
Concurrent Structure-Independent
Fault Detection Schemes for the
Advanced Encryption Standard

Mehran Mozaffari-Kermani, Student Member, IEEE, and Arash Reyhani-Masoleh, Member, IEEE

Abstract—The Advanced Encryption Standard (AES) has been lately accepted as the symmetric cryptography standard for

confidential data transmission. However, the natural and malicious injected faults reduce its reliability and may cause confidential

information leakage. In this paper, we study concurrent fault detection schemes for reaching a reliable AES architecture. Specifically,

we propose low-cost structure-independent fault detection schemes for the AES encryption and decryption. We have obtained new

formulations for the fault detection of SubBytes and inverse SubBytes using the relation between the input and the output of the S-box

and the inverse S-box. The proposed schemes are independent of the way the S-box and the inverse S-box are constructed.

Therefore, they can be used for both the S-boxes and the inverse S-boxes using lookup tables and those utilizing logic gates based on

composite fields. Our simulation results show the error coverage of greater than 99 percent for the proposed schemes. Moreover, the

proposed and the previously reported fault detection schemes have been implemented on the most recent Xilinx Virtex FPGAs. Their

area and delay overheads have been compared and it is shown that the proposed schemes outperform the previously reported ones.

Index Terms—Advanced encryption standard, concurrent error detection (CED), reliability, signature-based fault detection.

Ç

1 INTRODUCTION

THE National Institute of Standards and Technology
initiated a process to select a symmetric key encryp-

tion/decryption algorithm in 1997. Finally, Rijndael algo-
rithm was accepted among other finalists as the Advanced
Encryption Standard (AES) in 2001 [1]. The fast hardware
and software implementations and the high level of security
of the AES have led to its widespread usage in different
critical applications needing reliable systems and architec-
tures [1], [2]. As an example, the AES has been lately utilized
for the bitstream security mechanisms in the FPGAs for
increasing the reliability of the FPGA-based designs [3],
used in the recent Xilinx Virtex FPGA families [4].

The objective in using the AES is to transfer the data so that
only the desired receiver with a specific key would be able to
retrieve the original data. However, with the existence of
malicious injected faults in nonsecure environments, the
hardware implementation of the AES does not guarantee that
the data are transferred reliably. In fact, several fault attacks
on the AES are reported in the literature, see, for example, [5],
[6], and [7]. These types of attacks are based on injecting
faults to the structure of the AES to obtain the confidential
information or simply to cause malfunctioning of the AES
algorithm. This results in the incorrect output for the AES
designs. To make a robust implementation against these
attacks, several fault detection schemes have been proposed

to date, see, for example, [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], and [21].

There exist a number of fault detection schemes based on
the error detecting codes, see [8] and [9] for the basic parity-
based schemes. Using a parity bit for each byte in the
AES encryption transformations has been presented in [8].
In [9], a general method of concurrent checking for
Substitution Permutation Networks (SPN) has been pro-
posed. These were followed by other fault detection
schemes for the entire AES, see, for example, [10], [11],
[12], and [13]. In these schemes, the output parity bits of each
transformation in every round are predicted from the inputs
of the corresponding transformation. Then, the comparisons
between the predicted parities and the actual parities can be
scheduled so that the desired error coverage is obtained.

In [14] and [15], the redundant unit fault detection
scheme is used, where algorithm-level, round-level, or
operation-level fault detections are considered. In this
scheme, a transformation or a round or the entire encryp-
tion/decryption is followed by its inverse and the result is
compared with the original input to obtain the error
indication flag. Although almost all the faults in this fault
detection scheme are detected, it suffers from the area and
delay overheads of at least 100 percent. The scheme in [16]
proposes using the transformations in an AES round twice
for the same data to detect the transient errors. However,
this scheme is unable to detect the permanent internal faults
or the malicious injected faults lasting for a long period. In
[17], a fault detection scheme based on the merged S-boxes
and inverse S-boxes is proposed.

A multiplication-based scheme is presented in [19]. In this
scheme, the result of the multiplication of the input and the
output of the multiplicative inversion is compared with the
predicted result of unity. However, this scheme is not
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suitable for the S-boxes and inverse S-boxes implemented
using lookup tables (LUTs). This is because the output (the
input) of the multiplicative inversion in the S-box (the
inverse S-box) may not be accessible in the LUT-based
implementations. Therefore, the fault detection scheme
presented in [19] is not applicable for these implementations.

In this paper, we present structure-independent fault
detection schemes for obtaining a reliable AES implementa-
tion. We summarize our contributions as:

. We have presented a systematic method for obtain-
ing the fault detection signatures for the multi-
plicative inversion of the S-boxes (inverse S-boxes).

. We have proposed new formulations resulting in
novel fault detection schemes for checking SubBytes,
inverse SubBytes, and the other transformations in
the encryption and the decryption of the AES. The
proposed schemes are independent of the method
the S-box (respectively, the inverse S-box) is im-
plemented. Thus, they can be applied to both the
LUT and composite fields implementations.

. We have simulated the proposed fault detection
structures for the AES encryption and decryption.
Through our simulations after injecting up to 700,000
random stuck-at errors, we have shown that the
proposed low-cost schemes reach the error coverage
of greater than 99 percent.

. Finally, our proposed fault detection schemes and
almost all of the previously reported ones have been
implemented on the recent Xilinx Virtex FPGAs, and
their area and delay overheads have been derived
and compared. The FPGA implementation results
show the low area and delay overheads for the
proposed fault detection schemes.

The organization of this paper is as follows: In Section 2,
preliminaries regarding the AES algorithm are explained.
The proposed structure-independent schemes for the fault
detection of the S-boxes and the inverse S-boxes are presented
in Section 3. Then, the fault detection schemes for the entire
AES encryption and decryption are considered in Section 4. In
Section 5, the results of the simulations of the proposed
schemes are presented and their error coverages are obtained.
In Section 6, the presented fault detection schemes and the
previously reported ones are implemented on FPGAs and
they are compared in terms of time and space complexities.
Finally, conclusions are made in Section 7.

