
Efficient and High-Performance Parallel
Hardware Architectures for the AES-GCM
Mehran Mozaffari-Kermani, Member, IEEE, and Arash Reyhani-Masoleh, Member, IEEE

Abstract—Since its acceptance as the adopted symmetric-key algorithm, the Advanced Encryption Standard (AES) and its recently

standardized authentication Galois/Counter Mode (GCM) have been utilized in various security-constrained applications. Many of the

AES-GCM applications are power and resource constrained and require efficient hardware implementations. In this paper, different

application-specific integrated circuit (ASIC) architectures of building blocks of the AES-GCM algorithms are evaluated and optimized

to identify the high-performance and low-power architectures for the AES-GCM. For the AES, we evaluate the performance of more

than 40 S-boxes utilizing a fixed benchmark platform in 65-nm CMOS technology. To obtain the least complexity S-box, the

formulations for the Galois Field (GF) subfield inversions in GF ð24Þ are optimized. By conducting exhaustive simulations for the input

transitions, we analyze the average and peak power consumptions of the AES S-boxes considering the switching activities, gate-level

netlists, and parasitic information. Additionally, we present high-speed, parallel hardware architectures for reaching low-latency and

high-throughput structures of the GCM. Finally, by investigating the high-performance GF ð2128Þmultiplier architectures, we benchmark

the proposed AES-GCM architectures using quadratic and subquadratic hardware complexity GF ð2128Þ multipliers. It is shown that the

performance of the presented AES-GCM architectures outperforms the previously reported ones in the utilized 65-nm CMOS

technology.

Index Terms—Advanced encryption standard, Galois/Counter mode, high performance, low power.

Ç

1 INTRODUCTION

THE Advanced Encryption Standard-Galois/Counter
Mode (AES-GCM) provides authentication and confi-

dentiality for sensitive data simultaneously. In the AES-
GCM, data confidentiality is provided by the Advanced
Encryption Standard (AES) [1]. The AES was accepted by
the National Institute of Standards and Technology (NIST)
in 2001 as the replacement for the previous cryptographic
standards. Since then, it has been included in wireless
standards of Wi-Fi [2] and WiMAX [3] and many other
applications, ranging from the security of smart cards to the
bitstream security mechanisms in FPGAs [4]. The authenti-
cation of the AES-GCM is provided by the Galois/Counter
Mode (GCM) [5] using a universal hash function. The AES-
GCM has been used for a number of applications such as the
new LAN security standard WLAN 802.1ae (MACSec) [6]
and Fibre Channel Security Protocols (FC-SP) [7]. Moreover,
it has been utilized in a number of cores from industry, see,
for example, [8], [9], and [10]. In addition, two AES-GCM
software-based implementations have been presented in
[11] and [12].

Among the transformations in the AES encryption, the
SubBytes (S-boxes) is the only nonlinear one, requiring the
highest area and consuming much of the AES power [13].
Therefore, the performance metrics of the S-boxes affect

those for the entire AES encryption significantly. For low-
complexity implementations, the S-box can be realized
using logic gates in composite fields. These S-boxes can also
be pipelined for achieving high performance. On the other
hand, the S-boxes based on lookup tables (LUTs) could be
area efficient when implemented utilizing the memory
resources available on FPGAs. In some previous works such
as [13], [14], [15], [16], [17], and [18], one specific S-box and
in [19], three reported S-boxes have been synthesized on
application-specific integrated circuit (ASIC). However,
exhaustive search has not been performed for all suitable
composite fields to evaluate their performance metrics
using the same technology.

It is also noted that in some other works, see, for
instance, [20], [21], [22], [23], [24], and [25], the hardware
and timing complexities of different composite field
S-boxes have been evaluated in terms of logic gates (in
[26], software implementations have been performed).
However, benchmarking the performance (including power
consumptions through simulation-based approaches) of the
S-boxes implementations on hardware platforms has not
been performed in these works.

In this paper, we optimize logic gates and perform
comprehensive ASIC syntheses of more than 40 different
S-boxes for deriving their performance metrics. This bench-
marking, which is done on the same platform, results in
having a clear picture of the performance metrics of
different designs.

Different GCM architectures have been presented in the
literature. In [27], [28], and [29], the sequential method for
the hardware implementation of the GCM function is
adopted. Although this method of realization is area
efficient, it needs many clock cycles (equal to the number
of input blocks), reducing the performance of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012 1165

. M. Mozaffari-Kermani is with the Department of Electrical Engineering,
Princeton University, Princeton, NJ 08544, USA.
E-mail: mozafari@princeton.edu.

. A. Reyhani-Masoleh is with the Department of Electrical and Computer
Engineering, The University of Western Ontario, London, ON N6A 5B9,
Canada. E-mail: areyhani@eng.uwo.ca.

Manuscript received 14 Oct. 2010; revised 15 Mar. 2011; accepted 19 June
2011; published online 8 July 2011.
Recommended for acceptance by E. Antelo.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-10-0566.
Digital Object Identifier no. 10.1109/TC.2011.125.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

architecture. Because of the low throughput of the
sequential method, a parallel method is proposed in [30]
which uses two GF ð2128Þ multipliers to perform this
operation in parallel. This parallel implementation has
been generalized in [31] and [32] so that q, q � 2, parallel
GF ð2128Þ multiplications are performed concurrently. Very
recently, a high-performance approach for computing the
GHASHH function for long messages has been proposed
in [33]. However, in this scheme, the hardware complexity
is increased. In this paper, a high-performance parallel
method for obtaining the GCM by relying on the low-
complexity powers of the hash subkey is proposed.
Without precomputing the hash subkey exponents, com-
pact realizations of these exponents are obtained and
implemented. This results in high-throughput and low-
latency GCM hardware architectures, suitable for high-
performance applications.

The contributions of this paper by referring to their
corresponding sections are summarized as follows:

. Logic-gate minimizations for the polynomial basis
(PB) inversion in GF ð24Þ are performed (Lemma 1).
Moreover, we synthesize the structures of different
AES S-boxes using the Synopsys Design Vision
(which is the graphical user interface to Synopsys
Design Compiler) [34] in STM 65-nm CMOS stan-
dard technology [35] (Section 3). Then, the areas and
delays of these hardware architectures are derived
and compared.

. To achieve the least dynamic power-consuming AES
S-box, we obtain the average and peak power
consumptions of the S-boxes through exhaustive
searches considering the possible 28ð28 � 1Þ ¼ 65;280
input transitions. These derivations are based on a
timing simulation-based analysis using the switch-
ing activities of internal nodes with Synopsys
PrimeTime PX [34] and ModelSim [36].

. Using a complexity reduction technique, the hard-
ware complexities of different architectures for the
subkey exponentiations in the GCM are reduced
(Section 4). Then, by utilizing these low-complexity
exponentiations, we propose efficient architectures
for the GCM, yielding high throughput and low
latency (Algorithm 1).

. Finally, the proposed hardware architectures for the
AES-GCM are synthesized considering two types of
GF ð2128Þ multipliers (Section 5). We investigate the
performance of quadratic and six different subqua-
dratic complexity GF ð2128Þmultipliers (Table 5). It is
shown that the proposed architectures for the AES-
GCM have higher throughput and efficiency and
reach lower latency compared to the previously
reported ones (Table 7 and Fig. 8).

The organization of this paper is as follows: in Section 2,
preliminaries related to the AES-GCM are presented. In
Section 3, logic-gate optimizations for the inversions in
GF ð24Þwithin the S-boxes are presented and we present the
results of our syntheses for different S-boxes. Power
consumption derivations and comparisons of the S-boxes
through a simulation-based method are also presented in
this section. In Section 4, the proposed high-performance
architectures for implementing the GCM are presented.

Section 5 presents the ASIC syntheses and comparisons of
the proposed architectures and the previously reported
ones. Finally, conclusions are made in Section 6.

2 THE AES-GCM

In this section, we present preliminaries for the AES-GCM
algorithm. In what follows, the AES (used for confidentiality)
and the GCM (used for authentication) algorithms in the
AES-GCM and their hardware architectures are presented.

2.1 The Advanced Encryption Standard

In the AES-GCM, only the AES encryption is utilized with the
input and the output blocks of 128 bits. However, based on
the security requirements, the key size could be determined
as AES-128 (with 10 rounds), AES-192 (with 12 rounds), or
AES-256 (with 14 rounds) [1]. In the AES encryption, all the
rounds except for the last round have four transformations of
SubBytes, ShiftRows, MixColumns, and AddRoundKey. For the
last round, MixColumns is eliminated and only three
transformations of SubBytes, ShiftRows, and AddRoundKey
are used.

