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Abstract—Recently, implementations of normal basis multiplication over the extended binary fieldGF ð2mÞ have received considerable

attention. A class of low complexity normal bases called Gaussian normal bases has been included in a number of standards, such as

IEEE [1] and NIST [2] for an elliptic curve digital signature algorithm. The multiplication algorithms presented there are slow in software

since they rely on bit-wise inner product operations. In this paper, we present two vector-level software algorithms which essentially

eliminate such bit-wise operations for Gaussian normal bases. Our analysis and timing results show that the software implementation

of the proposed algorithm is faster than previously reported normal basis multiplication algorithms. The proposed algorithm is also

more memory efficient compared with its look-up table-based counterpart. Moreover, two new digit-level multiplier architectures are

proposed and it is shown that they outperform the existing normal basis multiplier structures. As compared with similar digit-level

normal basis multipliers, the proposed multiplier with serial output requires the fewest number of XOR gates and the one with parallel

output is the fastest multiplier.

Index Terms—Finite field multiplication, normal basis, Gaussian normal basis, software algorithms, ECDSA.
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1 INTRODUCTION

ARITHMETIC operations in the finite field GF ð2mÞ are
extensively used in elliptic curve cryptographic proto-

cols and discrete-log-based cryptosystems [1]. The binary
field GF ð2mÞ is a set of 2m elements, where each of these
elements can be represented by a bit string of length m. The
field can also be considered as an m-dimensional vector
space with m linearly independent elements over GF ð2Þ
known as a basis. There are two common bases, polynomial
basis and normal basis, to represent field elements of
GF ð2mÞ [1]. Field element representations and arithmetic
operations (except addition/subtraction) using these two
bases are quite different. In normal basis representation,
squaring of a field element is done by a cyclic shift of its
coordinates and it is free in hardware. In the literature, a
number of hardware structures for GF ð2mÞ multiplication
using normal bases have been proposed. For example, one
can see [3], [4], [5], [6], [7] for bit-level, [8], [9], [10] for digit-
level, and [11], [12], [13] for parallel normal basis multiplier
architectures. For software implementation, multiplication
using polynomial bases is considered simpler than that
using normal bases. However, in some situations, such as
those where compatibility with other bases and/or efficient
squaring is important, one may need to implement normal
basis multiplication in software [14], [15], [16], [17], [18].

A Gaussian normal basis (GNB) is a special class of
normal basis (NB) which has received considerable atten-
tion for efficient implementation of field multiplication [19].
The GNBs have been included in a number of standards,
such as IEEE [1] and NIST (National Institute of Standards

and Technology) [2] for the elliptic curve digital signature
algorithm (ECDSA). It is well-known that, for GF ð2mÞ, a
normal basis exists for every positive integer m [20]. Also, a
GNB exists for every positive integer m that is not divisible
by eight [19]. A GNB for GF ð2mÞ is determined by an
integer T and is referred to as type T Gaussian normal
basis. When there is more than one GNB for a given m,
those with smaller values of T yield efficient implementa-
tion of field multiplication. This is because the complexity
of a type T GNB multiplier is proportional to T [19]. A table
of GNBs for GF ð2mÞ for 2 � m � 1; 000 is given in [1].

In this paper, we consider GNBs for GF ð2mÞ, where m

is an odd number. This implies that the type T of such a
GNB for GF ð2mÞ is an even integer. These classes of
GNBs are important for cryptographic applications and
include the five GF ð2mÞ fields recommended by NIST,
i.e., m 2 f163; 233; 283; 409; 571g, for ECDSA [2]. In this
paper, two efficient algorithms for GF ð2mÞ multiplication
using Gaussian normal bases are proposed. Moreover, two
new digit-level multiplier architectures are proposed. For
software and hardware implementations, they are com-
pared with the best algorithms and structures available in
the open literature. It is shown that the proposed GNB
multiplication algorithms and structures outperform their
counterparts available in the open literature. It is noted that
this paper is an extended version of [21].

The organization of this paper is as follows: In Section 2,
bit-level multiplication algorithms presented in IEEE [1] and
NIST [2] as well as a vector-level multiplication algorithm
proposed by Ning and Yin [14], [15] are briefly reviewed.
Then, in Section 3, we modify the Ning-Yin software
algorithm for multiplication using GNBs. Another algorithm
which is more efficient than Ning-Yin’s is proposed in Section
4. Also, the implementation results of these algorithms for the
five binary field recommended by NIST for ECDSA are given
in this section. The multiplication formulations are modified

34 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

. The author is with the Department of Electrical and Computer
Engineering, University of Western Ontario, London, Ontario, Canada
N6A 5B9. E-mail: areyhani@uwo.ca.

Manuscript received 16 May 2005; revised 3 Sept. 2005; accepted 7 Sept.
2005; published online 22 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0160-0505.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



for digit-level architectures and associated structures with
serial and parallel outputs are proposed in Sections 5 and
6, respectively. Finally, conclusions are made in Section 7.

2 MULTIPLICATION ALGORITHMS

In this section, we briefly review multiplication algorithms
using an arbitrary normal basis as well as a GNB.

2.1 Multiplication Using an Arbitrary Normal Basis

A normal basis of GF ð2mÞ over GF ð2Þ is a set N ¼
f�; �2; � � � ; �2m�1gwhose elements are linearly independent.
In GF ð2mÞ, any element A ¼ ða0; a1; � � � ; am�1Þ can be
represented as a linear combination of the elements in N;
i.e., A ¼

Pm�1
i¼0 ai�

2i ¼ a0� þ a1�
2 þ � � � þ am�1�

2m�1
, whose

coef f ic ient ai 2 GF ð2Þ, 0 � i � m� 1, denotes the
ith coordinate of A. Let us denote a field element
�i;j ¼ �2iþ2j 2 GF ð2mÞ, 0 � i; j � m� 1, which is repre-
sented with respect to N as �i;j ¼

Pm�1
l¼0 �

ðlÞ
i;j�

2l . Let a ¼
½a0; a1; � � � ; am�1� and b ¼ ½b0; b1; � � � ; bm�1� be the row
vectors which correspond to the field elements A ¼
ða0; a1; � � � ; am�1Þ and B ¼ ðb0; b1; � � � ; bm�1Þ, respectively,
and C 2 GF ð2mÞ denote their product, i.e.,

C ¼ ðc0; c1; � � � ; cm�1Þ ¼ AB ¼
Xm�1

i¼0

Xm�1

j¼0

aibj�i;j:

Then, the lth coordinate of C can be written as

cl ¼ aMðlÞbtr; 0 � l � m� 1; ð1Þ

where MðlÞ ¼ ½�ðlÞi;j �
m�1
i;j¼0, �

ðlÞ
i;j 2 GF ð2Þ, 0 � i; j � m� 1, and btr

denotes the matrix transpose of row vector b. In (1), MðlÞ is
obtained from the l-fold right and down circular shifts of the
multiplication matrix M ¼Mð0Þ. Thus, the entries of MðlÞ, i.e.,
�
ðlÞ
i;j , can be obtained from the entries of M; i.e., Mði; jÞ. As

�
ðlÞ
i;j ¼Mði� l; j� lÞ; 0 � i; j; l � m� 1: ð2Þ

To compute the multiplication matrix M for an arbitrary
NB, one can see [1]. Also, it is shown in [22] that the
nonzero entries of M for an arbitrary NB can be found from
the set � ¼ fðm� 1;m� 1Þg [ �0 [ �00, where

�0 ¼ fð�!j;k modm; j� !j;k modmÞ :
1 � j � m�1

2 ; 1 � k � hjg;
�00 ¼ fðj� !j;k modm; �!j;k modmÞ :
1 � j � m�1

2 ; 1 � k � hjg;

and �0;j ¼ �1þ2j ¼
Phj

k¼1 �
2!j;k . Thus,

Mði; jÞ ¼ 1; if ði; jÞ 2 �
0; otherwise:

�

Having found the multiplication matrix M (and, hence, c0),
one can use the following algorithm to determine the
remaining coordinates of C [1].