2 PRELIMINARIES

In this section, we briefly explain the four transformations
of each round of the encryption and the decryption in the
AES. In the implementations of the AES-128 (128-bit key)
transformations, the irreducible polynomial of P ðxÞ ¼
x8 þ x4 þ x3 þ xþ 1 is used to construct the binary field
GF ð28Þ. Each transformation in every round acts on its
128-bit input denoted as the state. The states are considered
as 4� 4 matrices whose entries are 8 bits. For example, the
input state SS with its 8-bit entries, i.e., sr;c, 0 � r; c � 3, is
represented as follows:

SS ¼ ½sr;c�3r;c¼0: ð1Þ

2.1 AES Encryption

Considering (1) as the input state of an encryption round,
the transformations in each round of encryption (except for
the last round) are as follows [1]:

. SubBytes: The first transformation in each round is
the bytes substitution (SubBytes) implemented by
16 S-boxes. Let sr;c 2 GF ð28Þ and s0r;c 2 GF ð28Þ be the
8-bit input and output of each S-box, respectively.
Then, the S-box consists of a multiplicative inver-
sion, i.e., s�1

r;c 2 GF ð28Þ, followed by an affine
transformation consisting of the matrix �� and the
vector �� to generate the output as

ss0r;c ¼ ��ss�1
r;c þ ��

¼

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ss�1
r;c þ

1

1

0

0

0

1

1

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

ð2Þ

The 8-bit outputs of 16 S-boxes are used to obtain the
output state of the SubBytes transformation as

SS0 ¼ ½s0r;c�
3
r;c¼0: ð3Þ

. ShiftRows: In the second transformation, ShiftRows,
4 bytes of the rows of the input state are cyclically
shifted to the left and the first row is left unchanged
to obtain the output state, i.e., SR(SS0), as

SRðSS0Þ ¼

s00;0 s00;1 s00;2 s00;3
s01;1 s01;2 s01;3 s01;0
s02;2 s02;3 s02;0 s02;1
s03;3 s03;0 s03;1 s03;2

0
BBB@

1
CCCA

¼ ½s0r;ðrþcÞ mod 4�
3
r;c¼0:

ð4Þ

. MixColumns: In the third transformation, MixCol-
umns, the output state is obtained by multiplying a
constant matrix with the output state of ShiftRows,
SR(SS0) in (4), to obtain the output state of MixCol-
umns, i.e., the matrix SS00, as

SS00 ¼ ½s00r;c�
3
r;c¼0 ¼

f2gh f3gh f1gh f1gh
f1gh f2gh f3gh f1gh
f1gh f1gh f2gh f3gh
f3gh f1gh f1gh f2gh

0
BB@

1
CCASRðSS0Þ:

ð5Þ

. AddRoundKey: The final transformation is Ad-
dRoundKey in which the input state is added
(modulo-2) with the key of the round. Considering
the roundkey input state as the matrix KK ¼ ½kr;c�3r;c¼0,
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with entries kr;c, 0 � r; c � 3, the output state of the
AddRoundKey transformation, i.e., OO, is obtained as

OO ¼ ½or;c�3r;c¼0 ¼ SS00 þKK: ð6Þ

2.2 AES Decryption

In the AES decryption rounds, four transformations, i.e.,
InvShiftRows, InvSubBytes, AddRoundKey, and InvMixCol-
umns, are utilized. Considering SS0 as the input state of a
decryption round, in the first transformation, InvShiftRows,
similar to ShiftRows in encryption, the first row of the input
state remains unchanged. However, the other rows entries
are cyclically shifted to the right as follows:

ISRðSS0Þ ¼

s00;0 s00;1 s00;2 s00;3
s01;3 s01;0 s01;1 s01;2
s02;2 s02;3 s02;0 s02;1
s03;1 s03;2 s03;3 s03;0

0
BB@

1
CCA: ð7Þ

The next transformation in each round is InvSubBytes
implemented by 16 inverse S-boxes. In the inverse S-box,
the inverse affine transformation precedes the multiplica-
tive inversion in GF ð28Þ to generate ss�1

r;c ¼ ���1ss0r;c þ ���1��,
where �� and �� are presented in (2). The 8-bit outputs of
16 inverse S-boxes are used to obtain the output state of the
InvSubBytes transformation as SS ¼ ½sr;c�3r;c¼0.

The next transformation is AddRoundKey in which the
input state is added with the key of the round. Then, the
output state of AddRoundKey is obtained as SS00 ¼
½s00r;c�

3
r;c¼0 ¼ SS þKK. Finally, the last transformation, InvMix-

Columns, is equivalent to multiplying the input state with a
constant matrix with hexadecimal entries to obtain the
output state of the round as

OO ¼ ½or;c�3r;c¼0 ¼

f0egh f0bgh f0dgh f09gh
f09gh f0egh f0bgh f0dgh
f0dgh f09gh f0egh f0bgh
f0bgh f0dgh f09gh f0egh

0
BB@

1
CCASS00: ð8Þ

Among the four transformations in the encryption and
the decryption of the AES, only the S-boxes and the inverse
S-boxes are nonlinear operations. Furthermore, not only are
the S-boxes used in the AES transformations, but they are
also used in the key expander unit generating the keys used
in the AES rounds. Therefore, the fault detection schemes of
these operations affect the fault detection implementations
of the entire AES.

3 A NEW FAULT DETECTION SCHEME FOR THE

S-BOX AND THE INVERSE S-BOX

In this section, first, we present a systematic method for the
fault detection of the multiplicative inversion of the S-box
and the inverse S-box. Then, the new scheme for the entire
S-box and the inverse S-box is presented.

3.1 The Systematic Scheme for the Multiplicative
Inversion

The multiplication-based fault detection scheme [19] for the
multiplicative inversion of the S-box is shown in Fig. 1. In
this scheme, the 8-bit input of the multiplicative inversion
is multiplied by the 8-bit output and the n-bit result,

1 � n � 8, of the multiplication is compared with the
n-bit actual result, i.e., 1 2 GF ð28Þ if s 6¼ 0 and 0 2 GF ð28Þ
if s ¼ 0. Because the multiplicative inversion is also used in
the inverse S-box, the same scheme can be used for the
inverse S-box.