The transformation SubBytes (S-boxes) is implemented by
16 S-boxes. In the S-box, each byte of the input state is
substituted by a new byte. In ShiftRows, the first row of the
state remains intact and the four bytes of the last three rows
of the input state are cyclically shifted. In the MixColumns
transformation, each column is modified individually and
in the final transformation, AddRoundKey, modulo-2 addi-
tion of the input state and the key of the corresponding
round is performed [1].

For realizing the S-box, the irreducible polynomial of
P ðxÞ ¼ x8 þ x4 þ x3 þ xþ 1 is used to construct the binary
field GF ð28Þ. Let I 2 GF ð28Þ and O 2 GF ð28Þ be the input
and the output of the S-box. Then, the S-box consists of
finding the multiplicative inversion (MI), i.e., I�1 2 GF ð28Þ
with the exception of mapping the zero input to the zero
output, followed by the affine transformation in GF ð28Þ [1].

In what follows, we present the preliminaries regarding
the hardware implementations of the S-boxes within the
AES using LUTs and composite fields.

2.1.1 LUT-Based S-Boxes

The AES S-boxes can be implemented using LUTs. For

this purpose, 256� 8 memory cells are used to store the

256 possible 8-bit outputs of each S-box. The LUT-based

implementation of the S-boxes is suitable for the FPGA

platforms in which block memories are available, see, for

example, [37], [38], and [39]. However, although this

implementation reaches high-speed architectures, it is not

suitable for applications requiring low-complexity AES

ASIC implementations [40].
The usage of arithmetic in composite fields reduces the

space complexity of the S-box. Moreover, it allows us to use

pipelining and therefore the effective speed of the AES

encryption is increased while processing independent

messages. Consequently, the S-boxes implemented using

composite fields can lead to area-efficient and high-perfor-

mance structures [40]. In the following, the preliminaries on

composite field realizations of the S-boxes are presented.

1166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

2.1.2 Composite Field S-Boxes

Let us briefly explain the composite field arithmetics to
calculate the multiplicative inversion over GF ð28Þ. The
composite field realizations of the S-box using polynomial
and normal bases are presented in Fig. 1. As seen in this
figure, a transformation matrix transforms a field element
I 2 GF ð28Þ to the corresponding representation in the
composite field GF ð162Þ, i.e., �. We consider the irreducible
polynomial of u2 þ uþ �, where � is chosen over GF ð16Þ
depending on the composite fields. Then, the multiplicative
inversion generates the inverse as ¼ ��1. Finally, as seen
in Fig. 1, the inverse transformation matrix transforms the
composite field element to the one in the binary field, i.e.,
O 2 GF ð28Þ.

Using polynomial basis constructed by the irreducible
polynomial of u2 þ uþ �, one can obtain the coordinates of
 as h ¼ �hð�2

h� þ �h�l þ �2
l Þ
�1 and l ¼ ð�l þ �hÞð�2

h� þ
�h�l þ �2

l Þ
�1 [14]. This multiplicative inversion in composite

fields using polynomial basis is shown in the top part of
Fig. 1 by a dotted rectangle. Similarly, for normal basis, the
coordinates of are obtained as h ¼ ð�h�l þ ð�h2 þ
�l

2Þ�Þ�1�l and l ¼ ð�h�l þ ð�h2 þ �l2Þ�Þ�1�h [20], shown in
the dotted rectangle in the bottom of Fig. 1. One can refer
to [14] and [20] for more details on the composite field
S-box architectures. As seen in Fig. 1, the above multi-
plicative inversions consist of composite field multiplica-
tions, additions, and inversion in the subfield GF ð24Þ. In
this figure, the subfield multiplications are shown by
crossed circles. Moreover, the circle with plus inside
represents GF ð24Þ addition using four XOR gates.

2.2 The Galois/Counter Mode

Authenticated encryption and decryption are the two
functions within the GCM. The authenticated encryption
performs two tasks; encrypting the confidential data and
computing an authentication tag. The authenticated de-
cryption function decrypts the confidential data and
verifies the tag [5]. The data flow of the authenticated
encryption is shown in Fig. 2. As seen in this figure, the
mechanism for the confidentiality of data is a variation of
the block cipher counter mode of operation, denoted by

GCTRK (Galois Counter with the key K) [5]. For the AES-

GCM, the block cipher encryption with the specific key K is
shown by AESK in Fig. 2. Then, the function GCTRK

performs the block cipher counter mode with the Initial

Counter Block (ICB) and its increments (CB2 � CBi) and the

plaintext blocks (P1 � Pi) as the inputs.
As shown in Fig. 2, the Galois Hash (GHASHH) function

within the GCM provides the authentication for the
confidential data. This function is constructed by GF ð2128Þ
multiplications with a fixed parameter, called the hash

subkey ðHÞ. The GHASHH function calculates

Xn
j¼1

XjH
n�jþ1 ¼ X1 �Hn �X2 �Hn�1 � . . .�Xn �H; ð1Þ

where X1 to Xn are the n, 128-bit blocks of the input [5].
It is noted that the hash subkey is generated by applying

the AES to the zero block, i.e., 0 ¼ ð0; 0; :::; 0Þ 2 GF ð2128Þ.
Then, the GHASHH function calculates (1) [5]. All the
arithmetic operations in (1), i.e., additions, Galois Field

(GF) multiplications, and exponentiations are performed
over GF ð2128Þ constructed by the irreducible polynomial

P ðxÞ ¼ x128 þ x7 þ x2 þ xþ 1. As seen in Fig. 2, the total

number of input blocks to GHASHH is n ¼ mþ iþ 1,
where m and i are the number of blocks for the additional

authenticated data (AAD) (A1 �Am) and the output of
GCTRK , respectively. Eventually, the authentication tag T

with length of t bits is derived. In the authenticated

decryption, the same GHASHH procedure is performed
on the authenticated data and ciphertext blocks to verify

the tag. For the entire description of the GCM, one can
refer to [5].

3 PERFORMANCE EVALUATIONS AND

COMPARISONS OF THE AES S-BOXES

In this section, logic-gate optimizations for reducing the

complexity of the S-boxes are presented. We also present

the implementation results for benchmarking the perfor-
mance of different S-boxes. Finally, power consumption

derivations and comparisons of the S-boxes through a
simulation-based method are also presented.

The implementation complexities of the S-boxes using

composite fields are dependent on the choice of the

coefficients � 2 GF ð24Þ and � 2 GF ð22Þ in the irreducible
polynomials u2 þ uþ � and v2 þ vþ � used for the compo-

site fields, respectively.

MOZAFFARI-KERMANI AND REYHANI-MASOLEH: EFFICIENT AND HIGH-PERFORMANCE PARALLEL HARDWARE... 1167

Fig. 2. The GCM authenticated encryption data flow [5].

Fig. 1. The composite field S-box architecture using polynomial basis
and normal basis.

The composite fields GF ððð22Þ2Þ2Þ in polynomial basis

use iterations to construct the S-box. For these composite

fields, the constants � 2 GF ð24Þ and � 2 GF ð22Þ are over

GF ðð22Þ2Þ=v2 þ vþ � and GF ð22Þ=x2 þ xþ 1, respectively.

According to [22], after exhaustive search for finding the

possible choices for � 2 GF ð24Þ and � 2 GF ð22Þ, the follow-

ing 16 combinations are obtained: � 2 ff10g2; f11g2g and

� 2 ff1000g2; f1001g2; f1010g2; f1011g2; f1100g2; f1101g2;

f1110g2; f1111g2g:

Similarly, for normal basis, it can be derived that the only

two acceptable values for � are � ¼ f10g2 and � ¼ f01g2.

Furthermore, the following eight values of � are acceptable:

� 2 ff0100g2; f0001g2; f1000g2; f0010g2; f0111g2; f1101g2;

f1011g2; f1110g2g:

Based on the possible values of � and � in polynomial basis

representation, the (inverse) transformation matrices can be

constructed using the algorithm presented in [16]. In this

algorithm, using an exhaustive search, the transformation

matrix is constructed using eight base elements in

GF ððð22Þ2Þ2Þ, i.e., 1; �; �2; . . . ; �7, to which eight base elements

ofGF ð28Þ are mapped. We note that for each combination of �

and �, there exist eight possible (inverse) transformation

matrices. These are constructed according to the base

element � and the conjugates of this base element, i.e., �2i ,

i ¼ 1; 2; . . . ; 7. In this section, for each combination of � and �,

one of these possible matrices is considered. As suggested in

[16], we have also used subexpression sharing for obtaining

the low-complexity implementations for these matrices. We

note that different (inverse) transformation matrices in

normal basis are derived simply by reordering the columns.

