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A B S T R A C T

Li-O2 batteries with ultrahigh theoretical energy density have triggered worldwide research interests and hold
the prospect for powering electric vehicles. However, the poor cycling stability and low energy efficiency of Li-O2

batteries still remain and hamper their practical application. Configuring desirable porous cathodes with
uniformly dispersed and highly active catalysts is a noteworthy and feasible approach to overcoming these
critical obstacles. Herein, we report on a novel strategy for the fabrication of Mn3O4 nanowires and carbon
nanotubes composite film (Mn3O4/CNTs film) with ultrafine RuO2 nanoparticles (Mn3O4/CNTs-RuO2 film), in
which the Mn3O4/CNTs film was employed as a conductive and porous matrix and extremely low amount of
RuO2 (just 2.84 wt%) are uniformly dispersed onto this matrix by using atomic layer deposition method, and
reveal its electrochemical behaviors as a free-standing air electrode for Li-O2 batteries. The Mn3O4/CNTs-RuO2

film delivers a high specific capacity, improved round-trip energy efficiency and ultra-long cycle life (251 cycles).
The superior electrochemical performance can be attributed to the enhanced catalytic activity of the grafted
RuO2 with modulated electronic structure as the result of the interaction with substrate, which is evidenced by
the corresponding X-ray absorption spectroscopy results and the unique nanosheet-shaped discharge product
which can be smoothly decomposed.

1. Introduction

The growing energy demand and the increasing concerns regarding
the efficient utilization of sustainable energy resources have triggered
worldwide research interests in the field of high-energy density and
high-efficiency energy conversion and storage devices [1,2]. Li-O2

batteries, with an ultrahigh theoretical energy density of
3500 W h kg−1, have attracted tremendous attention because of their
potential and promising application for driving electric vehicles (EVs)
[3,4]. Nevertheless, there are still some remaining challenges in the
practical application of Li-O2 batteries, especially, the low energy
efficiency and poor cycling stability that are continuously of concern
and urgently need to overcome [5–7]. These critical issues are indeed
associated with the formation and decomposition of the discharge
product with low electronic conductivity in the air electrode [8,9]. One
option to tackle these issues is to configure the state-of-the-art

cathodes integrating all benefits such as advanced pore structure,
excellent conductivity and highly efficient catalytic activity [10–12].
The electrode materials featuring the interconnected and porous
structure and high conductivity can enable fast supply and transporta-
tion of O2, Li ions and electrons [13–17]. But beyond that, an efficient
catalyst is highly of concern and sought after for facilitating the terribly
sluggish kinetics of oxygen evolution reaction (OER) process induced
by the tough decomposition of the insulating and insoluble discharge
product in the air electrode [18–22]. In response, various electro-
catalysts, such as transition metal oxides, noble metals, and soluble
redox mediators etc., have been developed and investigated in Li-O2

batteries [23–28]. Among all of the candidates explored up to now,
RuO2 has demonstrated excellent electro-catalytic performance in
terms of low overpotential and long cycle life [29–34]. Nevertheless,
considering that Ru is a kind of scarce and costly metal, it is crucially
important for reducing its dosage and fully fulfilling its efficacy or
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further enhancing its efficacy [35,36]. One of the great challenges is
how to finely design and tune the micro-structure of this kind of
catalyst to meet these requirements.

Atomic layer deposition (ALD) is a promising technique to precisely
control the deposition of metal catalysts on various functional sub-
strates. The chemical bonds formed between the initial layer atoms of a
reactive species and the surface of support during its first cycle can
ensure a strong interaction between the deposited material and support
[37]. So ALD may offer a simple yet effective approach to the precise
deposition of RuO2 catalyst with uniform distribution and controllable
loading and particle size [38]. Meanwhile, an appropriate substrate can
be used as the promoter for enhancing the catalytic activity of RuO2

due to the strong interaction between them. Therefore, the precisely
controllable deposition of RuO2 catalyst on advanced porous electrode
by ALD may offer an effective approach to substantially enhance the
electrochemical performance of Li-O2 batteries.