Algorithm 1. [1] (Multiplication using an arbitrary NB)
Input:

A ¼ ða0; a1; � � � ; am�1Þ; B ¼ ðb0; b1; � � � ; bm�1Þ 2 GF ð2mÞ,
and M

Output: C ¼ ðc0; c1; � � � ; cm�1Þ ¼ AB
1. Initialize X :¼ A and Y :¼ B

2. For k ¼ 0 to m� 1 {
3. Compute: ck ¼ xMytr

4. X :¼ X � 1 and Y :¼ Y � 1}

5. Output C ¼ ðc0; c1; � � � ; cm�1Þ:
In this algorithm, X � 1 ¼ ðx1; � � � ; xm�1; x0Þ denotes a

left cyclic shift of the coordinates of X ¼ ðx0; x1; � � � ; xm�1Þ.
Algorithm 1 is indeed an algorithmic version of the
architecture of the bit-serial NB multiplier proposed by
Massey and Omura in [3]. In that architecture, the number
of 1s in the multiplication matrix M is a good measure of
the number of logic gates needed for hardware implemen-
tation. This measure is referred to as the complexity of the
normal basis and is denoted as CN .

Unlike hardware implementation, the software imple-
mentation of Algorithm 1 is not very efficient. This is
because, in each iteration of the for loop of the algorithm, it
generates only one coordinate of the product C and requires
one matrix-by-vector multiplication, i.e., Mytr, and one
vector-by-vector multiplication, i.e., xðMytrÞ. Let w denote
the data path width of the processor. Then, the coordinates
of the field elements and each column of M can be divided
into dmwe words. Thus, for the purpose of storage, the
multiplication matrix will require dmwem words in total.

In [14], [15], Ning and Yin proposed software algorithms
to use the full data path of the processor on which their
algorithms are implemented. The idea behind the algorithm
is to precompute and store the different cyclic shifts of A
and B into a look-up table (i.e., memory). Then, instead of
using cyclic shifts (as shown in Step 4 of Algorithm 1
above), the shifted values are read from the memory. This is
shown below.

Algorithm 2. [14], [15] (Ning-Yin multiplication for arbi-

trary NBs)

Input:

A ¼ ða0; a1; � � � ; am�1Þ; B ¼ ðb0; b1; � � � ; bm�1Þ 2 GF ð2mÞ,
and M

Output: C ¼ ðc0; c1; � � � ; cm�1Þ ¼ AB
1. Precompute arrays for Ai and Bi

2. Initialize C :¼ 0

3. For i ¼ 0 to m� 1 {

4. Initialize S :¼ 0

5. For j ¼ 0 to m� 1 {

6. If Mði; jÞ ¼ 1 then S :¼ S �Bj}
7. C :¼ C � ðAi � SÞ
8. Output C ¼ ðc0; c1; � � � ; cm�1Þ.
In this algorithm Mði; jÞ represents the ði; jÞth entry

of the multiplication matrix M. Also, X � Y ¼
ðx0y0; x1y1; � � � ; xm�1ym�1Þ a n d X � Y ¼ ðx0 þ y0; x1 þ
y1; � � � ; xm�1 þ ym�1Þ denote the bit-wise AND and the bit-
wise XOR (field addition) operations between coordinates of
X ¼ ðx0; x1; � � � ; xm�1Þ and Y ¼ ðy0; y1; � � � ; ym�1Þ, respec-
tively. In Step 1 of Algorithm 2, each unit of w bits of the
cyclic shifts of A (and, similarly, B) are stored into two
arrays as follows:

A½i� ¼ ðai; � � � ; aiþw�1 mod mÞ; 0 � i � m� 1: ð3Þ

Thus, the i-fold left cyclic shifts of A can be obtained
by reading the following units from the array as
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Ai ¼ ðA½i�; A½iþ w�; � � � ; A½iþ ðdmwe � 1Þw�Þ, w h e r e t h e

additions inside the square brackets are reduced modulo m.

2.2 Conventional GNB Multiplication

It was shown in [23] that, for any normal basis of GF ð2mÞ,
the number of 1s in the multiplication matrix is always

greater than or equal to 2m� 1, i.e., CN 	 2m� 1. In order

to have an efficient and simple implementation, one needs

to choose a normal basis such that CN is as small as

possible. The best choice for CN is obviously 2m� 1 and the

corresponding NB is called an optimal normal basis (ONB).

Two types of ONBs, i.e., type I and type II, were constructed

by Mullin et al. [23]. However, such ONBs do not exist for

all m. As an extension of optimal normal bases, Gaussian

normal bases have been constructed by Ash et al. in [19].

Like ONBs, GNBs are special classes of normal bases.

Although GNBs are generally less efficient than ONBs,

when an ONB does not exist, GNB is considered to be the

best alternative.

Definition 1. A type T GNB for GF ð2mÞ exists if and only if

p ¼ Tmþ 1 is prime and gcdðTmk ; mÞ ¼ 1, where k is the

multiplicative order of 2 modulo p [24].

It is noted that, whenT ¼ 1 and 2, we have type 1 and type 2

GNBs which are the same as type I and type II ONBs,

respectively. It is also noted that, forGF ð2mÞwhenm is not a

multiple of eight and no ONB exists, at least one GNB exists.
Instead of using M as an input in Algorithm 1, the

multiplication algorithm presented in [1], [2] for GNB

requires the explicit formula for the first coordinate of the

product C, i.e.,

c0 ¼
Xp�2

k¼1

aF ðkþ1ÞbF ðp�kÞ: ð4Þ

In (4), the sequence F ð1Þ; F ð2Þ; � � � ; F ðp� 1Þ needs to be

precomputed using

F ð2iuj mod pÞ ¼ i; 0 � i � m� 1; 0 � j < T; ð5Þ

where u is an integer of order T mod p and p ¼ Tmþ 1. It

is noted that each term in (4) corresponds to a nonzero entry

of M. Thus, one can easily obtain the multiplication matrix

M for GNBs from (4).
In the following two sections, we discuss algorithms for

efficient software implementation of Gaussian normal basis

multiplication. Unlike the algorithms presented in the IEEE

and NIST standards [1], [2], which use bit-wise operations,

the proposed algorithms use vectors of bits. This enables us

to use the full data path of the processor on which the

software is executed.

3 MODIFIED NING-YIN MULTIPLICATION ALGORITHM

In this section, we modify Algorithm 2 for GNBs. This

modification eliminates the inner for loop of Algorithm 2

and increases the speed of the algorithm. We first introduce

the following lemmas which are subsequently used in our

formulation of the modified multiplication algorithm (i.e.,

Algorithm 3).

Lemma 1 [25]. For a self-dual normal basis1 over GF ð2mÞ, when

m is odd, the entries of Mðm�1Þ have the following properties:

1. �
ðm�1Þ
i;m�1 ¼ �

ðm�1Þ
m�1;i ¼

1 if i ¼ 0
0 otherwise:

�

2. �
ðm�1Þ
i;j ¼ �ðm�1Þ

ðm�1þi�jÞ;ðm�j�2Þ ¼ �
ðm�1Þ
ðj�i�1Þ;ðm�i�2Þ, for

i < j and 0 � i; j � m� 1.

Lemma 2 [16]. For type T GNBs, where T is an even integer

F ðkÞ ¼ F ðp� kÞ; 1 � k � p� 1, whereF ðkÞ is defined in (5).

3.1 Formulation

It is well-known that the multiplication matrix is symmetric,

i.e., M ¼Mtr: It is also known that all diagonal entries of M

are zero except the last one, i.e.,

Mði; iÞ ¼ 1; if i ¼ m� 1
0; otherwise:

�

Now, we state the following lemma from [21] to present

certain properties of M that the modified Ning-Yin

algorithm relies on.