In what follows, we present a systematic method for the
fault detection scheme for the multiplicative inversion by
deriving the matrix-based formulations for the multiplica-
tive inversion in the S-box/inverse S-box.

We use the following theorem from [22] to obtain the

multiplication of field elements A ¼
Pm�1

i¼0 ai�
i and B ¼Pm�1

i¼0 bi�
i in the finite field GF ð2mÞ constructed by the

irreducible polynomial of P ðxÞ with the primitive root of �.

Theorem 1 [22]. Let C ¼
Pm�1

i¼0 ci�
i be the multiplication of A

and B 2 GF ð2mÞ. Then, the coordinates of C can be obtained
from

½c0; c1; . . . ; cm�1�T ¼ ðLLþQQTUUÞbb; ð9Þ

where bb ¼ ½b0; b1; . . . ; bm�1�T ,

LL ¼

a0 0 0 0 . . . 0
a1 a0 0 0 . . . 0
a2 a1 a0 0 . . . 0

..

. ..
. . .

. . .
. . .

. ..
.

am�2 am�3 . . . a1 a0 0
am�1 am�2 . . . a2 a1 a0

0
BBBBBBB@

1
CCCCCCCA
; ð10Þ

UU ¼

0 am�1 am�2 . . . a2 a1

0 0 am�1 . . . a3 a2

..

. ..
. . .

. . .
. ..

. ..
.

0 0 . . . 0 am�1 am�2

0 0 . . . 0 0 am�1

0
BBBBB@

1
CCCCCA
; ð11Þ

and the m� 1�m binary matrix QQ is obtained as follows:

½�m; �mþ1; . . . ; �2m�2�T ¼

QQ½1; �; �2; . . . ; �m�1�T ðmodP ð�ÞÞ:
ð12Þ

Let s ¼ s7�
7 þ s6�

6 þ s5�
5 þ s4�

4 þ s3�
3 þ s2�

2 þ s1�þ
s0 a n d s�1 ¼ s�1

7 �7 þ s�1
6 �6 þ s�1

5 �5 þ s�1
4 �4 þ s�1

3 �3 þ
s�1

2 �2 þ s�1
1 �þ s�1

0 be the 8-bit input and output of the
multiplicative inversion in the binary field GF ð28Þ,
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Fig. 1. The multiplication-based scheme for the fault detection of the
multiplicative inversion [19].



respectively (see Fig. 1). Considering the fact that the
result of the multiplication of the 8-bit input s, s 6¼ 0, and
the output s�1 of the multiplicative inversion is the unity
polynomial 1 2 GF ð28Þ, the following is derived from
Theorem 1 for the relation between s and s�1.

Corollary 1. Let ss ¼ ½s0; s1; s2; s3; s4; s5; s6; s7�T and ss�1 ¼ ½s�1
0 ;

s�1
1 ; s�1

2 ; s�1
3 ; s�1

4 ; s�1
5 ; s�1

6 ; s�1
7 �

T be the vectors corresponding
to the input and output of the multiplicative inversion. Then, the
matrix formulation of the multiplicative inversion of the S-box
(respectively, the inverse S-box) is as follows:

ZZss�1 ¼ uu; ð13Þ

where

ZZ ¼
s0 s7 s6 s5 s4 s7;3 s7;6;2 s6;5;1

s1 s7;0 s7;6 s6;5 s5;4 s7;4;3 s6;3;2 s7;5;2;1

s2 s1 s7;0 s7;6 s6;5 s5;4 s7;4;3 s6;3;2

s3 s7;2 s6;1 s7;5;0 s7;6;4 s7;6;5;3 s7;6;5;4;2 s7;6;5;4;3;1

s4 s7;3 s7;6;2 s6;5;1 s7;5;4;0 s6;4;3 s5;3;2 s7;4;2;1

s5 s4 s7;3 s7;6;2 s6;5;1 s7;5;4;0 s6;4;3 s5;3;2

s6 s5 s4 s7;3 s7;6;2 s6;5;1 s7;5;4;0 s6;4;3

s7 s6 s5 s4 s7;3 s7;6;2 s6;5;1 s7;5;4;0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

;

ð14Þ

uu ¼ ½u; 0; 0; 0; 0; 0; 0; 0�T , and u is obtained by logical OR
operations of all inputs and outputs, i.e., u ¼ ðs0 _ s1 _
. . . s7Þ _ ðs�1

0 _ s�1
1 _ . . . s�1

7 Þ. Moreover, in (14), the modulo-
2 additions (XOR operations) of the coordinates of s are shown
with commas in indices, e.g., s7;0 ¼ s7 þ s0.

Proof. We prove (13) for two cases of s 6¼ 0 and s ¼ 0
separately. Let the input s be a nonzero field element in
GF ð28Þ generated by P ðxÞ ¼ x8 þ x4 þ x3 þ xþ 1. Then,
the multiplicative inversion should generate s�1. Using
(12) in Theorem 1 and considering the irreducible
polynomial of P ðxÞ, the 7� 8 matrix QQ can be obtained as

QQ ¼

1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1
1 1 0 1 0 1 0 1
1 0 1 1 0 0 1 0
0 1 0 1 1 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
: ð15Þ

This matrix is obtained by using the representations of
�8; �9; . . . ; �14 with respect to the polynomial basis for
different rows of QQ. Considering A ¼ s 6¼ 0 and B ¼ s�1

in Theorem 1, the matrices LL and UU in (10) and (11) are
functions of the 8-bit input vector ss as

LL ¼

s0 0 0 0 0 0 0 0
s1 s0 0 0 0 0 0 0
s2 s1 s0 0 0 0 0 0
s3 s2 s1 s0 0 0 0 0
s4 s3 s2 s1 s0 0 0 0
s5 s4 s3 s2 s1 s0 0 0
s6 s5 s4 s3 s2 s1 s0 0
s7 s6 s5 s4 s3 s2 s1 s0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