Herein, we present a simple yet effective strategy for the self-
assembly of Mn3O4 nanowires and carbon nanotubes (CNTs) compo-
site film (Mn3O4/CNTs film) as a free-standing substrate for the
uniform deposition of extremely low amount of RuO2 nanoparticles
(just 2.84 wt%) (Mn3O4/CNTs-RuO2 film), and demonstrate its elec-
trochemical performance as a highly efficient air electrode for Li-O2

batteries. In the composite film, the Mn3O4 nanowires function as
skeletons for constructing interconnected channels, CNTs as good
conductors contribute to the high conductivity, and the uniformly
dispersed and ultrafine RuO2 nanoparticles on Mn3O4 nanowires made
by ALD process as the highly effective catalyst are responsible for the
smooth decomposition of the discharge product. Benefiting from these
combined structure and composition merits, the as-made Mn3O4/
CNTs-RuO2 film delivers a high specific capacity, low overpotential,
and long cycle stability up to 251 cycles as a binder-free air electrode
for Li-O2 batteries. The growth of ultrathin nanosheet-shaped dis-
charge product on the 1D catalyst of Mn3O4 nanowires decorated with
RuO2 nanoparticles (Mn3O4-RuO2) with intimate contact arises from
the modulated electronic structure of RuO2 for enhancing the adsorp-
tion ability of the LiO2 intermediate, which enables that it can be
smoothly decomposed under a low overpotential. Interestingly, a
higher energy efficiency of 83% can be achieved at a high temperature
of 55 °C. The present study demonstrates a simple yet efficient
approach to configure the conductive and porous electrode with
highly-dispersed catalyst for high-efficiency and long-life Li-O2 bat-
teries and paves a way for the design of highly effective catalyst for
energy storage and conversion.

2. Experimental section

2.1. Material preparation

All reagents used in the present work were of analytical grade
without further purification.

2.2. Synthesis of Mn3O4/CNTs-RuO2 film

To synthesize MnOOH nanowires, 85 mg of KMnO4 and 42 mg of
polyvinylpyrrolidone (PVP, K30) were dissolved into 80 mL of deio-
nized (DI) water under a continuous stirring for 30 min. Then, the
solution was transferred into 120 mL of Teflon-line stainless-steel
autoclave and kept 140 °C for 25 h. The MnOOH nanowires were
yielded by several centrifugation and followed drying process. The
CNTs used in this work were treated by acid oxidation. Typically, 0.2g
of CNTs were dispersed into 60 mL of HNO3 (69.2 wt%) by 60 min
sonication. Then, the solution was transferred into 80 mL of Teflon-line
stainless-steel autoclave and kept 100 °C for 1.5 h. After several
centrifugation and followed drying processes, the surface-modified
CNTs (m-CNTs) were yielded. The MnOOH/m-CNTs film, MnOOH
film, and m-CNTs film were fabricated by the vacuum filtration of the

mixed MnOOH and m-CNTs dispersed solution, pristine MnOOH
dispersed solution, and pristine m-CNTs dispersed solution, respec-
tively. After that, these films were annealed at 300 °C for 3 h in Ar
atmosphere with a ramping rate of 2 °C min−1, yielding the final
product of Mn3O4/CNTs film, Mn3O4 film and CNTs film. The
Mn3O4/CNTs-RuO2 film was prepared by a typical atomic layer
deposition process.

2.3. Materials characterization

The morphology and structure of the as-made samples were
characterized with scanning electron microscopy (SEM, Hitachi S-
4800) and transmission electron microscopy (TEM, FEI TF30). The
composition and chemical state were measured by X-ray diffraction
(XRD, Bruker D8 Advance, Cu K α X-ray source), Raman (HORIBA
Scientific LabRAM HR) and X-ray photoelectron spectroscopy (XPS,
Thermo ESCALAB 250). Thermo gravimetric analysis (TGA) was
carried out on a TA SDT Q600 in an Air atmosphere from room
temperature to 800 °C at a heating rate of 10 °C min−1.

2.4. Electrochemical tests

Li-O2 batteries performance tests were carried out by using meshed
2016-type coin cells. All electrodes adopted are free-standing without
any auxiliary binder and conductive agent. Li-O2 batteries were
assembled in an argon-filled glove box (O2 < 0.1 ppm and H2O <
0.1 ppm) with tetraethylene glycol dimethyl ether (TEGDME) electro-
lyte containing 1 M LiTFSI. The electrochemical performance was
measured using Arbin battery testing system in 1 atm O2 at 25 °C.
The cyclic voltammetry (CV) tests were performed on a Bio-Logic VSP
electrochemical workstation within a voltage widow of 2.0–4.5 V at a
scan rate of 0.2 mV s−1.