3.1 Logic-Gate Optimizations

The field inversion in GF ð24Þ of the most compact
composite field in [20] has been modified in [18] to

decrease its hardware complexity. This field uses normal
basis with � ¼ f10g2 and � ¼ f0001g2. Now, we consider
polynomial basis to further optimize the S-boxes using

polynomial basis. We present the following lemma through
which the hardware complexity of the composite field
inversion in GF ð24Þ is decreased. This is performed by

presenting low-complexity formulations for the inversion
in GF ð24Þ through logic-gate minimization. Moreover,
these formulations are implemented using NAND, NOR,

and XOR gates for reducing the complexity.

Lemma 1. Let � ¼ ð�3; �2; �1; �0Þ be the input and � ¼
ð�3; �2; �1; �0Þ be the output of an inverter in GF ð24Þ. Then,

the formulations for the low-complexity inversion in GF ð24Þ
using polynomial basis with � ¼ f11g2 are as follows:

�3 ¼ �2�3�1 þ �3�0;

�2 ¼ �3�0 _ �2ð�3 _ �1Þ;
�1 ¼ �2�0 _ �3�1�0 _ �3�1�2;

�0 ¼ �3 _ �1�0 _ �2�0�1 þ �1ð�2 _ �3�0Þ:

ð2Þ

Moreover, for � ¼ f10g2, one reaches the following:

�3 ¼ �2�3�1 þ �3�0;

�2 ¼ �2�1 _ �3ð�2 _ �0Þ;
�1 ¼ �3�1ð�2 _ �0Þ _ �2�0 þ �3 þ �2 þ �1;

�0 ¼ �0 _ �2�3 _ �1�3�2 þ �2ð�1 _ �0�3Þ;

ð3Þ

where “+” and “_” represent the XOR and OR operations,

respectively.

Proof. For � ¼ ð�3; �2; �1; �0Þ as the input and � ¼
ð�3; �2; �1; �0Þ as the output of an inverter in GF ð24Þ, the

formulations for the inversion in GF ð24Þ using the
polynomial basis with � ¼ f11g2 and � ¼ f10g2 are

obtained as follows, respectively, [16], [22]:

�3 ¼ �3�2�1 þ �3�0 þ �2;

�2 ¼ �3�2�1 þ �3�2�0 þ �3�0 þ �2�1 þ �3;

�1 ¼ �3�2�1 þ �3�1�0 þ �3�0 þ �3�1 þ �2�0

þ �2�1 þ �2 þ �1;

�0 ¼ �3�2�1 þ �3�2�0 þ �3�1�0 þ �2�1�0

þ �2�0 þ �3�0 þ �2�1 þ �3 þ �1 þ �0;

ð4Þ

�3 ¼ �3�2�1 þ �3�0 þ �3 þ �2;

�2 ¼ �3�2�1 þ �3�2�0 þ �3�0 þ �2�1 þ �2;

�1 ¼ �3�2�1 þ �3�1�0 þ �2�0 þ �3 þ �2 þ �1;

�0 ¼ �3�2�1 þ �3�2�0 þ �3�1�0 þ �2�1�0 þ �3�1

þ �3�0 þ �2�1 þ �2 þ �1 þ �0:

ð5Þ

One can obtain �3-�0 in (2) and (3) from those of (4)
and (5), respectively. For performing this, we note that
�i þ 1 ¼ �i and �i þ �j þ �i�j ¼ �i _ �j. For instance, we
obtain �3 in (2) from that of (4) as �3 ¼ �3�2�1 þ �3�0 þ
�2 ¼ �2ð�3�1 þ 1Þ þ �3�0 ¼ �2�3�1 þ �3�0. Using similar
methods, some of which are also presented in [18], one
can obtain (2). As another example, one can obtain �3 in
(3) from that of (5) as �3 ¼ �3�2�1 þ �3�0 þ �3 þ �2 ¼
�2ð�3�1 þ 1Þ þ �3ð�0 þ 1Þ ¼ �2�3�1 þ �3�0. By verifying
the 16 combinations of the input �, same results are
obtained for (2) and (4) ((3) and (5)). tu
In what follows, we evaluate and compare the perfor-

mance metrics of different S-boxes. The presented results

confirm efficiency increase using (2) and (3).

3.2 Area and Delay Evaluations

In the following, we evaluate and compare the areas,

delays, throughputs, and efficiencies of different S-boxes,

including the ones presented in [13], [14], [15], [16], [18],

[20], [21], [22], [23], and [25]. It is noted that the

implementation in [24] is for the inversion in GF ð24Þ and

does not provide the entire S-box architecture.
Using MATLAB [41], we have derived the low-complex-

ity transformation and mixed inverse and affine transforma-

tion matrices for the syntheses. We have used the STM 65-nm
CMOS standard technology and CORE65LPSVT standard

cell library [35]. This library is optimized for using in low-

power applications. The nominal junction temperature is
25 �C and VHDL has been used as the design entry to the

Synopsys Design Vision [34]. We note that the presented
results are post synthesis and do not consider the post layout

routing.

1168 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

The results of our syntheses are presented in Table 1. As

seen in this table, for different S-boxes, the areas (in terms

of �m2), critical path delays (in terms of ns), maximum
working frequencies (in terms of MHz), throughputs (in

terms of Gbps), and efficiencies (in terms of Mbps
�m2) have

been obtained. According to the STM 65-nm standard cell

library information, the lowest and nominal drive strength
for the cells is two. It is noted that the area of a NAND gate

in the utilized STM 65-nm CMOS library for the drive

strength of two is 2:08 �m2. Then, using this area, we have

also provided the gate equivalent (GE) measure for
different S-boxes in the table. Note that if we increase the

area effort, lower areas are usually achieved mostly at the

expense of more delay overhead.

Memory macros tend to be expensive in hardware for
implementing the S-boxes, resulting in high hardware
complexity and power consumption. Therefore, this im-
plementation is not considered in this paper. We have
considered two different methods of realization of the LUT
S-boxes. In these methods, read-only LUTs are used for
implementing the S-box, see, for instance, [42] and the hw-
lut/hybrid-lut architectures in [19]. This allows us to logic
optimize the S-box architecture by synthesis of hardware
description languages, leading to low-area implementa-
tions. In the first method (LUT/ROM), the entire S-box is
implemented using LUTs. Moreover, we consider the
S-boxes in which only the multiplicative inversion in
GF ð28Þ is implemented using LUTs and the affine trans-
formation is implemented separately (LUT/ROM-MI). This

MOZAFFARI-KERMANI AND REYHANI-MASOLEH: EFFICIENT AND HIGH-PERFORMANCE PARALLEL HARDWARE... 1169

TABLE 1
Evaluation of the Performance Metrics of the S-Boxes on ASIC Using the STM 65-nm CMOS Standard Technology

1, 2, and 3 are the best cases for each performance metric. a. Gate equivalent in terms of two-input NAND. b. Among all fields considered, the
presented composite field has the least hardware complexities in terms of logic-gate counts. c. These are some works in which this composite
field is used. d. The hardware complexity of this composite field, which is obtained in [20] as the most compact one, has been improved in [18].
e. This implementation is based on a minimization method resulting in low area at the expense of more timing complexity. f. This architecture is
based on the composite field GF ðð24Þ2Þ. g. Has been presented very recently based on mixed polynomial and normal bases and only focuses
on decreasing the critical path delay. h. Using synthesized ROM-based LUTs. i. LUTs for the multiplicative inversion and logic gates for the
affine transformation.

enables the designers to share the multiplicative inversion
in GF ð28Þ for the S-box and the inverse S-box in the merged
structures.

In some of the previous works such as [14], [15], [20], and
[21], the area of the S-box has been presented in terms of gate
equivalent. For instance, in [14] and [21], the areas of the
implemented S-boxes have been provided as 294 GE and
272 GE using 0.11 and 0:18 �m technologies, respectively.
Based on the information of the cell library in a 0:18 �m
technology, the gate count of the S-box has been converted
to gate equivalent as 180 GE in [20]. We note that although
FPGA implementations have been performed, the results
presented in [20] (unlike those in [14], [15], [21], and this
paper) are the direct conversion of the gate count (without
synthesis) to GE. In addition, the conversion factor of 1.75
has been used in [20] for obtaining the GE for XOR/XNOR
and MUX21. However, in the cell library used in this paper,
these conversion factors are 2.25 and 2, respectively [35].
Other parameters which cause different GE results are the
type of the synthesis tools used and the map effort specified.
In this paper, the synthesis results are obtained using VHDL
as the design entry to the Synopsys Design Vision [34].