Lemma 3. For type T Gaussian normal bases over GF ð2mÞ,
where m is an odd integer (hence, T is even), the multi-

plication matrix M has the following properties:

1. There is only one nonzero entry in row 0 (or column 0),
i.e.,

Mð0; jÞ ¼Mðj; 0Þ ¼ 1; if j ¼ 1
0; otherwise:

�

2. For other rows (or columns), the number of 1s in each
row (or column) of M is even and less than or equal toT .

Proof. Using (2) with l ¼ j ¼ m� 1 into part 1 of Lemma 1,

one can see that the first property exists for all self-dual

normal bases. Also, it is proven in [26] that all GNBs of

even type are self-dual normal basis. Thus, the proof of

the first part is complete.
In order to prove the second part, first we use the

above-mentioned property of M and Lemma 2 to
simplify (4) as follows:

c0 ¼ a0b1 þ
Xp�2

k¼2

aF ðkÞbF ðkþ1Þ

¼ a0b1 þ
Xm�1

i¼1

ai
X
F ðkÞ¼i

bF ðkþ1Þ

0
@

1
A; for 2 � k � p� 2;

ð6Þ

where

k ¼ 2iuj mod p; 1 � i � m� 1; 0 � j < T: ð7Þ

Since u is an integer of order T mod p and, using (7), one

can find that, for a given value of i, 1 � i � m� 1,

F ðkÞ ¼ i ð8Þ
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has at most T unique solutions for k, 2 � k � p� 2, say
k1; k2; � � � ; kT . For each i in (6), if F ðku þ 1Þ 6¼ F ðkv þ 1Þ,
u 6¼ v, 1 � u; v � T , then row i has exactly T number of 1s
in the multiplication matrix. Otherwise, the number of 1s
will be an even integer and it will be less than T . This is
because T is even and, in (6), when the terms labeled as
bF ðkþ1Þ are summed for F ðkÞ ¼ i, any two of these terms
with the same subscript value would cancel each other.tu

Remark 1. For T ¼ 2, all rows of M have two nonzero
entries except for row 0.

Using Lemma 3 and by counting the number of ones in
the multiplication matrix, we can obtain the following:

Corollary 1. The complexity of type T GNB over GF ð2mÞ is
CN � Tm� T þ 1, where m is an odd integer.

Remark 2. It has been proven in [19] that CN � Tm� 1.
Thus, the new upper bound in Corollary 1 is a tighter
upper bound for all even integers T 	 2.

Remark 3. For T ¼ 4, it has been shown in [19] that
CN ¼ 4m� 7. This implies that only two rows of M
should have two nonzero entries.

In order to efficiently implement GNB multiplication in
software, it is better to store the indices of nonzero
columns of M instead of storing the whole M: Since the
location of the single 1 of row 0 of M is fixed, we need to
store those in rows 1 up to m� 1. This eliminates the if
condition in Step 6 of Algorithm 2. In an attempt to
modify Algorithm 2 (more specifically, Steps 5 to 7 of the
algorithm), let us denote an ðm� 1Þ 
 T matrix R whose
entry Rði; jÞ, 0 � Rði; jÞ � m� 1, 1 � i � m� 1, 1 � j � T ,
contains the column indices of 1s in row i of M. If the
number of 1s in row i of M is T , then all Rði; jÞ, 1 � j � T ,
contain an integer in ½0;m� 1�. Otherwise, we initialize the
remaining entries of R, whose number is even, with a
constant value, say 0.

Then, one can write c0 from (6) as

c0 ¼ a0b1 þ
Xm�1

i¼1

ai
XT
j¼1

bRði;jÞ

 !
: ð9Þ

This is because (9) has an even number of bRði;jÞ redundant
terms for a given i, 1 � i � m� 1. Since their associated
entries of Rði; jÞ are the same, say 0, the modulo 2 addition
of such terms will be zero.

Using (9), one can obtain cl by adding l modulo m to all
indices in (9), i.e.,

cl ¼ alblþ1modm þ
Xm�1

i¼1

alþi mod m

XT
j¼1

blþRði;jÞ mod m

 !
;

0 � l � m� 1:

Thus, we can state the following [21]:

Theorem 1. Let C be the product of A and B in GF ð2mÞ. Then,

C ¼ ðA�B1Þ �
Xm�1

i¼1

Ai � ðBRði;1Þ �BRði;2Þ � � � � �BRði;T ÞÞ;

ð10Þ

where X � Y ¼ ðx0y0; x1y1; � � � ; xm�1ym�1Þ and X � Y ¼
ðx0 þ y0; x1 þ y1; � � � ; xm�1 þ ym�1Þ denote the bit-wise

AND and XOR operations between coordinates of X ¼
ðx0; x1; � � � ; xm�1Þ and Y ¼ ðy0; y1; � � � ; ym�1Þ, respec-

tively, and Xi ¼ ðxi; xiþ1; � � � ; xi�1Þ is the i-fold left cyclic

shift of X.

3.2 Modified Algorithm

Based on Theorem 1, we can present the following

algorithm for efficient software implementation of type T

GNB multiplication for GF ð2mÞ. As seen earlier, Algorithm

2 has the second level of loop with m iterations, i.e., Steps 5-

7. However, the following algorithm does not have such a

loop and this helps to increase the speed of its execution

when implemented in software. For the smallest nonzero

positive even integer (i.e., T ¼ 2), we have type 2 GNBs

which are identical to type II ONBs and, for this particular

value of T , the following algorithm is similar to the type II

ONB multiplication algorithm presented in [14].

Algorithm 3. (Modified Ning-Yin multiplication for m odd)

Input:
A ¼ ða0; a1; � � � ; am�1Þ; B ¼ ðb0; b1; � � � ; bm�1Þ 2 GF ð2mÞ,
and m� 1
 T matrix R

Output: C ¼ ðc0; c1; � � � ; cm�1Þ ¼ AB
1. Precompute arrays for Ai and Bi

2. Initialize C :¼ A�B1

3. For i ¼ 1 to m� 1 {

4. C :¼ C � ðAi � ðBRði;1Þ �BRði;2Þ � � � � �BRði;T ÞÞÞ}
5. Output C ¼ ðc0; c1; � � � ; cm�1Þ:
In the above algorithm, three different operations,

namely, bit-wise AND (�), bit-wise XOR (�), and cyclic

shifts, are used. As seen in Step 2 and Step 4 of Algorithm 3,

the number of two former operations are m and T ðm� 1Þ,
respectively. In a programming language like C, bit-wise

AND and bit-wise XOR operations can be easily imple-

mented by dmwe AND and XOR instructions. As a result,

Algorithm 3 requires mdmwe AND instructions and

Tdmweðm� 1Þ XOR instructions.
Although the cyclic shift operation is essentially free in

hardware, it is costly in software. One way to reduce the

number of cyclic shift operations is to store cyclically shifted

versions of A and B into memory and read them from

memory. In [27], all m different cyclic shifts of field

elements of A and B are stored into two m arrays, each of

which contains one cyclic shift of A and B. Thus, its

memory requirement for each field element is about

2m2 bits. We use another efficient method which requires

relatively less memory and is used in Algorithm 2 [14], [15].

This method, as stated in Step 1 of Algorithms 2 and 3,

stores two arrays of

A½i� ¼ ðai; � � � ; aiþw�1 mod mÞ
B½i� ¼ ðbi; � � � ; biþw�1 mod mÞ

; 0 � i � m� 1;

and then, by reading dmwe w-bit units from the memory for

generating each cyclic shifts of the elements as
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Ai ¼ ðA½i�; A½iþ wmodm�; � � � ; A½iþ ð m
w

� �
� 1Þwmodm�Þ;

Bi ¼ ðB½i�; B½iþ wmodm�; � � � ; B½iþ ð m
w

� �
� 1Þwmodm�Þ;

0 � i � m� 1:

This is shown in Fig. 1 for m ¼ 163 and w ¼ 32. To
precompute each unit of arrays for Ai and Bi, � assorted
instructions are required. The typical value of � for
programming languages like C is four. Thus, the total
number of assorted instructions needed for Step 1 of the
algorithm is 2�m.