; ð16Þ

UU ¼

0 s7 s6 s5 s4 s3 s2 s1

0 0 s7 s6 s5 s4 s3 s2

0 0 0 s7 s6 s5 s4 s3

0 0 0 0 s7 s6 s5 s4

0 0 0 0 0 s7 s6 s5

0 0 0 0 0 0 s7 s6

0 0 0 0 0 0 0 s7

0
BBBBBBBB@

1
CCCCCCCCA
: ð17Þ

Substituting QQ, LL, and UU from (15)-(17) into (9) and
denoting ZZ ¼ LLþQQTUU , one can obtain the matrix ZZ
presented in (14). Since s 6¼ 0 ¼ ð0; 0; . . . ; 0Þ 2 GF ð28Þ,
u ¼ 1 and the result of multiplication is

C ¼ A:B mod P ðxÞ ¼ 1 2 GF ð28Þ;

i.e., ½c0; c1; . . . ; c7�T ¼ ½1; 0; . . . ; 0�T . Therefore, using (9),
one can prove that (13) is valid for s 6¼ 0. Moreover, for
s ¼ 0, the output of the multiplicative inversion generates
0 ¼ ð0; 0; . . . ; 0Þ. Thus, all entries of the matrix ZZ, and
hence, all eight entries of the left-hand side vector of (13)
are equal to zero. In such a case, the vector uu ¼
½0; 0; . . . ; 0�T since the result of the OR operation among
all sis and s�1

i s are zero, i.e., u ¼ 0. Therefore, the proof is
complete. tu
The validity of (13) can be used to detect specific faults in

the inversion block of Fig. 1. Let us consider (13) for three
special cases. If both the input and the output are zero, i.e.,
s ¼ s�1 ¼ 0 2 GF ð28Þ, the output is error-free. Then, both
sides of (13) are zero, and thus, it holds which means that
no fault is detected. On the other hand, the left-hand side of
(13) is zero, while in the right-hand side, u ¼ 1 in the
following two cases: 1) the input is zero (s ¼ 0) and the
erroneous output is not zero, i.e., s�1 6¼ 0 and 2) the input is
not zero, i.e., s 6¼ 0, but the erroneous output is zero
(s�1 ¼ 0). Thus, in both cases, (13) does not hold which
indicates that the errors in the output of the multiplicative
inversion have been occurred.

One can figure out that implementing (13) needs
64 ANDs, 15 ORs, and 143 XOR gates. It is noted that
using subexpression sharing, one can reduce the number of
XOR gates to 84. If one implements the S-box using the
composite field presented in [23], it requires 36 AND gates
and 123 XOR gates for the original S-box implementation.
Then, adding this fault detection scheme would require
approximately 91 percent area overhead. This is derived
assuming that an XOR gate is implemented by 10 transistors
[24] and the silicon area of an AND is 0.6 that of an
XOR gate. Furthermore, the upper bound delay of the
multiplication can be derived as TM � TA þ 5TX , where TA
and TX are the delays for an AND and an XOR gate,
respectively, [22]. This is the delay overhead after the
derivation of the output of the SubBytes transformation. As
a result of this high overhead, this scheme may not be
applied for the area-/delay-constrained applications.

As mentioned above, comparing the actual result of the
multiplication of the input and the output of the multi-
plicative inversion with the predicted one is not area efficient.
Therefore, considering our derivations of matrixZZ in (14), the
complexity of the fault detection scheme of the multiplicative
inversion can be reduced by deriving the partial result of the
multiplication of the input and the output based on the rows
that have the lowest overhead. Therefore, one can use this
low-complexity signature for the fault detection of the
multiplicative inversion.
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3.2 The Proposed Scheme for the S-Box and the
Inverse S-Box

The scheme in [19] does not take the affine transformation

into account and checks it separately with an additional

overhead. Furthermore, if one implements SubBytes in the

AES using LUTs, there is no access to the output of the

multiplicative inversion. Therefore, the aforementioned

scheme cannot be used. In what follows, we propose a

new scheme which is independent of the way the S-box and

the inverse S-box are implemented. First, we obtain the

matrix-based S-box formulations as follows:

Theorem 2. Let s ¼ s7�
7 þ s6�

6 þ s5�
5 þ s4�

4 þ s3�
3 þ

s2�
2 þ s1�þ s0 a n d s0 ¼ s07�7 þ s06�6 þ s05�5 þ s04�4 þ

s03�
3 þ s02�2 þ s01�þ s00 be the 8-bit input and output of the

S-box. Then, one can obtain the relation between the input and

output of the S-box as

MMss0 þmm ¼ uu0; ð18Þ

where uu0 ¼ ½u0; 0; 0; 0; 0; 0; 0; 0�T , u0 ¼ ðs0 _ s1 _ . . . s7Þ _
ðs00 _ s01 _ s02 _ s03 _ s04 _ s05 _ s06 _ s07Þ, ss0 ¼ ½s00; s01; s02; s03; s04;
s05; s

0
6; s
0
7�
T , and mm ¼ ½s6;0; s7;6;1; s7;2;0; s6;3;1; s7;6;4;2; s7;5;3;

s6;4; s7;5�T . Furthermore, the 8� 8 matrix MM is denoted as

follows:

MM ¼

s6;5;2 s5;4;1 s7;5;3;0 s6;4;2

s7;5;3;2;0 s6;4;2;1 s7;6;5;4;3;1 s7;6;5;4;3;2;0

s6;4;3;1 s7;5;3;2;0 s7;6;5;4;2 s7;6;5;4;3;1

s7;6;4;0 s6;5;3 s6;0 s7;5

s7;6;2;1 s7;6;5;1;0 s5;3;1 s4;2;0

s7;3;2 s7;6;2;1 s6;4;2;0 s5;3;1

s4;3;0 s7;3;2 s7;5;3;1 s6;4;2;0

s5;4;1 s4;3;0 s6;4;2 s7;5;3;1

0
BBBBBBBBBBBBB@

s7;5;3;1 s7;6;5;2;0 s7;6;5;4;1 s7;6;3;0

s7;6;5;4;3;2;1 s5;3;2;1 s4;2;1;0 s6;4;3;1

s7;6;5;4;3;2;0 s6;4;3;2 s5;3;2;1 s7;5;4;2;0

s6;4 s6;4;3;2;0 s7;5;3;2;1 s7;5;1

s3;1 s6;4;3;2;1 s7;5;3;2;1;0 s7;3;2

s4;2;0 s7;5;4;3;2 s6;4;3;2;1 s4;3;0

s5;3;1 s6;5;4;3;0 s7;5;4;3;2 s5;4;1

s6;4;2;0 s7;6;5;4;1 s6;5;4;3;0 s6;5;2

1
CCCCCCCCCCCCCA

:

ð19Þ

Proof. We prove (18) for two cases of s 6¼ 0 and s ¼ 0

separately. Let the 8-bit input s be a nonzero field

element in GF ð28Þ. Considering (2), one can obtain

ss�1 ¼ ���1ss0 þ ���1��

¼

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ss0 þ

1

0

1

0

0

0

0

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:
ð20Þ

By substituting ss�1 from (20) into (13), one reaches

ZZ���1ss0 þ ZZ���1�� which is the same as the left-hand side

of (18). Now, let us denote ZZ���1 ¼MM and ZZ���1�� ¼ mm.

Then, the left-hand side of (18) is obtained. Since

s 6¼ 0 ¼ ð0; 0; . . . ; 0Þ 2 GF ð28Þ, u0 ¼ 1. Moreover, accord-

ing to the proof of Corollary 1, for s 6¼ 0, the left-hand side

of (13) is ½1; 0; . . . ; 0�T , i.e., the result of multiplication

C ¼ A:B mod P ðxÞ ¼ 1 2 GF ð28Þ. This implies that the

left-hand side of (13) beZZss�1 ¼ ½1; 0; . . . ; 0�T ¼ uu0. Further-

more, because we have ZZss�1 ¼MMss0 þmm, one can prove

that (18) is valid for s 6¼ 0. Moreover, according to (2), for

the input s ¼ 0 ¼ ð0; 0; . . . ; 0Þ 2 GF ð28Þ, we have the out-

put as ss0 ¼ ½s00; s01; . . . ; s07�
T ¼ ½1; 1; 0; 0; 0; 1; 1; 0�T which

corresponds to the field element s0 ¼ f63gh ¼ ð0; 1; 1;
0; 0; 0; 1; 1Þ 2 GF ð28Þ. Therefore, as seen in Theorem 2,uu0 ¼
½0; 0; . . . ; 0�T since we have u0 ¼ ðs0 _ s1 _ . . . s7Þ _ ðs00 _
s01 _ s02 _ s03 _ s04 _ s05 _ s06 _ s07Þ ¼ 0. In addition, for s ¼ 0,

all the entries of the matrixMM and the vectormm in the left-

hand side of (18) are equal to zero. This results in the

vector ½0; 0; . . . ; 0�T ¼ uu0 for the left-hand side of (18).

Therefore, the proof is complete. tu
Let us consider (18) for the input s ¼ 0 ¼ ð0; 0; . . . ; 0Þ 2

GF ð28Þ. For this input, the correct output is s0 ¼ f63gh ¼
ð0;1; 1; 0; 0; 0; 1; 1Þ 2 GF ð28Þ (see (2)). If the erroneous output

is not s0 ¼ f63gh ¼ ð0; 1; 1; 0; 0; 0; 1; 1Þ 2 GF ð28Þ, in the right-

hand side of (18), we have u0 ¼ 1, whereas the left-hand side

is zero. Therefore, the erroneous output is detected.

Proposition 1. Using subexpression sharing, the implementation

of the left-hand side of (18) needs 64 AND gates and 111 XOR

gates. Furthermore, the upper bound delay of the relation in the

left-hand side of (18) is TA þ 6TX, where TA and TX are the

delays for an AND and an XOR gate, respectively.

Although checking the formulation of (18) detects all

errors in the output of the S-box, its implementation is very

costly (see Proposition 1). To reduce the overhead of the

fault detection scheme, as shown in Fig. 2, we have obtained

the single-bit parity for the formulation of (18). As shown in

this figure, this is obtained in order to compare only 1 bit for

an 8-bit data to detect any combination of odd number of

erroneous bits at the result of the left-hand side of (18).
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Fig. 2. The proposed structure-independent fault detection scheme of
the S-box.



Thus, one can check the parity of two sides of (18) to obtain
1-bit equation for checking the S-box as follows:

Theorem 3. Let s ¼ s7�
7 þ s6�

6 þ s5�
5 þ s4�

4 þ s3�
3 þ

s2�
2 þ s1�þ s0 2 GF ð28Þ and s0 ¼ s07�7 þ s06�6 þ s05�5 þ

s04�
4 þ s03�3 þ s02�2 þ s01�þ s00 2 GF ð28Þ be the 8-bit input

and output of the S-box. Then, the following equation holds for
all the possible patterns of s and s0:

P ðMMss0þmmÞ ¼ s0ðs0b þ s0cÞ þ s1s
0
b þ s2s

0
d þ s3s

0
4 þ s4ðs0c þ s03Þ

þ s5s
0
a þ s6

�
s0d þ s06

�
þ s7

�
s05 þ s04

�
¼ u0;

ð21Þ

where s0a ¼ s00 þ s02 þ s03 þ s05, s0b ¼ s0a þ s07, s0c ¼ s01 þ s04 þ
s06, and s0d ¼ s02 þ s07.