Using (2) and (3) of Lemma 1, we have also presented the
results of the logic-gate optimized S-boxes in Table 1.
Specifically, we have used (2) and (3) for two most compact
S-boxes using polynomial basis for � ¼ f11g2 and � ¼
f10g2 in Table 1. It is also noted that for each of the
evaluated performance metrics, the three best cases among
different results for the S-boxes have been marked with
superscripts 1, 2, and 3. As shown in Table 1, the areas for
the composite field S-boxes range from 403:2-589:2 �m2

(difference of 46.1 percent), the working frequencies from
625-900 MHz (difference of 44.0 percent), the throughputs
from 5.0-7.2 Gbps (difference of 44.0 percent), and the
efficiencies from 8:6-14:4 Mbps

�m2 (difference of 67.4 percent).
As seen in Table 1, the S-boxes using LUTs (last two

rows) are the fastest S-boxes. However, their efficiencies are
not the highest among other S-boxes in Table 1. Among the
composite field S-boxes, the one using normal basis
presented in [23] is the most compact one (see the area
column in Table 1). However, it has the worst working
frequency and throughput. The S-boxes using polynomial
basis (optimized using (2)) have the highest frequency and
throughput among the composite field S-boxes. Finally, the
highest efficiency (see the last column in Table 1) is
obtained for the one using polynomial basis with � ¼
f11g2 and � ¼ f1010g2 (optimized using (2)).

3.3 Power Consumptions and Comparisons

In the following, the power consumption results for
different S-boxes are presented. We have derived the power
consumptions of the S-boxes within the AES through a
simulation-based analysis method. In what follows, we
present the power derivation method as well as the results
of our analysis and comparison.

3.3.1 Power Derivation Method

We use VHDL as the design entry to the Synopsys Design
Vision. After obtaining the gate-level netlists of the S-boxes,
timing simulations are performed using ModelSim SE 6:2d
[36]. The testbench used for timing simulations covers all the
256� 255 ¼ 65;280 possible transitions for the 8-bit input of

the S-box. This exhaustive input pattern assertion includes
all the possible transitions between each two different pairs
of the possible 256 inputs. Then, for each and every S-box,
the results of the switching activities of all internal nodes
have been logged in the Value Change Dump (VCD) files.
We have set the resolution of the timing simulations to high
so that the VCD files contain the switching activities of
glitches (dynamic hazards) occurring in the logic gates.
Then, as the final step, the power consumption of the circuit
is computed from the VCD logs, gate-level netlists, cell
information, and parasitics of the target ASIC library. We
have utilized the Synopsys PrimeTime PX [34] to obtain the
average power (including net switching power, cell internal
power, and cell leakage power), peak, and instantaneous
power consumption details. It is noteworthy that the power
consumption results are for the working frequency of
50 MHz and for the high resolutions for both timing and
power consumption.

3.3.2 Analysis and Comparison

The results of our simulation-based power computations are
presented in Table 2. As depicted in this table, for different
S-boxes, we have derived the average power (in terms of
�W), peak power (in terms of mW), and the input pattern
transition for which the peak power happens. As shown in
Table 2, the average powers for the composite field S-boxes
range from 44:39-58:96 �W (difference of 32.8 percent) and
the peak powers from 1.013-1.324 mW (difference of
30.7 percent). We have also marked (with superscripts 1,
2, and 3) the three cases for which the lowest power
consumptions are achieved.

Comparing the results in Tables 1 and 2 shows that
generally and with few exceptions, the S-boxes with more
hardware complexities consume more power. As seen in
Table 2, the highest and lowest average power consumptions
are achieved for the LUT-based (using memories) S-box and
the normal basis S-box presented in [23], respectively. Based
on our results in Table 1, these two S-boxes have the highest
and lowest hardware complexities, respectively. On the
other hand, according to the results of Table 1, the normal
basis S-box presented in [23] has the highest timing
complexity among the composite field S-boxes.

The transitions of the inputs of the S-boxes when the
peak powers occur have been also shown in Table 2. As
shown in this table, most of the peak powers occur when
the S-box input changes to the all-zero input.

4 HIGH-PERFORMANCE GCM PARALLEL

ARCHITECTURE

In this section, we propose high-performance parallel
architectures for the GCM. These architectures improve the
throughput and the latency of the structures presented in [31]
and [32] for GHASHH . They also remove the need for
consecutiveGF ð2128Þmultiplications withH for deriving (1).
We also derive the hardware implementations of the
exponentiations of the hash subkey to the powers of two,
i.e., in the form ofH2j , needing only XOR gates. Because of the
low complexity of the implementations of these exponents,
we take advantage of these low-cost hash subkey powers in
the proposed high-performance architectures. We utilize the

1170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

powers in the form of H2j to obtain the other powers of the
hash subkey with the least number of GF multiplications over
GF ð2128Þ for proposed architectures. For instance, we derive
H3 ¼ H2 �H or H6 ¼ H4 �H2.

4.1 High-Performance GHASHH Function

Algorithm 1 is used for obtaining the key formulation for
the proposed GHASHH function. Although there is no
restriction in choosing q, i.e., the number of parallel adder-
multipliers, we use q ¼ 2j, 1 � j � blog2ðnÞc. This leads to
lower number of clock cycles and higher throughput
needed for the implementations. In Algorithm 1, the output
GHASHðX;HÞ is obtained as follows:

X1 �Hq � � � � �Hq|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n
q times

�X2 �Hq � � � � �Hq|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n
q�1 times

�Hq�1 � � � �

�Xj �Hq � � � � �Hq|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n
q�1 times

�Hq�jþ1 � � � �

�Xq �Hq � � � � �Hq|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n
q�1 times

�H �Xqþ1 �Hq � � � � �Hq|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n
q�1 times

�Xqþ2 �Hq � � � � �Hq|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n
q�2 times

�Hq�1 � � � � �XnH;

ð6Þ

where all operations are performed over GF ð2128Þ con-

structed by the irreducible polynomial P ðxÞ ¼ x128 þ x7 þ
x2 þ xþ 1 and

L
comprises 128 XOR gates.

Algorithm 1. The proposed high-performance approach for
implementing the GCM.

Inputs: Xp 2 GF ð2128Þ; 1 � p � n, and H2j 2 GF ð2128Þ;
0 � j � log2ðqÞ.

Output: GHASHðX;HÞ ¼
Pn

j¼1 XjH
n�jþ1.

1: for i ¼ 1 to q do

2: tempi Xi

3: for j ¼ 1 to n
q � 1 do

4: tempi ¼ ðtempi �Hq �XiþjqÞ
5: end for

6: Let q � iþ 1 ¼ ða0
ðiÞ; . . . ; alog2ðqÞ

ðiÞÞ
2

7: tempi ¼ tempi � ðHa
ðiÞ
0
q �H

a
ðiÞ
1
q

2 � � � � �Ha
ðiÞ
log2ðqÞ Þ

8: end for

9: GHASHðX;HÞ ¼
Pq

i¼1 tempi
10: return GHASHðX;HÞ.

One can rewrite (6) so that only the exponentiations of

the hash subkey to the powers of 2 in the form of H2j are

utilized. This method of exponentiation is based on the

binary exponentiation, see, for example, [43]. As seen from

this algorithm, for the exponentiations Hq�iþ1, 1 � i � q,
one can use the binary representation of q � iþ 1 as

ða0
ðiÞ; . . . ; alog2ðqÞ

ðiÞÞ
2
.

The hardware implementation of Algorithm 1 has been
presented in Fig. 3. For implementing Algorithm 1 in
hardware, in total, n

q þ log2ðqÞ clock cycles are needed. For
the first n

q � 1 clock cycles, the GF ð2128Þ multiplications by
Hq are performed. This is achieved by a simple control unit
selecting Hq. Then, for the next log2ðqÞ clock cycles, the
other exponentiations are used. These include the powers of
the hash subkey in the form of H2j and a number of field
elements 1 ¼ ð0; 0; . . . ; 1Þ 2 GF ð2128Þ for bypassing the

MOZAFFARI-KERMANI AND REYHANI-MASOLEH: EFFICIENT AND HIGH-PERFORMANCE PARALLEL HARDWARE... 1171

Fig. 3. The hardware architecture of the proposed high-performance
GCM GHASHH function.

TABLE 2
Evaluation of the Power Consumptions of the S-Boxes

on ASIC Using the STM 65-nm CMOS Standard
Technology and the Synopsys PrimeTime PX [34]

1, 2, and 3 are the best cases for each performance metric.
a. Includes net switching, cell internal, and cell leakage power.
b. Obtained from the instantaneous power values for each case,
including the power consumptions for the glitches. c. Among all fields
considered, the presented composite field has the least hardware
complexities in terms of logic-gate counts. d. These are some works
in which this composite field is used. e. The power consumption of
this composite field, which is obtained in [20] as the most compact
one, has been improved in [18]. f. The lowest power yet the slowest
composite field S-box. g. This architecture is based on the composite
field GF ðð24Þ2Þ.