For the memory requirement, we assume that each
entry of R in Algorithm 3 is stored in at most dlog2 me
bits with a total of T ðm� 1Þdlog2 me bits. Also in Step 1
of this algorithm, another 2wm bits are required. Thus,
the total memory requirement of the algorithm is T ðm�
1Þdlog2 me þ 2wm bits, which includes the memory for
storing the input matrix R and arrays used in Step 1 of
the algorithm. For the number of memory accesses needed
in Algorithm 3, one needs to consider accesses to each
memory unit. This number is determined by taking into
account the accesses due to R, Ais and Bis which are
T ðm� 1Þ, dmwem, and T ðm� 1Þdmwe þ dmwe, respectively. Now,
we can conclude the above complexity analysis as follows:

Proposition 1. The number of AND, XOR, and assorted
instructions for Algorithm 3 are mn, T ðm� 1Þn, and 2�m,
respectively. Also, Algorithm 3 requires � T ðm�
1Þdlog2 me þ 2wm bits of memory with � T ðm� 1Þðnþ
1Þ þ nðmþ 1Þ number of memory access, where n ¼ dmwe.

4 A MORE EFFICIENT ALGORITHM

Let us introduce the following lemma which helps us obtain
the multiplication matrix M for GNBs [21].

Lemma 4. For the type T GNB over GF ð2mÞ, when m is odd, the
ði; jÞth entry of the multiplication matrix M is

Mði; jÞ ¼ �ðjÞi;0 ; 0 � i; j � m� 1; ð11Þ

where �i;0 ¼ �2iþ1 ¼
Pm�1

j¼0 �
ðjÞ
i;0�

2j .

Proof. Since M ¼Mtr, it is sufficient to prove it only for
i < j and 0 � i � m� 1. For i ¼ 0, (11) is obtained
directly from part 1 of Lemma 3. Using (2) into (11),
we need to show that

Mði; jÞ ¼Mðmþ i� j;m� jÞ; 0 < i < j � m� 1: ð12Þ

Using part 2 of Lemma 1 and (2), one can see that (12)

holds for self-dual normal bases. Thus, the proof is

complete because all GNBs of even type are self-dual

normal bases [26]. tu
It is noted that the proof of Lemma 4 with another

approach can be found in [28].

4.1 New Software Algorithm

The actual timing of software implementation of an

algorithm depends not only on the total number of

instructions, but also on the memory requirement and the

number of memory accesses. The memory issue plays an

important role in the analysis of algorithms that are to be

implemented in software. This is especially important for

resource constrained cryptosystems such as smart cards,

where the storage memory is not only limited but also

slower than what one would find in many other environ-

ments. Thus, in addition to reducing the number of

instructions of an algorithm, we need to minimize its

memory requirement and the number of memory accesses.

To do so, in this section, we develop another algorithm

which is based on the following property of the multi-

plication matrix M for GNBs [21]:

Corollary 2. In the multiplication matrix M of GNBs for

GF ð2mÞ, when m is odd, row m� i, 1 � i � m�1
2 , is the

i-fold left cyclic shift of row i, i.e.,

Mðm� i; jÞ ¼Mði; jþ i mod mÞ; 1 � i � m� 1

2
; 0 � j

� m� 1:

ð13Þ

Proof. The proof follows from (11) and the fact that �i;0 ¼
�2i

m�i;0 for i > m�1
2 . tu

Based on the above property, we can obtain the

following relationship among the entries of matrix R:

Rðm� i; jÞ ¼ Rði; jþ iÞ � i mod m;

1 � i � m� 1

2
; 1 � j � T:

ð14Þ
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Fig. 1. (a) Precompute arrays for Ai (m ¼ 163 and w ¼ 32). (b) Generating A1 and Ai using the arrays.



By applying (14) for a given i and all values of j, we then

have

BRðm�i;1Þ �BRðm�i;2Þ � � � � �BRðm�i;T Þ

¼ BRði;1Þ �BRði;2Þ � � � � �BRði;T Þ
� �

� i:
ð15Þ

Let R0 be an m�1
2 
 T matrix which contains the first half of

matrix R. Then, using (15), Theorem 1, and the fact that

Am�i � ðS � iÞ ¼ ðA� iÞ � ðS � iÞ ¼ ðA� SÞ � i, for any

A;S 2 GF ð2mÞ, 1 � i � m�1
2 , one can conclude the follow-

ing, which is the key equation to our next multiplication

algorithm.

Theorem 2. For GNBs in GF ð2mÞ, when m is an odd number,

the product of A and B is

C ¼ ðA�B1Þ �
Xm�1

2

i¼1

ððA� iÞ � SÞ � ððA� SÞ � iÞð Þ; ð16Þ

where

S ¼ SðiÞ ¼ BR0ði;1Þ �BR0ði;2Þ � � � � �BR0ði;T Þ: ð17Þ

In (16), i-fold left cyclic shifts of A, i.e., A� i, are used

instead of Ai, as appeared in (10). This is because, in the

software implementation of Theorem 2 which is given

below, we only store the cyclic shifts of one operand,

namely, B. This will help us reduce the memory require-

ment to one half of that of Algorithm 3. The algorithm

presented below is based on Theorem 2 and is given for odd

m only. For m even, one can use the algorithms presented in

[16].

Algorithm 4. (Efficient GNB Multiplication for GF ð2mÞ
when m is odd)

Input:

A ¼ ða0; a1; � � � ; am�1Þ; B ¼ ðb0; b1; � � � ; bm�1Þ 2 GF ð2mÞ,
and m�1

2 
 T matrix R0

Output: C ¼ ðc0; c1; � � � ; cm�1Þ ¼ AB
1. Precompute array for Bi

2. Initialize L :¼ A, C :¼ A�B1

3. For i ¼ 1 to m�1
2 {

4. L :¼ L� 1,

S :¼ BR0ði;1Þ �BR0ði;2Þ � � � � �BR0ði;T Þ
5. C :¼ C � ðL� SÞ
6. R :¼ ðA� SÞ � i

7. C :¼ C �R }

8. Output C ¼ ðc0; c1; � � � ; cm�1Þ.
For the efficient software implementation of the above

algorithm, one important issue is to minimize the number

of CPU instructions that need to be executed. Compared to

Algorithm 3, in Algorithm 4, the number of loop iterations

has become half, which results in not only the number of

XOR instructions being reduced, but also the number of

memory accesses for reading Bi has become half. This will

decrease the computational time of the algorithm when it is

implemented on resource constrained cryptosystems. For

this algorithm, one can perform analyses similar to the one

presented for Algorithm 3. The results are given in the

following:

Proposition 2. The number of AND, XOR, and assorted

instructions for Algorithm 4 are mn, Tþ1
2 ðm� 1Þn, and

�mþ �nðm� 1Þ, respectively. Also, Algorithm 4 requires �
T ðm�1Þ

2 log2 md e þ wm bits of memory with � T ðm�1Þ
2 ðnþ 1Þ

number of memory access, where n ¼ dmwe.

