). 
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Na symmetric battery configuration. Fig. 4 h illustrates the galvanostatic 
Na plating/stripping performance, which is tautologically conducted at 
a current density of 50 μA cm− 2 for 1 h each cycle. The constructed 
symmetric battery displays steady Na insertion/extraction processes for 
over 700 h without decrease and increase fluctuation of potential. 
Furthermore, the structure integrity of NaOOC-COF is not destroyed 
after the cycling measurement, indicating outstanding structural sta-
bility, confirmed by the FT-IR (Fig. S23) and PXRD tests (Fig. S24). This 
durability is the result of polyarylether linked hexahydroxytriphenylene 
framework, which shows superior chemical stability under various 
harsh chemical conditions (Fig. S25 and S26). In contrast, the symmetric 
battery without NaOOC-COF solid-state electrolyte displays unsteady Na 
insertion/extraction processes with obvious decrease and increase 
fluctuation of potential (Fig. S27). 

We further study the surface of metal Na by the SEM technique. Both 
for the BQ | NaPF6 | Na and Na | NaPF6 | Na, the deposition of Na is 
ununiform by PP separator. Therefore, the dead Na or Na dendrite are 
observed by SEM technique on the surface of Na metal after cyclic tests 

in the liquid batteries (Fig. 5a, c and e) [49,50]. However, the COF with 
precise chemical modification and well-defined ion channels can impede 
the Na dendrite growth (Fig. 5b). The clean and smooth of Na metal 
electrode after cycles are confirmed by SEM (Fig. 5d and f), which Na 
deposition is hardly found, implying NaOOC-COF promotes homoge-
neous Na-ion migration toward the Na metal electrode. This compared 
test can further prove that NaOOC-COF has good solid-state electrolyte 
performance. 

According to above excellent Na-ion conduction behavior, the 
mechanism of Na-ion migration is elucidated using density functional 
theory (DFT) calculations. In fact, the Na-ion migratory pathways are 
mainly orientations of perpendicular and parallel to cavizties of NaOOC- 
COF. The two orientations are marked as planar (Fig. 6a) and axial 
(Fig. 6b) approaches, respectively. Therefore, the different pathways of 
Na-ion migration are studied by investigation migration barriers at rate- 
determining steps under in axial and planar pathways (Fig. 6c and d) 
[33]. The optimized Na-ion geometries are applied to assess the initial 
state (IS) and final state (FS) (Fig. S28). In the both pathways, the O 

Fig. 5. Depiction of the Na ununiform deposition process on the PP separator (a) and uniform deposition on functionalized NaOOC-COF (b); SEM images of Na metal 
surface after test of BQ | NaPF6 | Na and BQ | NaOOC-COF | Na at a current density of 200 mA g− 1 (c, d); SEM images of Na metal surface after test of Na | NaPF6 | Na 
and Na | NaOOC-COF | Na at a current density of 50 μA cm− 2 (e, f). 
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atoms of ether linkage in COF skeleton plays a crucial role for the 
movement of Na-ion via the cation-dipole interactions. As illustrated in 
Fig. 6e and f, after the hopping, a lesser migration barrier of 
10.6 kcal mol− 1 (Fig. 6f) can be obtained along the axial pathway than 
the planar pathway of 51.5 kcal mol− 1 (Fig. 6e). This preferred axial 
migration pathway of Na-ion in the NaOOC-COF can be ascribed to the 
three facts: one is that the capacious pore of NaOOC-COF affords a more 
accessible environment than interplanar distance. This is because that 
cavity (1.6 nm) of NaOOC-COF is larger than Na-ion radius (0.23 nm). 
However, the interplanar distance (0.35 nm) is slightly larger than 
Na-ion (Fig. S29). Thus, the Na-ion migrates more easily in the pore. The 
other one is that the Na-ion migration during the axial pathway needs 
more short hopping distance than planar pathway, which is accelerated 
by the O atoms of ether linkage fragments (Fig. S29). This effect can 

promote the thermodynamic stability of Na-ion intermediates (IM1 and 
IM2) in the axial pathway, leading to beneficial aid for Na-ion migration. 
The last one fact is that the unique conjugated framework of p-π between 
O atom and hexahydroxytriphenylene centers, which leads to an inte-
grated conjugated system of NaOOC-COF. This effect can weaken the 
electrostatic interaction of carboxylic acid sodium, and promote the 
dissociation between carboxylic acid anion and Na cation. Conse-
quently, above theoretical analyses suggest that Na-ion directionally 
migrates along the stacked cavity of NaOOC-COF. Furthermore, the O 
atoms of ether linkage units offer a reliable assistance. 

3. Conclusion 

In summary, we have first explored the application of Na-ion 

Fig. 6. Theoretical illustration of Na-ion migration behaviors inside the planar (a) and axial pathways (b); detailed theoretical elucidation of Na-ion migration 
behaviors inside the planar and axial pathways (c and d); migration barriers for planar (e) and axial pathways (f), respectively. 
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conductor supported by functionalized polyarylether conjugation co-
valent organic framework. The functional group of carboxylic acid so-
dium modified COF is reasonably designed and covalently tethered into 
the pores of COF to provide plentiful content of Na-ions and well-defined 
ion channels, which plays a reliable and solid foundation for Na-ion 
migration. The favourable structure promotes the direction Na-ion 
along the stacked pores of NaOOC-COF. Based on the framework 
uniqueness, allowing NaOOC-COF achieves exceptional Na-ion con-
ductivity, particularly devoting to durable cycling performance of Na 
plating/stripping and excellent performance in solid organic battery. 
Our research contributes to a new solid-state electrolyte and Na metal 
battery for sustainable and inexpensive energy storage systems, which is 
in increasingly urgent demand of high-performance solid-state single- 
ion conductors. In the meantime, this study further broadens the ap-
plications and promotes the developments of covalent organic 
frameworks. 
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