3. Results and discussion

The Mn3O4/CNTs-RuO2 film was prepared by a vacuum filtration
coupled with ALD approach, as shown in Scheme 1. The morphology
and structure of the free-standing Mn3O4, CNTs, Mn3O4/CNTs, and
Mn3O4/CNTs-RuO2 films were investigated by SEM and the typical
images are shown in Fig. 1. As seen in Fig. 1a, the as-made Mn3O4 film
features a highly interconnected and porous network architecture
configured by 1D ultra-long Mn3O4 nanowires (Fig. S1). In contrast,
a dense and agglomerated structure can be clearly seen in the Fig. 1b of
the CNTs film SEM image, which is due to the flexible nature of 1D
CNTs. As expected for the purpose of designing the advanced air
electrode with developed pore structure and high conductivity, the
Mn3O4/CNTs composite film was prepared. The SEM image in Fig. 1c
reveals that Mn3O4 nanowires and CNTs are distributed uniformly
throughout the composite film and the porous architecture derived
from the skeleton effects of Mn3O4 nanowires are well inherited. The
inset in Fig. 1c manifests that the as-made Mn3O4/CNTs film features
the free-standing structure, which can be employed as the monolithic

Scheme 1. Schematic illustration for the fabrication of Mn3O4/CNTs-RuO2 film.
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air electrode without any auxiliary binder and conductive agent [39].
After the deposition of RuO2 nanoparticles by ALD process, the
relatively loose and porous structure of Mn3O4/CNTs-RuO2 film still
can be retained, as shown in Fig. 1d. Meanwhile, the cross-section SEM
image (Fig. S2) of the Mn3O4/CNTs-RuO2 film clearly shows a
hierarchical structure with an average thickness of ca. 8.5 µm.
Compared with the smooth surface of Mn3O4 nanowires in Mn3O4/
CNTs film (shown in Fig. 1e), it can be observed that tremendous
ultrafine RuO2 nanoparticles are uniformly fixed on Mn3O4 nanowires
after ALD process (Fig. 1f). Moreover, the uniform distribution of
Mn3O4 nanowires, CNTs and RuO2 nanoparticles in the Mn3O4/CNTs-
RuO2 film matrix was also confirmed by the energy-dispersive X-ray
spectroscopy (EDX) elemental mapping of C, Mn and Ru elements
(shown in Fig. 1g).

The nanostructure of the Mn3O4/CNTs-RuO2 film was further
investigated by TEM. As shown in Fig. 2a, b and Fig. S3, S4, it can
be clearly noted that RuO2 nanoparticles are uniformly fixed on the
surface of Mn3O4 nanowires with the intimate contact which is also a
common feature of materials made by ALD [37,38]. The average
particle size of RuO2 was ca. 2.17 nm (Fig. 2c). The high-resolution
TEM (HRTEM) was further employed to detect the local structure and
composition of the as-made Mn3O4/CNTs-RuO2 film, and the results
were shown in Fig. 2d. It can be found that the backbone shows well-
resolved spacing between adjacent fringes of 0.249 nm, corresponding
to Mn3O4 (211) lattice spacing. The particles on the surface of Mn3O4

backbone present a clear lattice spacing of 0.225 nm which can be
indexed to the (200) plane of RuO2 phase.

The crystalline structure and composition of the as-made Mn3O4/
CNTs-RuO2 film were examined by XRD and Raman techniques. The
typical diffraction peaks of Mn3O4, CNTs and RuO2 can be distinctly
observed from the XRD pattern of Mn3O4/CNTs-RuO2 sample
(Fig. 3a), indicative of the successful deposition of RuO2 nanoparticles.
Nevertheless, the Raman spectrum of the as-made Mn3O4/CNTs-RuO2

film does not show the characteristic peaks of RuO2 (Fig. 3b), suggest-
ing extremely low amount of RuO2 in the Mn3O4/CNTs-RuO2 film

matrix. The accurate content of RuO2 in Mn3O4/CNTs-RuO2 film was
calculated to be as low as 2.84 wt% based on the Ru concentration by
inductively coupled plasma atomic emission spectrometer (ICP-AES),
which is consistent with the results of TEM and Raman characteriza-
tions. The surface chemical state of the as-made Mn3O4/CNTs-RuO2