GF ð2128Þmultiplication operations. We note that if n is not a
multiple of q, one needs to add q �mod ðn; qÞ blocks
containing 0 ¼ ð0; 0; . . . ; 0Þ 2 GF ð2128Þ to the beginning of
the n blocks to make the total blocks processed multiple of
q. Performing this, the hash computation can be done
normally based on the presented procedure. Finally, in one
clock cycle, the result becomes

Pn
j¼1 XjH

n�jþ1. As seen in
Fig. 3, q adder-multipliers are required and multiplexers are
also utilized to select different exponentiations.

To illustrate the proposed scheme, we use the case with
n ¼ 16 and q ¼ 8. In the first clock cycle (j ¼ 1), the outputs
of all the multiplexers in Fig. 3 are H8 for this case. Then,
according to the following, the outputs of the multiplexers
in the other cycles can be found.

ðX1H
8

zfflffl}|fflffl{j¼1

�X9ÞH8|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
j¼2

�1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{j¼3

�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j¼4

�ðX2H
8

zfflffl}|fflffl{j¼1

�X10ÞH4|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
j¼2

�H2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{j¼3

�H

|ffl{zffl}
j¼4

�

� � � � ðXiH
8

zfflffl}|fflffl{j¼1

�Xiþ8ÞH4a
ðiÞ
1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

j¼2

�H2a
ðiÞ
2

zffl}|ffl{j¼3

�Ha
ðiÞ
3

|ffl{zffl}
j¼4

�

� � � � ðX8H
8

zfflffl}|fflffl{j¼1

�X16ÞH|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
j¼2

�1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{j¼3

�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j¼4

;

ð7Þ

where ða1; a2; a3Þ2 is the binary representation of q � iþ 1 ¼
9� i, 1 � i � 8. Five cycles are required to implement (7);
four cycles are shown in (7) with j ¼ 1 to j ¼ 4 and the last
one is used for the addition of the results of the registers
R1 �R8 to have the final result in RT .

According to Fig. 3, the working frequency of the

proposed scheme is obtained as Tmul þ TX (we note that this

delay is larger than that of the XOR tree). It is noted that Tmul
is the time delay of the used multiplier and TX is the time

delay of one set of modulo-2 additions in the critical path.

Furthermore, according to Algorithm 1, the number of clock

cycles needed for the GHASHH function is n
q þ log2ðqÞ.

Latency and throughput of the proposed scheme are

compared with the ones presented in [27], [28], [29], [31],

and [32] in Table 3. As seen in this table, the sequential

approach has the least throughput which leads to low-

performance hardware implementations. The throughput of

the proposed scheme, i.e., 128
ðTmulþTXÞðnqþlog2ðqÞÞ

, is higher than that

of the scheme in [31] and [32], i.e., 128
ðTmulþTXÞðnqþq�1Þ, especially

for high values of parallel structures, i.e., high values of q.

For example, for the case presented in (7), the proposed

architectures of this paper need n
q þ log2ðqÞ ¼ 2þ 3 ¼ 5 clock

cycles to obtain the result. This can be compared with

the linear relation of the scheme in [31] and [32] with q,

leading to n
q þ q � 1 ¼ 2þ 8� 1 ¼ 9 clock cycles needed. The

complete comparison in terms of hardware and timing

complexities of the proposed architectures with the previous

ones is presented in Section 5 using ASIC syntheses.

4.2 High-Speed Structures for Hash Subkey Powers

In the following, using squaring operations, we present
three methods for implementing the hash subkey exponen-
tiations. Using a complexity reduction algorithm, we also
derive their hardware-optimized architectures.

According to [5], it is less likely that the GCM is invoked
with the same key on distinct sets of input data. Thus, a
new hash subkey and its powers need to be obtained in
each invocation. It is known that the squaring operation in
binary extension fields leads to a linear structure, see, for
example, [44]. In other words, implementing squaring in
hardware is less costly than GF ð2128Þ multiplications. The
squaring of a field element over GF ð2128Þ in the GCM uses
the irreducible polynomial P ðxÞ ¼ x128 þ x7 þ x2 þ xþ 1.
Utilizing P ðxÞ, we have obtained the formulations for the
squaring after performing modular reduction. It is noted
that MATLAB [41] has been utilized to verify the
formulations used for squaring. For the GCM, the critical
path delay of squaring is obtained as 3TX, where TX is the
XOR gate delay. Moreover, it requires 202 XOR gates.

To implement H2j , 2 � j � blog2ðqÞc, one can cascade j
squaring architectures or use a feedback for deriving
them. We refrain using the feedback structure because of
its low throughput and high latency. According to the
hardware and timing complexities of squaring derived in
this section, for H2j , the cascade structure yields to the
hardware and timing complexities of 202j XOR gates and
3jTX , respectively. This leads to low-speed implementa-
tions which are not desirable in applications requiring
high performance. It is possible to reduce the delay of the
implementations of these exponentiations for the high-
performance hardware implementations. To achieve this,
we do not cascade the squaring implementations. Instead,
we find the squaring exponentiations separately so that
their derivations become in parallel. This reduces the
critical path delay of the realizations. We present the
following lemma for obtaining the exponentiations of
the hash subkey within the GCM:

Lemma 2. The squaring exponentiations of the hash subkey, i.e.,
H2j , 2 � j � blog2ðqÞc, are obtained using the following:

H2j mod P ðxÞ ¼ dþ
X2j�1

i¼1

~ei; ð8Þ

1172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

TABLE 3
Performance Analysis and Comparison of GHASHH

within the GCM for n Blocks and q Parallel Structures

where d and ~ei, 1 � i � 2j � 1, are field elements in GF ð2128Þ
defined as follows:

d ¼
X128
2j
�1

s¼0

hsx
2j�s; ~ei ¼

X128ðiþ1Þ
2j
�1

s¼128i
2j

hsx
2j�s

0
B@

1
CA mod P ðxÞ:

Proof. Let H ¼
P127

s¼0 hsx
s 2 GF ð2128Þ be the hash subkey of

the GHASH function. Then, we have

H2j ¼
X127

s¼0

hsx
2j�s

 !
mod P ðxÞ

¼
X128
2j
�1

s¼0

hsx
2j�s þ

X127

s¼128
2j

hsx
2j�s mod P ðxÞ

0
@

1
A

¼ dþ
X2j�1

i¼1

X128ðiþ1Þ
2j
�1

s¼128i
2j

hsx
2j�s

0
B@

1
CA mod P ðxÞ ¼ dþ

X2j�1

i¼1

~ei

and the proof is complete. tu
For clarifying the method, we present the structure for

deriving H4 in Fig. 4. We obtain the polynomials d and e1-e3

in (8) as d ¼ h31x
124 þ h30x

120 þ � � � þ h0; e1 ¼ h63x
252 þ

h62x
248 þ � � � þ h32x

128, e2 ¼ h95x
380 þ h94x

376 þ � � � þ h64x
256,

and e3 ¼ h127x
508 þ h126x

504 þ � � � þ h96x
384. As seen in this

figure, the coefficients of d are added with the reduced
coefficients of e1-e3 using P ðxÞ.

The complexity reduction techniques use different
methods for decreasing the number of gates needed in the
implementations, see, for example, the ones in [45] and [46].
Because it is not guaranteed that the delay of the method in
[45] is maintained, we have implemented the complexity
reduction algorithm presented in [46] using a C code. In our

program, the procedure suggested in [46] (to find the shared

XOR terms) has been utilized for the case study of q ¼ 8,

which requires implementingH2,H4, andH8. It is noted that

through the employed technique, we reach low hardware

complexities without changing the critical path delays.
We have performed three experiments for implementing

H2,H4, andH8. These are shown in Fig. 5. As seen in Fig. 5a,

in the cascade method, three identical squaring architectures

are used consecutively. This method has the lowest hardware

complexity and the highest timing complexity. In Fig. 5b, the

parallel method of implementation of the hash subkey

exponentiations is utilized. Compared to the other methods,

this method has the lowest critical path delay while its

hardware complexity is the highest. On the other hand, in the

hybrid method which is shown in Fig. 5c, a compromise

between hardware and timing complexities is achieved.
The timing and hardware complexities of these methods

and the results of the complexity reduction technique

utilized for them are depicted in Table 4. In this table, for

three methods presented in Fig. 5, the hardware complex-

ities before and after complexity reduction are derived. The

timing complexity is remained unchanged after applying

the complexity reductions. As seen in Table 4 in bold face,

the least hardware complexity is achieved for the cascade

method after the complexity reduction, i.e., 594 XOR gates.

However, the timing complexity of this method is the

highest among the three methods as depicted in this table.

On the other hand, the timing complexity of the parallel

method is the lowest, i.e., 5TX . As shown in Table 4, this is at

the expense of higher hardware complexity which is 1,099

XOR gates after about 45 percent complexity reduction.