Proof. After obtaining the parity of two sides of (18), we have

P ðMMss0þmmÞ ¼ Puu0 ¼ u0; ð22Þ

where MM, mm, and uu0 are presented in Theorem 2.
Considering the fact that parity is a linear operation,
one can obtain the left-hand side of (22) as P ðMMss0þmmÞ ¼
PMMss0 þ Pmm. Then, using MM and mm defined in Theorem 2,
one can obtain

PMMss0 ¼ s00sa þ s01sb þ s02sc þ s03ðsa þ s4Þ þ s04ðsb þ s3 þ s7Þ
þ s05ðsa þ s7Þ þ s06ðsb þ s6Þ þ s07ðs5 þ scÞ

and Pmm ¼ s6 þ s7, where sa ¼ s0 þ s1 þ s5, sb ¼ s0 þ s4,
and sc ¼ sa þ s2 þ s6. After rearranging, one reaches
(21) and the proof is complete. tu
To implement (21), 18 XOR gates, eight AND gates, and

two NOT gates are needed. Also, the delay overhead
associated with this implementation is the delay of six
XORs and one AND after the completion of the S-box. It is
noted that this delay can be overlapped by other AES round
transformations, and hence, it will not reduce the speed of
the entire fault detection AES implementation. More details
on this will be presented in Section 4 of this paper. The
parity obtained by the parity circuit is then compared with
u0 (see Theorems 2 and 3) to obtain the error indication flag
of each S-box, i.e., er;c, 0 � r; c � 3. It is noted that using an
OR tree for the error indication flags of 16 S-boxes, the final
error indication flag of the entire SubBytes transformation is
obtained. The final error indication flag of the SubBytes
transformation signals the errors if at least one of the error
indication flags of 16 S-boxes detects errors.

Now, we want to present the fault detection scheme for the
inverse S-box in the AES decryption. The inverse S-box of the
decryption consists of the inverse affine transformation
(the inverse of the affine transformation in (2)) followed by
the multiplicative inversion. In other words, one can obtain
the inverse S-box by removing the affine transformation and
adding the inverse affine one. This uses the input of s0 and the
output of s�1 with the following multiplicative inversion
having the input of s�1 and the output of s. Therefore,
Theorems 2 and 3 are also valid for the inverse S-box, and
hence, we can conclude the following for the inverse S-box:

Corollary 2. For the fault detection of the inverse S-box, one can
use (21) by changing the place of the input and output, i.e.,
swapping the coordinates of s with s0.

4 PROPOSED FAULT DETECTION SCHEMES FOR THE

AES

The basic approaches using parity bits for fault detection are

presented in [8] and [9]. For one round of the AES

encryption, the parity-based scheme presented in [8] is

shown in Fig. 3. Similar fault detection scheme is used for

other rounds. As seen in this figure, the output parity bits of

each transformation in every round are predicted from the

inputs (obtained using the blocks denoted by P̂ notations).
Then, the comparisons between the predicted and the actual

parities (obtained using the actual parity block) can be

scheduled so that the desired error coverage is obtained [8].

It is noted that in Fig. 3,KK0 consists of the 128-bit round i key

and the 16-bit key parity, i.e., Pki .
The parity-based scheme proposed in [8] is one of the

first fault detection schemes and has received attention in

the literature. Although the approach in [8] is a good

scheme in terms of the fault detection capability, it has two

drawbacks. First, this approach is based on using the

expanded S-boxes and inverse S-boxes for parity predic-

tions, i.e., two blocks of 256� 9 memory cells. Not only does

this restrict the AES encryption and decryption implemen-

tations to LUT-based S-boxes and inverse S-boxes, but it has
also the area overhead of greater than 100 percent for either

the S-box or the inverse S-box. To counteract this drawback,

one may use the proposed fault detection scheme for the

S-box or the inverse S-box. As an example, for the AES

encryption, one may use (21) for the S-boxes. This results in

obtaining the output parity of each S-box concurrently

without having an extra circuit for deriving it, i.e., Ps0 ¼P7
i¼0 s

0
i ¼ s0b þ s0c in (21). This simplifies the fault detection

circuit of the AES when the output parities of the S-boxes

are utilized for the fault detection of other transformations

in the AES rounds in [8] (see Fig. 3). More specifically, if one
uses the scheme presented in [8] for the fault detection of

the MixColumns transformation, the predicted parities of

this transformation become functions of the output parities

of the ShiftRows (SubBytes) transformation (f1 in Fig. 3).

Using the proposed scheme for the S-box in this paper, one

can easily utilize the output parities of the S-boxes to predict

the parities of the MixColumns transformation.
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Fig. 3. Recursive parity-based fault detection structure of the ith round
for encryption in AES [8].



The second drawback of the approach in [8] is the
relatively high area complexity of the parity predictions of
MixColumns in the AES encryption. For the AES decryp-
tion, the area complexity of the predicted parities of
InvMixColumns is even more [10]. The implementation
results presented in Section 6 show the high area overhead
of this scheme. Considering the fact that a low-cost fault
detection scheme for the AES encryption and decryption is
preferred, in this section, we propose signature-based low-
complexity fault detection schemes for the transformations
in the AES encryption and decryption. We consider AES-128
(which is denoted as AES in the remaining of this paper) for
the sake of brevity. It is noted that the proposed schemes can
also be applied to AES-192 and AES-256. The proposed
schemes for the AES transformations are based on deriving
the low-cost output signatures of the transformations in the
AES rounds and comparing them with their actual
signatures for reaching the error indication flags.

4.1 AES Encryption

We present the new fault detection structure for the AES
encryption in the following. A typical AES encryption
round (except for the last round) consists of four transfor-
mations, and the fault detection schemes are shown in Fig. 4
and presented in details below.

4.1.1 SubBytes and ShiftRows

In the AES encryption, the SubBytes transformation consists
of 16 S-boxes (see (3)). Let er;c, 0 � r; c � 3, be the error
indication flag for the S-box with the input and the output
of sr;c and s0r;c, respectively. The output state of such flags
can be rewritten as 16 formulations as follows:

er;c ¼ PðMMr;css0r;cþmmr;cÞ þ u0r;c; 0 � r; c � 3; ð23Þ

where u0r;c is defined in Theorem 2 and for a typical S-box,
PðMMr;css0r;cþmmr;cÞ is presented in (21).