4.2 An Example

For type 4 GNB over GF ð27Þ, one has p ¼ 29 and u ¼ 12 or

17. Then, the sequence of F is shown in Table 1, which is

obtained from [2].
Thus, using (4), we can obtain

c0 ¼ a0b1 þ a1ðb0 þ b2 þ b5 þ b6Þ þ a2ðb1 þ b3 þ b4 þ b5Þ
þ a3ðb2 þ b5Þ þ a4ðb2 þ b6Þ þ a5ðb1 þ b2 þ b3 þ b6Þ
þ a6ðb1 þ b4 þ b5 þ b6Þ;

ð18Þ

and corresponding M, R, and R0 matrices, respectively, are

M ¼

0 1 0 0 0 0 0

1 0 1 0 0 1 1

0 1 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 0 0 0 1

0 1 1 1 0 0 1

0 1 0 0 1 1 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

R ¼

0 2 5 6

1 3 4 5

2 5 0 0

2 6 0 0

1 2 3 6

1 4 5 6

0
BBBBBBBB@

1
CCCCCCCCA
; R0 ¼

0 2 5 6

1 3 4 5

2 5 0 0

0
B@

1
CA:

ð19Þ

It is seen from M that CN ¼ 21. Since b0 þ b0 ¼ 0, one can

obtain c0 from (18) as

c0 ¼ a0b1 þ a1ðb0 þ b2 þ b5 þ b6Þ þ a2ðb1 þ b3 þ b4 þ b5Þ
þ a3ðb2 þ b5 þ b0 þ b0Þ þ a4ðb2 þ b6 þ b0 þ b0Þ
þ a5ðb1 þ b2 þ b3 þ b6Þ þ a6ðb1 þ b4 þ b5 þ b6Þ:

ð20Þ

Thus, the resultant multiplication is
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TABLE 1
The Sequence of F for Type 4 GNB over GF ð27Þ



C ¼ ðA�B1Þ � ðA1 � ðB0 �B2 �B5 �B6ÞÞ
� ðA2 � ðB1 �B3 �B4 �B5ÞÞ
� ðA3 � ðB2 �B5 �B0 �B0ÞÞ
� ðA4 � ðB2 �B6 �B0 �B0ÞÞ
� ðA5 � ðB1 �B2 �B3 �B6ÞÞ
� ðA6 � ðB1 �B4 �B5 �B6ÞÞ;

which simplifies to

C ¼ ðA�B1Þ � ððA� 1Þ � ðB0 �B2 �B5 �B6ÞÞ
� ððA� 2Þ � ðB1 �B3 �B4 �B5ÞÞ
� ððA� 3Þ � ðB2 �B5 �B0 �B0ÞÞ
� ððA� ðB5 �B2 �B0 �B0ÞÞ � 3Þ
� ððA� ðB3 �B4 �B5 �B1ÞÞ � 2Þ
� ððA� ðB2 �B5 �B6 �B0ÞÞ � 1Þ:

4.3 Comparison

Table 2 compares the multiplication algorithms of Reyhani-

Hasan (Algorithm 3 in [16]) and the modified Ning-Yin

(Algorithm 3) and the proposed algorithm (Algorithm 4) in

terms of the number of processor or CPU instructions and

memory requirements. As seen in the table, our proposed

Algorithm 4 requires the least amount of memory after

Algorithm 3 of [16].
During the preparation of this paper, independent work

from Dahab et al. appeared [18]. It is noted that the key

equation of their new algorithm, i.e., Algorithm 4 of [18], is

similar to (16). Then, Algorithm 4 (and, hence, Algorithm 7)

in [18] requires the same number of operations and memory

requirements as the one proposed here, i.e., Algorithm 4 of

this paper.

We have coded normal basis algorithms given in Table 2

and the best polynomial basis multiplication algorithm

presented in [29]. Table 3 compares the multiplication

algorithms for the five binary fields recommended by NIST

for ECDSA applications. The codes have been written using

the C programming language and have been executed on

two platforms—a Sun Blade 100 with SparcV9 processor

clocked at 502MHz, 512MB of RAM, and a PC with

Pentium 4 clocked at 3.00 GHz, 1.00 GB of RAM. It is noted

that our codes have not been optimized using techniques

such as loop unrolling and reducing register consumption

as compared with the ones used in [18]. Therefore, we have

reported the ratios of the obtained timings to the timing of

the GF ð2163Þ polynomial basis multiplication in Table 3. As

seen in this table, although the proposed algorithm

(Algorithm 4) is faster than the previously reported

algorithms using GNB, it is still slow as compared with

the multiplication algorithm using polynomial basis.
In the following two sections, two new digit-level

architectures for multiplication using GNBs are proposed.

The multiplication operation in both architectures require

dmde clock cycles. Based on the available space for a given

multiplier, the parameter d, 1 � d � m, can be chosen by the

designer to meet the gate counts and timing requirements.

It is noted that, throughout the following two sections,

Am�i ¼ A� i ¼ A2i can be obtained by i-fold right cyclic

shifts of the coordinates A and it is free in hardware

implementation.
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TABLE 2
Generic Comparison of Multiplication Algorithms in Terms of Number of Instructions and Memory Requirements, n ¼ dmwe

Note that 2m� 1 � CN � Tm� T þ 1.

TABLE 3
Comparison of Software Implementations of the GNB Multiplication for the Five Binary Fields Recommended by NIST for ECDSA



5 NEW DIGIT-LEVEL MULTIPLIER WITH

SERIAL OUTPUT

We now present a new digit-level multiplier which requires
dmde clock cycles and generates d, 1 � d � m, coordinates of
C ¼ AB in each clock cycle.

Let us denote

zl ¼ xMðlÞytr; 0 � l � d� 1; ð21Þ

where MðlÞ, as mentioned earlier, is the l-fold right and
down circular shifts of the multiplication matrix M ¼Mð0Þ.
Using (1), one can verify that the first d coordinates of C can
be obtained from (21), i.e., cl ¼ zl; 0 � l � d� 1, if x ¼ a and
y ¼ b. Consecutive d coordinates of C, i.e.,

c�jd mod m; � � � ; c�jdþd�1 mod m; 1 � j �
m

d

l m
� 1;

can be found from (21) if x and y are to be replaced with
their consecutive d-fold right cyclic shifts, i.e.,

½a�jd mod m; � � � ; a�jdþm�1 mod m�

and

½b�jd mod m; � � � ; b�jdþm�1 mod m�;

respectively.

5.1 Architecture

To realize d equations of (21), the architecture of Fig. 2a,
which is hereafter referred to as digit-level GNB multiplier
with serial output (DLGMS), is proposed. In this structure,
two m-bit registers of X and Y , which correspond to x and
y in (21), are initialized ðj ¼ 0Þ with the coordinates of A ¼
ða0; a1; � � � ; am�1Þ and B ¼ ðb0; b1; � � � ; bm�1Þ, respectively.
The d-fold right cyclic shifts are realized by two CSd blocks
in Fig. 2a. Thus, after the jth, 1 � j � dmde � 1, clock cycle,
the registers X and Y contain, respectively, the coordinates

o f A2ðjdÞ ¼ ða�jd mod m; � � � ; a�jdþm�1 mod mÞ a n d B2ðjdÞ ¼
ðb�jd mod m; � � � ; b�jdþm�1 mod mÞ and the multiplier generates

d coordinates of C, i.e., cl�jd mod m ¼ zl; 0 � l � d� 1;

0 � j � dmde � 1.
The multiplier structure of Fig. 2a consists of two blocks

of arrays, namely, BTX-array and IP-array. The BTX-array

generates all entries of d vectors of

vðlÞ ¼ ½vðlÞ0 ; v
ðlÞ
1 ; � � � ; v

ðlÞ
m�1�

tr ¼MðlÞytr; 0 � l � d� 1 ð22Þ

using � binary tree of XOR (BTX0�����1) gates, where the value

of � will be determined in the end of this section. After

generating all entries of (22), the IP-array block of Fig. 2a

realizesd equations of zl ¼ xvðlÞ ¼
Pm�1

i¼0 xiv
ðlÞ
i ; 0 � l � d� 1,

using d inner product (IP) blocks. Each IP block, as shown

in Fig. 2b, requires m AND gates and m� 1 XOR gates.

Thus, the IP-array consists of dm AND gates and dðm� 1Þ
XOR gates.

To implement a single entry v
ðlÞ
i , 0 � i � m� 1,

0 � l � d� 1, in (22), we need to consider row i of MðlÞ.