MOZAFFARI-KERMANI AND REYHANI-MASOLEH: EFFICIENT AND HIGH-PERFORMANCE PARALLEL HARDWARE... 1173

Fig. 4. The derivation of H4 of the GCM hash subkey.

Fig. 5. (a) Cascade, (b) parallel, and (c) hybrid realization methods for
the hash subkey exponentiations.

TABLE 4
Complexities of the Realizations of the Hash Subkey Exponentiations for q ¼ 8 Parallel Architectures for GHASHH

4.3 GF ð2128Þ Multipliers for the GCM

Different types of GF ð2128Þ multipliers are utilized in the
literature for implementing the GF ð2128Þ multiplications in
(1). In [27], [31], and [32], the multiplications have been
performed using bit-parallel, digit-serial, and hybrid multi-
pliers in composite fields. Furthermore, in [28] and [47], the
efficiency of different multipliers, including the subqua-
dratic ones, is compared. Moreover, in [48], a high-speed
AES-GCM core has been presented. It is noted that the
considered GF ð2128Þ multipliers in these works include the
Mastrovito multiplier [49] with quadratic space complexity,
the Karatsuba-Ofman multiplier [50], and the GF ð2128Þ
multiplier in [51].

We have considered the bit-parallel GF ð2128Þ multiplier
presented in [52] which has quadratic hardware complex-
ity. It is noted that this GF ð2128Þ multiplier has lower
timing complexity compared to the subquadratic hardware
complexity GF ð2128Þ multipliers. However, we note that
according to the latency of the proposed architectures, i.e.,
n
q þ log2ðqÞ, increasing the number of parallel structures (q)
results in having higher throughputs. On the other hand,
having higher values for q increases the hardware complex-
ities of GHASHH . Therefore, for reducing the hardware
complexity, using subquadratic hardware complexity
GF ð2128Þ multipliers is beneficial when high values of q
are utilized.

For reducing the hardware complexity of the AES-GCM,
we have also used the efficient realization of the Karatsuba-
Ofman multiplier presented in [53] as the subquadratic
hardware complexityGF ð2128Þmultiplier. It is noted that the
gate count of different steps for one Karatsuba-Ofman
multiplier has been presented in [53]. Based on our
technology hardware and timing specifications, we have
presented the performance of the GF ð2128Þ multipliers in
Table 5. As shown in this table, six different steps for the
Karatsuba-Ofman multipliers are considered. We denote
these realizations by KO1 (for the case that only one step is
performed) to KO6 (for which the 128-bitGF ð2128Þmultiplier
is broken all the way to 2-bit multiplications using Karatsuba-
Ofman method). Applying the Karatsuba-Ofman method
recursively to obtain KOi, 2 � i � 6 for the GCM would
result in low-area implementations with higher timing
complexities. As seen from this table, although the subqua-
dratic multiplier KO5 is the most compact implementation,
the subquadratic multiplier KO4 reaches the best efficiency.
In the next section, we present the synthesis results of these
subquadratic multipliers for our proposed architectures. We
also compare the power consumptions and the efficiencies of
different methods for realizing these multipliers.

5 AES-GCM PERFORMANCE COMPARISONS

In this section, first, different AES architectures are
presented and then we present and compare the ASIC
synthesis results of the proposed and the previously
presented architectures for the AES-GCM function.

We have presented different AES-128 architectures in
Fig. 6. As seen in the AES simple loop structure (Fig. 6a), the
AES rounds are executed serially (in the last round,
MixColumns is bypassed). This architecture is the most
compact AES architecture and has been used in the
literature, see, for instance, [14]. However, it suffers from
low throughput. In Fig. 6b, the AES unrolled pipelined
structure is shown in which the pipeline stages are shown
by dotted lines (see, for instance, [40]). As seen in this
figure, 10 AES rounds are duplicated, with the last round
without the MixColumns transformation. Although this
architecture needs 10 AES rounds to be implemented, it
allows the designers to use pipelining and hence process
multiple inputs sequentially for achieving high throughput.
For further increasing the throughput, subpipelining of the
AES transformations can be used as depicted in Fig. 6c.

Subpipelining is useful in increasing the frequency of the
AES at the expense of more area used for the pipeline
registers; however, it increases the latency. For instance, the
latency of a three-stage subpipelined AES is three times
more than that of the unrolled pipelined. We also note that
if the critical path delay is determined by the multipliers in
the GCM architecture, subpipelining of the AES transforma-
tions cannot increase the frequency. Although both pipe-
lined and subpipelined AES architectures can be utilized,
in this paper, for the syntheses and comparisons, we use
pipelined AES architecture presented in Fig. 6b. Moreover,
for analyzing the effect of subpipelining, we have used
subpipelined AES for two AES-GCM architectures. The
details of our implementations are presented in this section.

According to Table 6, we use the most efficient S-box
presented in Table 1, i.e., the one using polynomial basis
based on (2), to reach the AES-GCM with the highest
performance. The AES-128 encryption is considered as the

1174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

Fig. 6. The AES-128 structure for (a) simple loop, (b) unrolled pipelined,
and (c) unrolled subpipelined architectures (MixColumns is bypassed in
the last round).

TABLE 5
Hardware and Timing Complexities Analysis of
the Utilized Bit-Parallel Multipliers for the GCM

a. Gate equivalent in terms of two-input NAND. b. Considering TX ¼
1:99TA according to the utilized technology.

TABLE 6
The Proposed Architecture for the AES-GCM

block cipher for the GCM (refer to Fig. 2) and as indicated
in Table 6, the 10 rounds of the AES-128 are unrolled and
pipelined. Moreover, as seen in Table 6, we use the
proposed Algorithm 1 for the GCM and utilize the parallel
method in Fig. 5b for hash subkey exponentiations
(hardware optimized through complexity reduction meth-
ods in the previous section). Finally, as seen in this table,
we use both quadratic and subquadratic multipliers
presented in Table 5.

Fig. 7 presents the proposed architecture for the AES-
GCM for q ¼ 8 parallel structures. The AES-128 pipeline
registers are shown by dashed lines in Fig. 7. As seen in this
figure, 10 clock cycles are needed for obtaining the
ciphertext. After these first 10 clock cycles, the results are
obtained after each clock cycle. According to Fig. 7, eight
parallel AES-128 structures are implemented as part of
GCTRK to provide inputs to GHASHH . As seen in this
figure, the function GCTRK performs the AES counter
mode with the Initial Counter Block and its one-increments
(CBi). Moreover, q ¼ 8 increments (using INC 8 module)
and the plaintext blocks (Pi) are used as the inputs. It is
assumed that the data are encrypted and the IV in the GCM
is 96 bits which is recommended for high-throughput
implementations [5].

The architecture shown in Fig. 7 assumes that the
number of blocks n is a multiple of the number of parallel
structures q and there is no additional authenticated data.
In case that n is not a multiple of q, one can append
q �mod ðn; qÞ zero blocks at the beginning of the blocks
for which hash is computed. This is done by adding a
masking gate along the dotted line as shown in Fig. 7.

Moreover, in this case, the counter blocks and accordingly
Pis in Fig. 7 start from the q �mod ðn; qÞ þ 1 column, i.e.,
the first actual input block. This is similar to the method
used in [32]. We also note that in case AAD is present,
additional multiplexers are placed at the output of the
GCTR block in Fig. 7 along the dotted line so that instead
of encrypted data, the AAD is fed to the architecture. Such
a scheme which is similar to the one presented in [32],
also needs more flexibility in the counter blocks and
accordingly Pis so that only when the AAD is done, the
counter blocks provide the encrypted data. Finally, in
Fig. 7 and as the last processed block, the output of the
GCTR block in the rightmost column is masked and LA;C
(number for n) is fed (using an extra multiplexer which is
not shown in Fig. 7 for the sake of brevity). AESK(J0) and
H ¼ AESKð0Þ (see Fig. 2) can be also obtained or
precomputed in Fig. 7 (similar to [32]), the details of
which are not presented in Fig. 7.

The results of our syntheses for the AES-GCM using the
STM 65-nm CMOS technology [35] are presented in Table 7.
The architectures have been coded in VHDL as the design
entry to the Synopsys Design Vision [34]. The proposed
architectures in this paper and the ones in [27], [28], [29],
[31], and [32] have been synthesized. The syntheses are
based on the case for q ¼ 8 parallel addition-multiplications
using the bit-parallel GF ð2128Þ multiplier presented in [52]
which has quadratic hardware complexity. For achieving
low hardware complexity for the AES-GCM, we have also
synthesized six different steps for the Karatsuba-Ofman
multipliers. As seen in Table 7, areas, power consumptions,
and maximum working frequencies are tabulated. From the

MOZAFFARI-KERMANI AND REYHANI-MASOLEH: EFFICIENT AND HIGH-PERFORMANCE PARALLEL HARDWARE... 1175

Fig. 7. The proposed AES-GCM high-performance architecture for q ¼ 8 (modðn; qÞ ¼ 0).

discussions in Section 4, for n input blocks and q parallel
structures, the latency for the architecture in [27], [28], and
[29] is n, for the one in [31] and [32] is n

q þ q � 1, and for our
proposed architectures is n

q þ log2ðqÞ. According to these, for
different architectures presented in Table 7, throughputs
and efficiencies are also presented.