The 128-bit output of the SubBytes transformation acts as
the input to ShiftRows. As seen in (4), the output state of
ShiftRows is obtained by shifting the state entries in (3).
Therefore, by considering the corresponding output of
ShiftRows in (4), one can check two transformations of
SubBytes and ShiftRows together using 16 error indication

flags. According to (4) and considering (23), for row r and
column c, the output state of the flags can be rewritten as
16 formulations as follows:

er;c ¼ PðMMr;c� ss0r;c�þmmr;c� Þ þ u
0
r;c� ; 0 � r; c � 3; ð24Þ

where c� ¼ ðrþ cÞ mod 4.
According to (24), 16 error indication flags for the

SubBytes and ShiftRows transformations, i.e., one error
indication flag for each byte, are obtained. This is shown
in Fig. 4. As seen in this figure, (24), i.e., instances of the
hardware implementation of (21), is utilized for obtaining
16 error indication flags.

4.1.2 MixColumns and AddRoundKey

The third and the fourth transformations in a typical AES
encryption round are MixColumns and AddRoundKey. It is
noted that MixColumns is constructed using (5). Further-
more, according to (6), AddRoundKey is the modulo-2
addition of the input state with the roundkey. In what
follows, we present a key formulation that is used for deriving
a low-complexity fault detection scheme for MixColumns
and AddRoundKey combined.

Theorem 4. Let SRðSS0Þ ¼ ½s0r;c� �
3
r;c¼0 and KK ¼ ½kr;c�3r;c¼0 be the

input and the roundkey input of MixColumns and AddRound-
Key in round i, respectively. Let the output of AddRoundKey
be OO ¼ ½or;c�3r;c¼0 (see (6)). Then, the following holds:

X3

r¼0

ðs0r;c� þ kr;c þ or;cÞ ¼ 0 2 GF ð28Þ; 0 � c � 3; ð25Þ

where c� ¼ ðrþ cÞ mod 4, and each summation is over
GF ð28Þ which consists of eight modulo-2 additions.

Proof. After adding the columns of SS00 in (5), one reaches the
following:

s000;0 þ s001;0 þ s002;0 þ s003;0 ¼ ðf2g16 þ f1g16 þ f1g16

þ f3g16Þðs00;0 þ s01;1 þ s02;2 þ s03;3Þ;
ð26Þ

s000;1 þ s001;1 þ s002;1 þ s003;1 ¼ ðf2g16 þ f1g16 þ f1g16

þ f3g16Þðs00;1 þ s01;2 þ s02;3 þ s03;0Þ;
ð27Þ

s000;2 þ s001;2 þ s002;2 þ s003;2 ¼ ðf2g16 þ f1g16 þ f1g16

þ f3g16Þðs00;2 þ s01;3 þ s02;0 þ s03;1Þ;
ð28Þ

s000;3 þ s001;3 þ s002;3 þ s003;3 ¼ ðf2g16 þ f1g16 þ f1g16

þ f3g16Þðs00;3 þ s01;0 þ s02;1 þ s03;2Þ:
ð29Þ

Considering the fact that f3g16 ¼ f1g16 þ f2g16, we have
ðf2g16 þ f1g16 þ f1g16 þ f3g16Þ ¼ f1g16. Moreover, the
right-hand sides of (26)-(29) are the additions of the
columns of matrix SRðSS0Þ in (4). Therefore, the addition
of the column elements of SS00 is equal to that of the
corresponding column of SRðSS0Þ, i.e.,

P3
r¼0 s

00
r;c ¼P3

r¼0 s
0
r;c� , 0 � c � 3. Furthermore, according to (6),

we have

X3

r¼0

or;c ¼
X3

r¼0

s00r;c þ
X3

r¼0

kr;c; 0 � c � 3: ð30Þ
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Therefore, considering (30), we reach

X3

r¼0

or;c ¼
X3

r¼0

s0r;c� þ
X3

r¼0

kr;c; 0 � c � 3: ð31Þ

Considering (31), we have
P3

r¼0ðs0r;c� þ kr;c þ or;cÞ ¼
ð0; 0; . . . ; 0Þ 2 GF ð28Þ and the proof is complete. tu
Now, let us introduce the four 8-bit error indication flags

for four columns of the state as

Ec ¼
X3

r¼0

ðs0r;c� þ kr;c þ or;cÞ; 0 � c � 3: ð32Þ

One can use Theorem 4 to verify that for the error-free

situation, all 32 bits of such flags in (32) are zero, i.e.,
Ec ¼ 0 ¼ ð0; 0; . . . ; 0Þ 2 GF ð28Þ, 0 � c � 3. These 32 error
indication flags can be used for the MixColumns and
AddRoundKey transformations combined, i.e., eight error

indication flags for each column of the state matrix. This is
shown in Fig. 4. It is noted that in Fig. 4, ½kr;c�3r;c¼0 is the
round i key. As seen in this figure, using (32), 32 error

indication flags are obtained. It is noted that these error
indication flags can be compressed so that n, 1 � n � 32,
error indication flags for these two transformations are

achieved. This can be performed by ORing different
combinations of the 32 error indication flags obtained in
(32) as denoted by the compressor block in Fig. 4. This gives
us the freedom in the number of the error indication flags

used in the fault detection scheme of the MixColumns and
AddRoundKey transformations. It is interesting to note that
although up to 32 flags can be used, our simulations show

that using 16 error indication flags (the same number as the
flags derived for SubBytes and ShiftRows), greater than
99 percent of the errors are covered.

The last round of the AES encryption (round 10 in

AES-128 encryption) consists of three transformations, i.e.,
SubBytes, ShiftRows, and AddRoundKey. In other words,
compared to the other encryption rounds, the MixCol-
umns transformation has been removed. We present the

following for the fault detection of this round.

Remark 1. Similar to the fault detection scheme for the other
rounds of the AES encryption, one can use (24) for the

last encryption round to derive 16 error indication flags
for SubBytes and ShiftRows combined. Furthermore, one
can use (31) for the relation of the inputs and the output

of AddRoundKey (see also Fig. 4 by removing MixCol-
umns). Therefore, (32) can also be used for the last round.
Consequently, by removing the MixColumns transfor-
mation, one can also utilize the fault detection scheme in

Fig. 4 for the last encryption round of the AES.

4.1.3 Further Improvements

The proposed fault detection scheme for a typical round of
the AES encryption can be modified so that the complexity of

the scheme is reduced. This improvement is based on the fact
that using subexpression sharing, one can reduce the number
of logic gates utilized in obtaining two sets of the error

indication flags, as shown in Fig. 4. Specifically, in this paper,
we propose a fault detection scheme for the MixColumns

transformation which has 25 percent less area overhead than
the scheme presented in [8] and [10].