film was analyzed by XPS. The XPS survey spectrum shown in Fig. S6
confirms that the as-prepared sample mainly consists of C, O, Mn and
Ru elements. According to the high-resolution Mn 2p XPS spectrum
(Fig. 3c), two major characteristic peaks at 641.5 and 653.3 eV
corresponding to the Mn 2p3/2 and Mn 2p1/2 of Mn3O4, respectively,
can be clearly observed. Due to the very strong overlap between the Ru
3d3/2 and C 1 s regions as shown in Fig. 3d, the unoverlapped Ru 3d5/2
region is studied. Compared with the commercial RuO2, the Ru 3d5/2
peak of Mn3O4/CNTs-RuO2 film shows an obvious shift to high binding
energy, corresponding to the transition to higher valence state, which
may be attributed to its strong interaction with Mn3O4. In order to
further confirm this assumption, the X-ray absorption (XAS) technique
was employed to explore the valence change of Mn element in Mn3O4

after being grafted with RuO2 nanoparticles (Fig. 4). It can be found
from the Mn K-edge X-ray absorption near edge structure (XANES)
spectra of the Mn3O4/CNTs film and Mn3O4/CNTs-RuO2 film that the
valence state of Mn in Mn3O4/CNTs-RuO2 film shows a variation to low
valence, indicating that electrons from RuO2 nanoparticles have been
transferred to Mn3O4, which is also consistent with the results of XPS
above and reported in literature [40]. The RuO2 with electron
deficiency may possess stronger adsorption ability to the electron-rich
O2

- or LiO2 than that of the normal RuO2, which will bound the
chemical disproportionation reactions of LiO2 happened on the surface
of catalysts rather than in the electrolyte [41–43]. In view of the
uniquely structural and compositional characteristics mentioned
above, it is expected that the as-made Mn3O4/CNTs-RuO2 film would
be capable of being excellent air electrodes for Li-O2 batteries.

The electrochemical performance of the as-made Mn3O4/CNTs-
RuO2 film was evaluated by using 2016-type coin cells with a Li metal
anode, an electrolyte of 1 M LiTFSI in TEGDME and a slice of Mn3O4/

Fig. 1. SEM images of the (a) Mn3O4 film, (b) CNTs film, (c) Mn3O4/CNTs film, and (d) Mn3O4/CNTs-RuO2 film, the inset in Fig. 1c: the digital photographs of the Mn3O4/CNTs film.
The high-resolution SEM images of the (e) Mn3O4/CNTs film and (f) Mn3O4/CNTs-RuO2 film. (g) SEM image of the Mn3O4/CNTs-RuO2 film and the corresponding EDX elemental
mapping images.
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CNTs-RuO2 film. Fig. 5a shows the CV curves of the as-made samples
within a voltage window of 2.0–4.5 V at a scan rate of 0.2 mV s−1. It
can be clearly seen that the Mn3O4/CNTs-RuO2 film and Mn3O4/CNTs
film deliver the same onset potential and peak current during discharge
process, and far outperform these of the Mn3O4 film and CNTs film.
More importantly, compared with the Mn3O4/CNTs film, the Mn3O4/
CNTs-RuO2 film can achieve a lower onset potential and higher peak
current upon charge due to the highly catalytic activity of RuO2 [44,45].
The electro-catalytic performance of the as-prepared Mn3O4/CNTs-
RuO2 film was also examined by galvanostatic discharge-charge

measurement at a current density of 100 mA g−1. Fig. 5b reveals that
the Mn3O4/CNTs-RuO2 film delivers the highest discharge specific
capacity of 7198 mA h g−1 than that of Mn3O4/CNTs film
(6236 mA h g−1), CNTs film (829 mA h g−1) and Mn3O4 film
(9 mA h g−1), highlighting the advantages of the interconnected porous
structure and high conductivity [46]. Interestingly, the Mn3O4/CNTs-
RuO2 film displays an evidently lower overpotential than that of
Mn3O4/CNTs film upon the charge process, indicative of the out-
standing OER catalytic activity in Li-O2 batteries, which is also
consistent with the CV results discussed above. Inspired by this, we

Fig. 2. (a, b) TEM images of the Mn3O4/CNTs-RuO2 film. (c) The histograms of RuO2 particle size distribution. (d) HRTEM image of the Mn3O4/CNTs-RuO2 film.