As presented in Table 7, the sequential approach in
[27], [28], and [29] has the lowest hardware complexity
compared to other approaches. However, it has the least
throughput leading to low-performance hardware imple-
mentations. As depicted in Table 7, lower areas and power
consumptions are achieved for the subquadratic hardware
complexity GF ð2128Þ multipliers used in our proposed
architectures compared to the one in [52]. As seen in this
table, the maximum working frequency is decreased as we
increase the number of multiplication steps. However, this
trend is not observed for the hardware complexity, i.e., it
is decreased up to KO5 as the optimum value and then
rises for KO6.

The highest throughput is achieved for the proposed

architectures in this paper, i.e., 82:0
n
8þ3 Gbps using quadratic and

KO1=KO2 subquadratic multipliers. As seen in Table 7, the

highest efficiency is derived for KO4, i.e., 59:8
n
8þ3

Gbps
mm2 . As seen in

this table, the working frequencies and throughputs for KO1

and KO2 are similar. We have observed that this is because

for these two multipliers, the critical path delay is dominated

by the AES rounds and not the subquadratic multiplier.

Inner round pipelining can be performed to increase the

working frequencies of the implementations. Nevertheless,

this subpipelining increases the area and latency of the AES-

GCM architectures. We have performed experiments by

subpipelining the AES rounds for the architectures using

KO1 and KO2 multipliers. This is achieved by adding one

pipeline stage after ShiftRows and right before MixColumns.

The results of our experiments show no major difference in

the maximum working frequency of the design utilizing

KO2 multiplier and increase in its hardware complexity.

However, for the architectures using KO1 multipliers, the

working frequency of 689 MHz with the increased area of

1:70 mm2 is achieved. Therefore, for this architecture which

uses KO1 multipliers, the best speed is obtained compared to

the results in Table 7. However, its efficiency is obtained as
51:9
n
8þ3

Gbps
mm2 which is less than that of the architectures with KO4

multipliers (see Table 7).
For comparing the efficiencies of the schemes presented

in Table 7, we have presented Fig. 8. Based on the derived

values for efficiencies in the last column of Table 7, two

different graphs for two values of n are presented in Fig. 8.

We consider two different values of n, i.e., n1 ¼ 232 � 2 (the

largest encrypted message size allowed) and n2 ¼ 210. It is

noted that considering the normalized efficiency (percent)

of the scheme in [31] and [32] as 100, the relative efficiencies

for different architectures are presented in this figure. As

seen in Fig. 8, for n1 ¼ 232 � 2 and n2 ¼ 210;KO4 has the

highest efficiencies (51 and 44 percent more than the

sequential method, respectively).

6 CONCLUSIONS

In this paper, we have obtained optimized building blocks
for the AES-GCM to propose efficient and high-performance
architectures. For the AES, through logic-gate minimizations
for the inversion in GF ð24Þ, the areas of the S-boxes have
been reduced. We have also evaluated and compared the
performance of different S-boxes using an ASIC 65-nm
CMOS technology. Furthermore, through exhaustive
searches for the input patterns, we have performed simula-
tion-based power derivations for different S-boxes to reach
more accurate results compared to the statistical methods.
We have also proposed high-performance and efficient
architectures for the GCM. For the case study of q ¼ 8
parallel structures in GHASHH , we have performed a
hardware complexity reduction technique for the hash
subkey exponentiations, having their timing complexities
intact. The ASIC comparison results show that better
efficiencies are achieved for the proposed architectures.
Based on the available resources and performance goals to
achieve, one can choose the proposed AES-GCM architec-
tures to fulfill the constraints of different applications.

1176 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

Fig. 8. Comparison of the efficiencies of nine different AES-GCM
architectures for n1 ¼ 232 � 2 and n2 ¼ 210.

TABLE 7
ASIC Synthesis Comparisons of the AES-GCM

a. For the case of q ¼ 8 parallel structures. b. The area of the AES is
shown inside brackets. c. 103 gate equivalent in terms of two-input
NAND. d. The least complexity scheme in [31] and [32] has been
synthesized. e. The quad./subquad. multipliers used in the AES-GCM.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
comments. This work has been supported in part by an
NSERC Discovery grant awarded to Arash Reyhani-
Masoleh. They would like to thank Canadian Microelec-
tronics Corporation (CMC) Microsystems for providing
the required infrastructure and CAD tools that have been
used in this work. They would also like to thank
Christopher Kennedy who assisted in their software
implementation of the complexity reduction algorithm
for hash subkey exponentiations.

REFERENCES

[1] Nat’l Inst. of Standards and Technologies “Announcing the
Advanced Encryption Standard (AES),” Fed. Information Proces-
sing Standards Publication, no. 197, Nov. 2001.

[2] Wi-Fi, http://standards.ieee.org/getieee802/download/802.
11-2007.pdf, 2011.

[3] WiMAX, http://standards.ieee.org/getieee802/download/
802.16e-2005.pdf, 2011.

[4] S. Trimberger, “Security in SRAM FPGAs,” IEEE Design and Test of
Computers, vol. 24, no. 6, p. 581, Nov./Dec. 2007.

[5] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC,” NIST SP,
800-38D, 2007.

[6] IEEE Standard for Local and Metropolitan Area Networks, Media
Access Control (MAC) Security, 2006.

[7] Fibre Channel Security Protocols (FC-SP), http://www.t10.org/
ftp/t11/document.06/06-157v0.pdf. 2006.

[8] Algotronics Ltd.: GCM Extension for AES G3 Core, 2007.
[9] Helion Technology: AES-GCM Cores, 2007.
[10] Elliptic Semiconductor Inc.: CLP-15: Ultra-High Throughput AES-

GCM Core-40 Gbps, 2008.
[11] E. Käsper and P. Schwabe, “Faster and Timing-Attack Resistant

AES-GCM,” Proc. Int’l Workshop Cryptographic Hardware and
Embedded Systems (CHES ’09), pp. 1-17, 2009.

[12] K. Jankowski and P. Laurent, “Packed AES-GCM Algorithm
Suitable for AES/PCLMULQDQ Instructions,” IEEE Trans. Com-
puters, vol. 60, no. 1, pp. 135-138, Jan. 2011.

[13] S. Morioka and A. Satoh, “An Optimized S-Box Circuit Archi-
tecture for Low Power AES Design,” Proc. Int’l Workshop
Cryptographic Hardware and Embedded Systems (CHES ’02),
pp. 172-186, Aug. 2002.

[14] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact
Rijndael Hardware Architecture with S-Box Optimization,” Proc.
Int’l Conf. Theory and Application of Cryptology and Information
Security: Advances in Cryptology (ASIACRYPT ’01), pp. 239-254,
Dec. 2001.

[15] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC
Implementation of the AES SBoxes,” Proc. Cryptographers Track at
the RSA Conf. (CT-RSA ’02), pp. 67-78, Jan. 2002.

[16] X. Zhang and K.K. Parhi, “High-Speed VLSI Architectures for the
AES Algorithm,” IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 9, pp. 957-967, Sept. 2004.

[17] T. Good and M. Benaissa, “692-nW Advanced Encryption
Standard (AES) on a 0:13� �m CMOS,” IEEE Trans. Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 12, pp. 1753-1757,
Dec. 2010.

[18] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A Low-Cost
S-box for the Advanced Encryption Standard Using Normal
Basis,” Proc. IEEE Int’l Conf. Electro/Information Technology
(EIT ’09), pp. 52-55, 2009.

[19] S. Tillich, M. Feldhofer, T. Popp, and J. Großschädl, “Area,
Delay, and Power Characteristics of Standard-Cell Implementa-
tions of the AES S-Box,” J. Signal Processing Systems, vol. 50, pp.
251-261, 2008.

[20] D. Canright, “A Very Compact S-Box for AES,” Proc. Int’l Workshop
Cryptographic Hardware and Embedded Systems (CHES ’05), pp. 441-
455, Sept. 2005.

[21] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “A
Systematic Evaluation of Compact Hardware Implementations for
the Rijndael S-Box,” Proc. Cryptographers Track at the RSA Conf.
(CT-RSA ’05), pp. 323-333, 2005.

[22] X. Zhang and K.K. Parhi, “On the Optimum Constructions of
Composite Field for the AES Algorithm,” IEEE Trans. Circuits and
Systems II: Express Briefs, vol. 53, no. 10, pp. 1153-1157, Oct. 2006.