Using Lemma 3 and the fact that MðlÞ is the l-fold right and

down circular shifts of M ¼Mð0Þ, we can see that 1) row l of

MðlÞ has one nonzero entry (which is in column lþ 1) and

2) all other rows have at most T 1s. Thus, there is no gate

needed for realizing the d entries of v
ðlÞ
l ¼ ylþ1, 0 � l � d� 1.

This corresponds to the d lines on the v-bus in Fig. 2a which

are connected to y1; y2; � � � ; yd of the register Y . Also, one can

verify that each entry of v
ðlÞ
i , i 6¼ l, in (22), which is realized

by a BTX block (see Fig. 2c), requires at most T � 1 two-

input XOR gates. As a result, the total number of XOR gates

in the BTX-array of the multiplier is � �ðT � 1Þ. In order to

determine the number of XOR gates in the multiplier, we

need to obtain �, which is the total number of different rows

with more than one nonzero entry in MðlÞs for 0 � l � d� 1.
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Fig. 2. (a) The architecture of digit-level GNB multiplier with serial output (DLGMS). (b) and (c) Details of the IP (inner product) and the BTX (binary

tree of XOR gates) blocks. CSd is the d-fold right cyclic shift.



It is noted that � is upper bounded by dðm� 1Þ. However,

the following helps us to obtain the exact value of �.

Lemma 5. For any 0 � k; j � m� 1, k 6¼ j, the row k of MðjÞ

(denoted as �
ðjÞ
k;) is the same as the row j of MðkÞ (denoted as

�
ðkÞ
j; ), i.e., �

ðjÞ
k; ¼ �

ðkÞ
j; .

Proof. Without loss of generality, we can assume that,

1 � ðj� kÞmodm � m�1
2 , for given values of k and j.

Since the matrix MðjÞ is the ðj� kÞ-fold right and down

circular shifts of the matrix MðkÞ, the row k of MðjÞ is the

ðj� kÞ-fold right cyclic shifts of the row k� ðj� kÞ ¼
2k� j of MðkÞ, i.e.,

�
ðjÞ
k; ¼ �

ðkÞ
2k�j; � ðj� kÞ: ð23Þ

Since the matrix MðkÞ is also the k-fold right and down

circular shifts of the matrix M, we can have

�
ðkÞ
iþk; ¼ �

ð0Þ
i; � k; 0 � i � m� 1: ð24Þ

Using Corollary 2, one can obtain the row j� k of M by the

j� k-fold right cyclic shifts of the row m� ðj� kÞ, i.e.,

�
ð0Þ
j�k; ¼ �

ð0Þ
m�ðj�kÞ; � ðj� kÞ: ð25Þ

Also, using (24) with i ¼ j� k and (25), we can obtain

�
ðkÞ
j; ¼ ð�

ð0Þ
m�jþk; � ðj� kÞÞ � k ¼ ð�ð0Þm�jþk; � kÞ � ðj� kÞ:

ð26Þ

Substituting i ¼ m� jþ k into (24), we have

�
ðkÞ
m�jþ2k; ¼ �

ð0Þ
m�jþk; � k: ð27Þ

From (26) and (27), one can obtain �
ðkÞ
j; ¼ �

ðkÞ
m�jþ2k; �

ðj� kÞ and then the proof is complete by using (23). tu

5.2 Complexity

Using the above lemma, one can conclude the following:

Corollary 3. The total number of different rows with more than

one nonzero entry in M; Mð1Þ; � � � , and Mðd�1Þ is

� ¼ dðm� 1Þ � dðd�1Þ
2 .

Proof. Since each MðlÞ, 0 � l � d� 1, has m� 1 rows with

more than one 1, the total number of rows in all MðlÞs is

dðm� 1Þ: Using Lemma 5, every two MðiÞ and MðjÞ have

a common row with the total of d
2

� �
¼ dðd�1Þ

2 common

rows in all M; Mð1Þ; � � � , and Mðd�1Þ. Thus, the proof is

complete by removing the number of common rows

from the total ones, i.e., � ¼ dðm� 1Þ � dðd�1Þ
2 . tu

Based on the above discussions, we can state the gate

counts and time delay of the proposed digit-level multiplier

as follows:

Proposition 3. For type T GNB overGF ð2mÞ; the proposed digit-

level GNB multiplier with serial output (DLGMS) requires dm

two-input AND gates,� dððm� dþ1
2 ÞT þ d�1

2 Þ two-input XOR

gates, and 2m one-bit latches. Also, the critical path delay of the

multiplier is � TA þ ðdlog2 Te þ dlog2 meÞTX, where TA and

TX are the time delay of a two-input AND gate and a two-

input XOR gate, respectively.

Proof. As seen in Fig. 2, the number of AND gates and
latches are dm and 2m, respectively. The total number
of XOR gates in the BTX-array and the IP-array are
� �ðT � 1Þ ¼ dðm� 1� d�1

2 ÞðT � 1Þ and dðm� 1Þ; re-
spectively. Thus, the total XOR gate count is
� dððm� dþ1

2 ÞT þ d�1
2 Þ. The time delay can be obtained

by adding the delay of the BTX-array, i.e., � dlog2 TeTX,
and the delay of the IP-array, i.e., TA þ dlog2 meTX. tu

It is noted that the number of XOR gates in the BTX-array
can be reduced if some common terms among BTX blocks
are reused. This is shown in the following example.

5.3 An Example

For type 4 GNB over GF ð27Þ, let d ¼ 2. Using (19), we have

M ¼

0 1 0 0 0 0 0

1 0 1 0 0 1 1

0 1 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 0 0 0 1

0 1 1 1 0 0 1

0 1 0 0 1 1 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

Mð1Þ ¼

1 0 1 0 0 1 1

0 0 1 0 0 0 0

1 1 0 1 0 0 1

0 0 1 0 1 1 1

0 0 0 1 0 0 1

1 0 0 1 0 0 0

1 0 1 1 1 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Thus, the resultant lines on the v-bus of Fig. 2a which are
implemented using 16 XOR gates are

vð0Þ ¼ ½y1; ðy2 þ y5Þ þ ðy0 þ y6Þ; ðy4 þ y5Þ þ ðy1 þ y3Þ;
y25; y2 þ y6; y13 þ y26; ðy1 þ y6Þ þ y45�tr;

vð1Þ ¼ ½vð0Þ1 ; y2; ðy0 þ y3Þ þ y16; y26 þ y45; y3 þ y6; y03; y03

þ ðy2 þ y4Þ�tr:
ð28Þ

In (28), v
ð0Þ
1 ¼ ðy2 þ y5Þ þ ðy0 þ y6Þ and yij ¼ yi þ yjs are

reused terms in the BTX-array, where yi, 0 � i � m� 1, is

the ith bit of the register Y ¼ ðy0; y1; � � � ; ym�1Þ. Also, the

IP-array requires 2
 ð7� 1Þ ¼ 12 XOR gates and 14 AND

gates for the implementation of zl ¼
P6

i¼0 xiv
ðlÞ
i ; l ¼ 0; 1. As

a result, the multiplier requires 28 XOR gates and 14 AND

gates with the time delay of TA þ 5TX .

6 NEW DIGIT-LEVEL MULTIPLIER WITH

PARALLEL OUTPUT

Here, we present another architecture for multiplication of

two field elements of A and B in such a way that all

m coordinates of C ¼ AB are available simultaneously at

the end of final clock cycle. Similar to the previous

architecture, the total number of clock cycles needed for
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the multiplication is q ¼ dmde, where d, 1 � d � m, is denoted

as the number of bits in each digit.

6.1 Formulation

Let hi be the number of 1s in the row i, 1 � i � m� 1, of the

multiplication matrix M. It was shown that hi is an even

number, where 2 � hi � T . Let us define

S0ðk;BÞ ¼ ðBRð2k;1Þ �BRð2k;2Þ � � � � �BRð2k;h2kÞÞ � k;

1 � k � m� 1

2
;

ð29Þ

where Rði; jÞ, 1 � i � m� 1, is the ði; jÞth entry of the m�
1
 T matrix R used in Theorem 1. Then, we can state the

following:

Lemma 6. Let C ¼ AB, A;B;C 2 GF ð2mÞ. Then,

C ¼ ðA�B1Þ �
Xm�1

2

k¼1

ððAk � S0ðk; BÞÞ � kÞð

�ððAm�k � S0ðk; BÞÞ � kÞÞ;
ð30Þ

where S0ðk; BÞ 2 GF ð2mÞ has been defined in (29).