Fig. 3. (a) XRD patterns of the Mn3O4 film and Mn3O4/CNTs-RuO2 film. (b) Raman spectra of the CNTs film, Mn3O4 film, and Mn3O4/CNTs-RuO2 film. (c) Mn 2p XPS spectrum of the
Mn3O4/CNTs-RuO2 film. (d) Ru 3d XPS spectra of the Mn3O4/CNTs-RuO2 film and commercial RuO2.
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further examined the energy efficiency of the Mn3O4/CNTs-RuO2 film
by the galvanostatic discharge-charge process with a fixed capacity of
700 mA h g−1, and the result is shown in Fig. 5c. The Mn3O4/CNTs-
RuO2 film exhibits a high discharge voltage (2.85 V) and a low charge
voltage (3.70 V), corresponding to an energy efficiency of 77.8% which
is much higher than that of the Mn3O4/CNTs film. These results
indicate the as-prepared Mn3O4/CNTs-RuO2 film is an efficient catalyst
for OER process in aprotic Li-O2 batteries. The cycling stability of Li-O2

batteries is another severe concern for practical applications. In this
case, the cycling performance measurement was performed at a current
density of 200 mA g−1 with a fixed capacity of 700 mA h g−1 of which
the results are shown in Fig. 5d. It can be seen that the as-made
Mn3O4/CNTs-RuO2 film can be cycled 251 cycles with no capacity loss,
which is superior to that of Mn3O4/CNTs film (49 cycles). More
importantly, the terminal charge voltage of Mn3O4/CNTs-RuO2 film

electrode can be kept as low as 4.1 V among the first 200 cycles,
indicative of the complete decomposition of discharge product at
reduced overpotentials. The corresponding discharge-charge profiles
(Fig. 5e) further reveal that the Li-O2 batteries with the Mn3O4/CNTs-
RuO2 film can be run more than 1700 h without degradation, further
highlighting the excellent catalysis effect of ALD RuO2. Moreover,
compared with the Ru-based catalyst reported in previous literature, it
can be found that the as-made Mn3O4/CNTs-RuO2 film herein requires
the lowest amount of RuO2 and is also among the best performance in
the reported Ru-based catalyst as air electrode for Li-O2 batteries
(Table S1).

The morphology and structure of the Mn3O4/CNTs-RuO2 film after
discharge and recharge were further examined by SEM, and the results
are shown in Fig. 6. It can be clearly seen that a large amount of micron-
scale sheet-shaped discharge product was embedded in the matrix of
Mn3O4/CNTs-RuO2 film after full discharge (Fig. 6a). Interestingly, after
fully recharge, the electrode can almost recover to its original structure
(Fig. 6b), indicative of the complete decomposition of the discharge
product. The composition of the discharge product was further analyzed
by XRD and Fourier transform infrared (FTIR) spectroscopy, of which the
detailed results are shown in Fig. 6c and Fig. S9, respectively. It can be
noted that Li2O2 is the main discharge product and almost disappears
after recharge. The reversible formation and decomposition of the
discharge product reveal the high electro-catalytic activity of the
Mn3O4/CNTs-RuO2 film [47,48]. In contrast, it can be noted from the
SEM image in Fig. S10 that the discharge product of Mn3O4/CNTs film
electrode was described in the typical toroid-like structure [49]. In order
to further explore the reason for excellent cycling stability of Li-O2

batteries with the Mn3O4/CNTs-RuO2 film, the morphology of the
Mn3O4/CNTs-RuO2 film electrode after partly discharge was investigated,
and the results are shown in Fig. 6d–f. It can be found that the ultrathin
nanosheet-shaped discharge product was deposited on the Mn3O4-RuO2

catalyst keeping an intimate contact between them, which is attributed to

Fig. 4. Normalized XANES spectra of Mn K-edge for the Mn3O4/CNTs film and Mn3O4/
CNTs-RuO2 film, the inset: the corresponding derivative normalized XANES spectra.