[23] J. Boyar and R. Peralta, “A New Combinational Logic Minimiza-
tion Technique with Applications to Cryptology,” Proc. Int’l Symp.
Experimental Algorithms (SEA ’10), pp. 178-189, 2010.

[24] S. Nikova, V. Rijmen, and M. Schläffer, “Using Normal Bases for
Compact Hardware Implementations of the AES S-Box,” Proc. Int’l
Conf. Security and Cryptography for Networks (SCN ’08), pp. 236-245,
2008.

[25] Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and Y. Morikawa,
“Mixed Bases for Efficienct Inversion in F ðð22Þ2Þ2 and Conver-
sion Matrices of SubBytes of AES,” Proc. Int’l Workshop
Cryptographic Hardware and Embedded Systems (CHES ’10),
pp. 234-247, Aug. 2010.

[26] D. Canright and D.A. Osvik, “A More Compact AES,” Selected
Areas in Cryptography, pp. 157-169, Springer-Verlag, 2009.

[27] S. Lemsitzer, J. Wolkerstorfer, N. Felbert, and M. Braendli,
“Multi-Gigabit GCM-AES Architecture Optimized for FPGAs,”
Proc. Int’l Workshop Cryptographic Hardware and Embedded
Systems (CHES ’07), pp. 227-238, 2007.

[28] P. Patel, “Parallel Multiplier Designs for the Galois/Counter
Mode of Operation,” Master of Applied Science thesis, The Univ.
of Waterloo, 2008.

[29] B. Yang, S. Mishra, and R. Karri, “High Speed Architecture for
Galois/Counter Mode of Operation (GCM),” Cryptology ePrint
Archive: Report 2005/146 June 2005.

[30] D.A. McGrew and J. Viega, “The Galois/Counter Mode of
Operation (GCM),” NIST Modes Operation Symmetric Key
Block Ciphers, http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/gcm/gcm-revised-spec.pdf, 2005.

[31] A. Satoh, “High-Speed Parallel Hardware Architecture for Galois
Counter Mode,” Proc. Int’l Symp. Circuits and Systems (ISCAS),
pp. 1863-1866, 2007.

[32] A. Satoh, T. Sugawara, and T. Aoki, “High-Performance Hard-
ware Architectures for Galois Counter Mode,” IEEE Trans.
Computers, vol. 58, no. 7, pp. 917-930, July 2009.

[33] N. Meloni, C. Nègre, and M.A. Hasan, “High Performance
GHASH Function for Long Messages,” Proc. Int’l Conf. Applied
Cryptography and Network Security (ACNS ’10), pp. 154-167, 2010.

[34] Synopsys, http://www.synopsys.com/, 2011.
[35] STMicroelectronics, http://www.st.com/, 2011.
[36] ModelSim, http://www.model.com/, 2011.
[37] M. McLoone and J.V. McCanny, “High Performance Single-Chip

FPGA Rijndael Algorithm Implementations,” Proc. Int’l Workshop
Cryptographic Hardware and Embedded Systems (CHES ’01), pp. 65-
76, 2001.

[38] F.X. Standaert, G. Rouvroy, J.J. Quisquater, and J.D. Legat,
“Efficient Implementation of Rijndael Encryption in Reconfigur-
able Hardware: Improvements and Design Tradeoffs,” Proc.
Int’l Workshop Cryptographic Hardware and Embedded Systems
(CHES ’03), pp. 334-350, Sept. 2003.

[39] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G.
Rouvroy, “Implementation of the AES-128 on Virtex-5 FPGAs,”
Proc. Cryptology in Africa First Int’l Conf. Progress in Cryptology
(AFRICACRYPT ’08), pp. 16-26, 2008.

[40] A. Hodjat and I. Verbauwhede, “Area-Throughput Trade-Offs for
Fully Pipelined 30 to 70 Gbits/s AES Processors,” IEEE Trans.
Computers, vol. 55, no. 4, pp. 366-372, Apr. 2006.

[41] Mathworks, http://www.mathworks.com/, 2011.
[42] S.-Y. Lin and C.-T. Huang, “A High-Throughput Low-Power AES

Cipher for Network Applications,” Proc. Asia and South Pacific
Design Automation Conf. (ASP-DAC ’07), pp. 595-600, 2007.

[43] D.E. Knuth, The Art of Computer Programming: Semi-Numerical
Algorithms, vol. 2, pp. 441-466. Addison-Wesley, 1981.

[44] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. Cambridge Univ. Press, 1994.

[45] O. Gustafsson and M. Olofsson, “Complexity Reduction of
Constant Matrix Computations over the Binary Field,” Proc. Int’l
Workshop Arithmetic of Finite Fields (WAIFI ’07), pp. 103-115, 2007.

[46] H. Yi, J. Song, S. Park, and C. Park, “Parallel CRC Logic
Optimization Algorithm for High Speed Communication Sys-
tems,” Proc. Int’l Conf. Comm. Systems (ICCS ’06), pp. 1-5, 2006.

[47] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving Through-
put of AES-GCM with Pipelined Karatsuba Multipliers on
FPGAs,” Proc. Int’l Workshop Reconfigurable Computing: Architec-
tures, Tools and Applications (ARC ’09), pp. 193-203, 2009.

MOZAFFARI-KERMANI AND REYHANI-MASOLEH: EFFICIENT AND HIGH-PERFORMANCE PARALLEL HARDWARE... 1177

[48] J. Lázaro, A. Astarloa, U. Bidarte, J. Jiménez, and A. Zuloaga,
“AES-Galois Counter Mode Encryption/Decryption FPGA Core
for Industrial and Residential Gigabit Ethernet Communications,”
Proc. Int’l Workshop Reconfigurable Computing: Architectures, Tools
and Applications (ARC ’09), pp. 312-317, 2009.

[49] E.D. Mastrovito, “VLSI Architectures for Computation in Galois
Fields,” PhD thesis, Linköping Univ., 1991.

[50] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit
Numbers on Automata,” Soviet Physics Doklady, vol. 7, pp. 595-
596, 1963.

[51] H. Fan and M.A. Hasan, “A New Approach to Subquadratic Space
Complexity Parallel Multipliers for Extended Binary Fields,” IEEE
Trans. Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

[52] A. Reyhani-Masoleh and M.A. Hasan, “Low Complexity Bit
Parallel Architectures for Polynomial Basis Multiplication over
GF ð2mÞ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945-959,
Aug. 2004.

[53] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity Analysis
and Efficient Implementations of Bit Parallel Finite Field Multi-
pliers Based on Karatsuba-Ofman Algorithm on FPGAs,” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol. 18, no. 7,
pp. 1057-1066, July 2010.

Mehran Mozaffari-Kermani received the BSc
degree in electrical and computer engineering
from the University of Tehran in 2005, and the
MESc and PhD degrees from the Department of
Electrical and Computer Engineering at The
University of Western Ontario in 2007 and
2011, respectively. After the completion of his
PhD, he worked at the Advanced Micro Devices
(AMD) as a senior ASIC/layout designer, inte-
grating sophisticated security/cryptographic cap-

abilities into a single chip. Dr. Mozaffari-Kermani was awarded a Natural
Sciences and Engineering Research Council of Canada (NSERC)
postdoctoral fellowship in 2011. Currently, he is an NSERC postdoctoral
research fellow at the Electrical Engineering Department of Princeton
University. His research interests include developing security/privacy
measures for emerging technologies, cryptographic systems, fault
diagnosis and tolerance in cryptographic hardware and embedded
systems, VLSI reliability, and low-power secure and efficient FPGA and
ASIC designs. He is a member of the IEEE.

Arash Reyhani-Masoleh received the BSc
degree in electrical and electronic engineering
from Iran University of Science and Technology
in 1989, the MSc degree in electrical and
electronic engineering from the University of
Tehran in 1991, both with the first rank, and the
PhD degree in electrical and computer engineer-
ing from the University of Waterloo in 2001. From
1991 to 1997, he was with the Department of
Electrical Engineering, Iran University of Science

and Technology. From June 2001 to September 2004, he was with the
Centre for Applied Cryptographic Research, University of Waterloo,
where he was awarded a Natural Sciences and Engineering Research
Council of Canada (NSERC) Postdoctoral Fellowship in 2002. In October
2004, he joined the Department of Electrical and Computer Engineering,
University of Western Ontario, London, Canada, where he is currently a
tenured associate professor. His current research interests include
algorithms and VLSI architectures for computations in finite fields, fault-
tolerant computing, and error-control coding. He has been awarded a
NSERC Discovery Accelerator Supplement (DAS) in 2010. Currently, he
serves as an associate editor for Integration, the VLSI Journal (Elsevier).
He is a member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