Proof. Using (10) and the fact that
PT

j¼hiþ1 BRði;jÞ ¼ 0, we

have

C ¼ ðA�B1Þ �
Xm�1

i¼1

Ai � Si; ð31Þ

where Si ¼ BRði;1Þ �BRði;2Þ � � � � �BRði;hiÞ. Since m is

odd, m� 2k is odd. Then, we can write the term in the

summation of (31) into two terms over even and odd

values of i, i.e., i ¼ 2k and i ¼ m� 2k, as

Xm�1

i¼1

Ai � Si ¼
Xm�1

2

k¼1

ððA2k � S2kÞ � ðAm�2k � Sm�2kÞÞ ð32Þ

¼
Xm�1

2

k¼1

ðððAk � kÞ � S2kÞ � ððAm�k � kÞ � Sm�2kÞÞ: ð33Þ

Using (15) and (29), Sm�2k in (33) can be written as

Sm�2k ¼ S2k � 2k ¼ ðS2k � kÞ � k ¼ S0ðk;BÞ � k: ð34Þ

Also, S2k in (33) can be written as

S2k ¼ ðS2k � kÞ � k ¼ S0ðk;BÞ � k: ð35Þ

Substituting (34) and (35) into (33) and using the

following:

ðAk � kÞ � ðS0ðk;BÞ � kÞ ¼ ðAk � S0ðk;BÞÞ � k

ðAm�k � kÞ � ðS0ðk;BÞ � kÞ ¼ ðAm�k � S0ðk; BÞÞ � k;

the proof is complete. tu
Let us denote that S0ðm� k;BÞ ¼ S0ðk;BÞ; 1 � k � m�1

2 .

Then, (30) can be stated as follows if we use ðAk �
S0ðk;BÞÞ � k ¼ ðAk � S0ðk;BÞÞ2

m�k
and

ðAm�k � S0ðk;BÞÞ � k ¼ ðAm�k � S0ðk;BÞÞ2
k

:

Corollary 4. Given A;B 2 GF ð2mÞ,

C ¼ AB ¼
Xm�1

k¼0

ðAm�k � S0ðk;BÞÞ2
k

; ð36Þ

where S0ð0; BÞ ¼ B1.

Let S0ðk;BÞ 2 GF ð2mÞ be represented with respect to the

GNB as S0ðk;BÞ ¼
Pm�1

l¼0 s0lðk;BÞ�2l , where s0lðk;BÞ 2 f0; 1g.
We now define a field element,

JðX;Y Þ ¼
Xm�1

k¼0

xm�ks
0
0ðk; Y Þ�2k ; ð37Þ

as a function of two field elements of X ¼ ðx0; x1; � � � ; xm�1Þ
a n d Y ¼ ðy0; y1; � � � ; ym�1Þ, w h e r e s00ð0; Y Þ ¼ y1 a n d

s00ðk; Y Þ ¼ s00ðm� k; Y Þ for 1 � k � m�1
2 . Then, one can write

(36) as

C ¼
Xm�1

k¼0

Xm�1

l¼0

am�kþls
0
lðk;BÞ�2l

 !2k

¼
Xm�1

l¼0

Xm�1

k¼0

am�kþls
0
lðk;BÞ�2k

 !2l
ð38Þ

¼
Xm�1

l¼0

J2lðA2m�l ; B2m�lÞ: ð39Þ

Let q ¼ dmde be the number of clock cycles needed for the

multiplication. Then, we can write m ¼ qd� r, where

0 � r � d� 1. Let us define

ZðX;Y Þ ¼ ð� � � ððL2dðX;Y Þ � LðX2d ; Y 2dÞÞ2
d

� � � �

� LðX2ðq�2Þd
; Y 2ðq�2ÞdÞÞ2

d

� L0ðX2ðq�1Þd
; Y 2ðq�1ÞdÞ;

ð40Þ

where

LðX;Y Þ ¼
Xd�1

i¼0

J2d�1�iðX2i ; Y 2iÞ ð41Þ

and

L0ðX;Y Þ ¼
Xd�r�1

i¼0

J2d�1�iðX2i ; Y 2iÞ: ð42Þ

By comparing (39) with (40) for the values of X ¼ A2 and

Y ¼ B2, one can verify that ZðA2; B2Þ ¼ C2r . Thus, C ¼ AB
can be obtained from (40) if X ¼ A21�r

and Y ¼ B21�r
, i.e.,

ZðA21�r
; B21�rÞ ¼ C.

6.2 Architecture

In order to realize (40), the structure of Fig. 3a is proposed.

This multiplier is hereafter referred to as the digit-level

GNB multiplier with parallel output (DLGMP ). Let ZðjÞ
denote the content of the output register Z at the jth,

0 � j � q � 1, clock cycle. In the initialization step of this

multiplier (j ¼ 0), the output register Z should be cleared,

i.e., Zð0Þ ¼ 0, and the input registers of X and Y should be

loaded by the coordinates of Xð0Þ ¼ A21�r
and Yð0Þ ¼ B21�r

,
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respectively. Then, by writing (40) into the following

recursive equations:

Zðjþ1Þ ¼ Z2d

ðjÞ � LðXðjÞ; YðjÞÞ; ð43Þ

Xðjþ1Þ ¼ X2d

ðjÞ; ð44Þ

Yðjþ1Þ ¼ Y 2d

ðjÞ ; ð45Þ

one can verify that, after q clock cycles, the output register

contains the coordinates of C ¼ AB, i.e., ZðqÞ ¼ C.
In Fig. 3a, the CSd block is a d-fold right cyclic shift which

generates Z2d

ðjÞ in (43). Also, two d CS (cyclic shift) blocks in

the paths between the input and output of the registers X
and Y realize two equations of (44) and (45), respectively.
LðXðjÞ; YðjÞÞ in (43) is implemented by adding d inputs to

the left side of the GF ð2mÞ adder in the architecture. Each
input corresponds to a term in (41) for 0 � j � q � 2. During
the last clock cycle, i.e., j ¼ q � 1, all r inputs generated
from the J 0; � � � ;J r�1 blocks to the left side of the GF ð2mÞ
adder are 0 2 GF ð2mÞ and the remaining inputs correspond
to the terms appearing in (42). This is controlled by a signal,
which is 0 2 GF ð2Þ only during the last clock cycle,
connected to the J 0; � � � ;J r�1 blocks. To implement each
term in (41), one can write the function JðX;Y Þ in (37) as

JðX;Y Þ ¼ X0ðXÞ � P ðY Þ; ð46Þ
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Fig. 3. (a) The proposed digit-level GNB multiplier with parallel output (DLGMp). (b) and (c) Details of J and J 0 blocks. (d) The type 4 DLGMp over

GF ð27Þ (d ¼ 2, r ¼ 1).



where X0ðXÞ ¼ ðx0; xm�1; xm�2; � � � ; x2; x1Þ and

P ðY Þ ¼ ðy1; s
0
0ð1; Y Þ; s00ð2; Y Þ; � � � ; s00ð2; Y Þ; s00ð1; Y ÞÞ: ð47Þ

In Fig. 3a, the input of Pd�1�i, 0 � i � d� 1, is Y 2i

ðjÞ and it

implements P ðY 2i

ðjÞÞ using (47), where s00ðk; Y Þ can be found

from (29). Then, the output of J d�1�i, 0 � i � d� 1,

implements JðX2i

ðjÞ; Y
2i

ðjÞÞ using (46).