Fig. 5. (a) CV curves of the as-made samples within a voltage widow of 2.0–4.5 V at a scan rate of 0.2 mV s−1. (b) The initial discharge-charge profiles of Li-O2 batteries based on the as-
made samples at a current density of 100 mA g−1, the inset: the magnified initial discharge-charge profiles of Li-O2 batteries based on the Mn3O4 film. (c) The initial discharge-charge
profiles of Li-O2 batteries based on the Mn3O4/CNTs film and Mn3O4/CNTs-RuO2 film at a current density of 100 mA g−1 with a fixed capacity of 700 mA h g−1. (d) Discharge capacity
and the discharge and charge terminal voltage versus the cycle number for Li-O2 batteries based on the Mn3O4/CNTs film and Mn3O4/CNTs-RuO2 film at a current density of
200 mA g−1. (e) The discharge-charge profiles of Li-O2 batteries based on the Mn3O4/CNTs-RuO2 film at a current density of 200 mA g−1 with a fixed capacity of 700 mA h g−1.

C. Zhao et al. Nano Energy 34 (2017) 399–407

403



the modulated electronic structure of RuO2 for enhancing the adsorption
ability of the intermediate of LiO2 [50,51]. In this case, the chemical
disproportionation reactions of LiO2 were confined to take place on the
surface of catalysts rather than in the electrolyte, avoiding to form the
large compact toroid-like discharge product particles [52,53]. The uni-
formly distributed RuO2 nanoparticles catalytically serve as the active sites
and nucleation sites for the growth of nanosheet-shaped discharge
product. As a result, the discharge product can be smoothly decomposed
under a low overpotential, leading to an excellent cycling stability.

In addition, the batteries with Mn3O4/CNTs-RuO2 air electrode
were tested at a relatively high temperature of 55 °C in order to further
enhance their energy efficiency. The results are shown in Fig. 7. As seen
from the CV curves of the Mn3O4/CNTs-RuO2 film tested at different
temperature (Fig. 7a), an obviously enhanced OER catalytic activity can
be achieved at the high temperature, evidenced by a lower charge onset
and higher charge peak current. Fig. 7b demonstrates at an increased
temperature of 55 °C, the battery exhibits a significantly reduced
charge voltage of 3.5 V, delivering a higher energy efficiency up to
83% than room temperature. Therefore, this will be a simple and
efficient strategy for enhancing the energy efficiency of Li-O2 batteries.
Further works about the regarding using ALD catalyst for high
temperature Li-O2 batteries will be ongoing.

4. Conclusion

In summary, the free-standing Mn3O4/CNTs-RuO2 film has been
rationally designed and successfully prepared by a vacuum filtration
coupled with ALD method, and evaluated its electrochemical perfor-
mance as a binder-free air electrode for Li-O2 batteries. The Mn3O4/
CNTs composite film is constructed as a well-interconnected conduc-
tive substrate based on the skeleton role of Mn3O4 nanowires and the
excellent conductor role of CNTs. The ALD method was employed to
controllably deposit uniformly dispersed and extremely low amount of
RuO2 nanoparticles (2.84 wt%) as for superior OER catalyst. As a
result, the free-standing Mn3O4/CNTs-RuO2 film electrode delivers a
high specific capacity, high energy efficiency and long cycle stability up
to 251 cycles, which is attributed to the reversible formation and
decomposition of the ultrathin nanosheet-shaped discharge product.
The backbone of Mn3O4 can modulate the electronic structure of RuO2

for enhancing the adsorption ability of the intermediate of LiO2 and
further forming the nanosheet-shaped discharge product. Moreover, a
further enhanced energy efficiency of 83% can be achieved at a
relatively high temperature. The present study demonstrates a simple
yet efficient approach to configuring the conductive and porous
electrode with highly-dispersed catalyst for high-efficiency and long-
life Li-O2 batteries and paves one's way for the design of highly effective

Fig. 6. SEM images of the Mn3O4/CNTs-RuO2 film after (a) full discharge and (b) full recharge. (c) XRD patterns of the Mn3O4/CNTs-RuO2 film at different discharge-charge states. (d–
f) SEM images of the Mn3O4/CNTs-RuO2 film after partly discharge.

Fig. 7. (a) CV curves of the Mn3O4/CNTs-RuO2 film at different temperature within a voltage widow of 2.0–4.5 V at a scan rate of 0.2 mV s−1. (b) The discharge-charge profiles of
Mn3O4/CNTs-RuO2 film at different temperature with a fixed capacity of 700 mA h g−1 at the current density of 100 mA g−1.
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catalyst for energy storage and conversion devices.
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