For the purpose of illustration, the architecture of

DLGMP (d ¼ 2, r ¼ 1) for the type 4 GNB over GF ð27Þ
is shown in Fig. 3d. In this figure, the X and Y

registers should be initialized with the coordinates of

A21�r ¼ A and B21�r ¼ B, respectively. Initializing the Z

register with ð0; 0; � � � ; 0Þ, it will contain the coordinates

of C ¼ AB after four clock cycles. In Fig. 3d,

s00ð1; Y Þ ¼ y1�1 þ y3�1 þ y4�1 þ y5�1 ¼ ðy2 þ y3Þ þ ðy0 þ y4Þ,
s00ð2; Y Þ ¼ y2�2 þ y6�2 ¼ y0 þ y4, a n d s00ð3; Y Þ ¼ y1�3 þ
y4�3 þ y5�3 þ y6�3 ¼ ðy5 þ y1Þ þ ðy2 þ y3Þ are obtained from

(29) using (19).

6.3 Complexity

From Fig. 3, one can easily see that the DLGMP architecture

requires ðd� rÞm two-input AND gates and rm three-input

AND gates. Using (29), one can figure out that s00ðk; Y Þ
requires h2k � 1 XOR gates. Since

Pm�1
2

k¼1 hk ¼ 0:5ðCN � 1Þ
[30] and

Pm�1
2

k¼1 h2k ¼
Pm�1

2

k¼1 hk, the P block in Fig. 3a requires
CN�m

2 XOR gates. It is noted that the number of XOR gates

can be reduced if some common terms are reused. These

terms are common between s00ðk; Y Þs inside a single P block,

as shown in Fig. 3d, and/or different P blocks. Thus, the

number of XOR gates in the P blocks is � d CN�m2 . Since the

GF ð2mÞ adder requires md XOR gates, the total number of

XOR gates is � d CNþm2 .

The critical path delay of the multiplier includes the delays
of the P block (dlog2 TeTX), the J block (TA), and the GF ð2mÞ
adder (� dlog2ðdþ 1ÞeTX). In order to have an optimized
design, we choose r between two consecutive integers such
that r � d� r. Thus, the delay of the multiplier is reduced to
� TA þ ðdlog2 Te þ dlog2ðd� rþ 1ÞeÞTX. From the above
discussion, we can state the complexities of the DLGMP

as follows:

Proposition 4. For type T GNB over GF ð2mÞ, the proposed
digit-level GNB multiplier with parallel output (DLGMP )
requires dm AND gates,2 � dðCNþm2 Þ XOR gates, and 3m
latches. Also, the critical path delay of the multiplier is
� TA þ ðdlog2 Te þ dlog2ðd� rþ 1ÞeÞTX, where TA and TX
are the time delay of a two-input AND gate and a two-input
XOR gate, respectively.

Remark 4. The bit-parallel (d ¼ m, r ¼ 0) architecture of
Fig. 3 can be obtained by removing the three registers of
X, Y , and Z as well as removing the connection of the
output of the Z register to the top input of the
GF ð2mÞ adder. Thus, the number of XOR gates of the
GF ð2mÞ adder is reduced to mðd� 1Þ. Therefore, the
number of XOR gates and time delay of the multiplier
are � mðCNþm�2

2 Þ and � TA þ ðdlog2 Te þ dlog2 meÞTX,
respectively. These match the complexities of the multi-
plier proposed in [13]. tu

6.4 Comparison

Tables 4 and 5 compare the proposed digit-level architec-
tures with the existing ones in terms of number of AND
gates, XOR gates, latches, and critical delay. In these tables,
the DLMO (digit-level Massey-Omura) multiplier uses
d identical bit-level Massey-Omura multipliers [3] and
the IMO (improved Massey-Omura) multiplier is the one
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TABLE 4
Comparison of Digit-Level Gaussian Normal Basis Multipliers in Terms of Space Complexity

Note that 2m� 1 ¼� CN � Tm� T þ 1.

2. It includes ðd� rÞm two-input AND gates and rm three-input AND
gates.



reported in [9]. Also, the AEDS/XEDS (AND/XOR
efficient digit-serial) multipliers provide the outputs in
serial forms [22], whereas the digit-level architectures of
d-SMPOI=II (sequential multiplier with parallel output)
generate the multiplication in parallel [10]. In these tables,
� is the total number of 1s in the upper triangular matrix
of Mð0Þ _Mð1Þ _ � � � _Mðd�1Þ, where _ denotes bit-wise OR
operation. It is noted that � is a function of the normal basis
and is minimum if the type II optimal normal basis is used.3

Thus, the gate count differences between the proposed
multipliers and the ones presented in [22] are minimum for
type II ONBs. For this reason, the comparisons are made for
general T and T ¼ 2 in these tables.

As seen in Table 4, the proposed structure of DLGMS has
the fewest number of total gates among the digit-level
multipliers with serial output. Also, it has the fewest
number of XOR gates as compared with its counterparts.
For type II ONBs, it has fewer number of AND gates with
the same number of XOR gates as the ones of the XEDS
multiplier. As seen from Table 5, it also has the same critical
path delay as the ones with serial output.

It is seen from Table 5 that the architecture of DLGMP is
the fastest multiplier among all multipliers with serial and
parallel output. Also, it has the same number of total gates
as its counterparts with parallel output, i.e., d-SMPOI=II.

It is interesting to compare the time complexity of the
proposed digit-level multipliers with the ones using poly-
nomial basis (PB) [31]. In [31], two word-level multipliers,
namely, LSD-first and MSD-first, are proposed. Those
PB multipliers generate the product in parallel after dmde þ 1,
d 	 2, clock cycles. Therefore, one can see that the proposed
DLGMP requires one fewer clock cycle than the ones
proposed in [31]. Moreover, one can compare the critical

path delay of the DLGMP with the ones of the LSD-first and
MSD-first multipliers, i.e., TA þ dlog2ðdþ 1ÞeTX and
TA þ dlog2ð2dþ 1ÞeTX , respectively. In terms of gate counts,
no comparison can be made since the gate counts of the LSD-
first and MSD-first multipliers are not presented in [31].

One important feature of the proposed digit-level
structures is that they can be easily scaled down to bit-
serial type (d ¼ 1) or up to bit-parallel type (d ¼ m) and the
resultant multipliers will still each have the best time delay
and gate counts in the respective categories. This is also
shown in Tables 4 and 5.

For bit-serial structures (d ¼ 1, r ¼ 0), the complexities of
the DLGMS and the DLGMP match the complexities of the
best multipliers available in the open literature, i.e., [9] and
[28], [21], respectively. Also, for type II optimal normal
bases, the complexities of the DLGMP match the complex-
ities of the multiplier presented in [32].

For bit-parallel structures (d ¼ m, r ¼ 0), the complex-
ities of the DLGMS and the DLGMP match the complexities
of the one proposed in [13]. Moreover, for type II optimal
normal bases, they also match the ones of the multipliers
proposed in [12] and [33].

7 CONCLUSIONS

In this paper, we have proposed new GF ð2mÞmultiplication
algorithms and digit-level multiplier architectures using
type T Gaussian normal bases, when m is odd. Also, the
complexities of their implementations in both software and
hardware have been considered. The proposed software
algorithm outperforms the existing normal basis multiplica-
tion algorithms in both speed and memory combined.
However, it is still slower than the best software algorithm
for multiplication using polynomial bases. The proposed
digit-level multiplier with serial output requires the fewest
number of total gates and the one with parallel output is the
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TABLE 5
Comparison of Digit-Level Gaussian Normal Basis Multipliers in Terms of Time Complexity

Note that 2m� 1 � CN � Tm� T þ 1.

3. Type I optimal normal bases cannot be considered in this paper
because m is always even for such cases.



fastest multiplier as compared with their digit-level counter-

parts. Moreover, the complexities of both architectures match

the best ones available in the open literature when they are

used as the bit-serial and bit-parallel multipliers.
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