As shown in Fig. 4, the error indication flags of SubBytes
and ShiftRows are obtained utilizing the output state of
ShiftRows, i.e., SR(SS0) in (4). Furthermore, as shown in this
figure, this state is also used in obtaining the error indication
flags of MixColumns and AddRoundKey. This leads us to
perform subexpression sharing in deriving these two sets of
error indication flags to have low-complexity fault detection
scheme of the AES encryption. We use (32) to derive 16 low-
complexity signatures for the MixColumns and AddRound-
Key transformations, i.e., four signatures for each column of
the state matrix. This is performed by modulo-2 addition of
two sets of four coordinates of (32) for each column, i.e.,
Ec ¼ ðec;7; ec;6; . . . ; ec;0Þ 2 GF ð28Þ, 0 � c � 3. L e t Êc ¼
ðec;4; ec;2; ec;1; ec;0Þ and �Ec ¼ ðec;5; ec;7; ec;6; ec;3Þ. Then, the
four error indication flags for column c of the state are

Ec ¼ Êc þ �Ec; 0 � c � 3: ð33Þ

One can utilize four sets of modulo-2 additions of the output
bits of each S-box precomputed in (21), i.e., s04 þ s05, s02 þ s07,
s01 þ s06, and s00 þ s03, to obtain the low-complexity error
indication flags in (33). This is shown in Fig. 5. As seen in
this figure, the Common Subexpressions (CSs) unit has been
utilized to obtain 64 common subexpressions, i.e., 4 for each
of the 16 S-boxes in the SubBytes transformation. As depicted
in Fig. 5, these outputs are then used in obtaining the two sets
of 16 error indication flags for SubBytes and ShiftRows
combined, i.e., er;c, 0 � r; c � 3, and for MixColumns and
AddRoundKey combined, i.e., Ec, 0 � c � 3, respectively. In
Fig. 5, realizing (24) is less complex than the one in Fig. 4. This
is because (24) utilizes the hardware implementation of (21)
which is less complex when the common subexpressions are
used. It is noted that if any of the two derived sets of error
indication flags are one, the error is detected. Whereas if all of
them are zero, no error has been detected although the
output can be erroneous or correct.

One can compare the complexity of the proposed fault
detection scheme for MixColumns with that of [8] and [10].
For comparison, we consider the error indication flags of
this transformation separately, i.e., without considering
AddRoundKey. In the fault detection scheme of MixCol-
umns, we only need three XOR gates for each signature, i.e.,
modulo-2 adding of the four common subexpressions

MOZAFFARI-KERMANI AND REYHANI-MASOLEH: CONCURRENT STRUCTURE-INDEPENDENT FAULT DETECTION... 615

Fig. 5. The proposed low-complexity fault detection scheme for the ith
round of the AES encryption utilizing subexpression sharing.



presented above, e.g., s04 þ s05, in four rows. Therefore, we
have the following remark:

Remark 2. For having 16 signatures for the MixColumns
transformation, 48 XOR gates are needed. Comparing
this with the parity-based scheme presented in [8] and
[10] which needs 64 XOR gates for the predicted parities,
this is a 25 percent area overhead reduction. Moreover,
there are two XORs in the critical path delay of the
proposed scheme for MixColumns compared to three
XORs for the scheme in [8] and [10] which is a 33 percent
reduction in the critical path delay.

4.2 AES Decryption

We present the fault detection scheme for the AES
decryption in what follows. It is noted that the AES
decryption rounds (except for the last round) consist of
four transformations, i.e., InvShiftRows, InvSubBytes,
AddRoundKey, and InvMixColumns. The fault detection
schemes of these transformations are presented in details
in the following.

4.2.1 InvShiftRows and InvSubBytes

As seen in (7), in the AES decryption, the 128-bit input to
InvShiftRows, i.e., the state matrix SS0 entries, is cyclically
shifted to the right with the first row remaining unchanged.
Therefore, this transformation is just a rewiring in hardware.

The output state of the InvShiftRows transformation, i.e.,
ISR(SS0) in (7), acts as the input to InvSubBytes. The
InvSubBytes transformation in the AES decryption consists
of 16 inverse S-boxes. One can use Corollary 2 for the fault
detection scheme of the inverse S-boxes. Then, the fault
detection scheme for InvShiftRows and InvSubBytes com-
bined can be derived so that we are able to check these two
transformations together. Let er;c, 0 � r; c � 3, be the error
indication flag of each byte of these two transformations
combined with the input and the output of s0r;c and sr;c,
respectively. Then, according to (18), the output state of
such flags can be rewritten as 16 formulations as follows:

er;c ¼ PðMMr;css0r;c��þmmr;cÞ þ u0r;c; 0 � r; c � 3; ð34Þ

where c�� ¼ jr� cj.
According to (34), 16 error indication flags for the

InvShiftRows and InvSubBytes transformations, i.e., one
error indication flag for each byte, are obtained. This is
shown in Fig. 6. As seen in this figure, (34), i.e., instances of
the hardware implementation of (21), is utilized for
obtaining these 16 error indication flags.

4.2.2 AddRoundKey and InvMixColumns

As shown in Fig. 6, the third and the forth transformations
in a typical AES decryption round are AddRoundKey and
InvMixColumns. In the AddRoundKey transformation, the
input state, i.e., SS, is added with the roundkey input state,
i.e., KK. Furthermore, the InvMixColumns transformation is
equivalent to multiplying the input state with the constant
matrix in (8). In what follows, we present a key formulation
used for deriving a low-complexity fault detection scheme
for these two transformations combined.

Theorem 5. Let KK ¼ ½kr;c�3r;c¼0 and SS ¼ ½sr;c�3r;c¼0 be the
roundkey input and the input of AddRoundKey in round i,

respectively. Let the output of InvMixColumns be OO ¼
½or;c�3r;c¼0 (see (8)). Then, the following holds:

X3

r¼0

ðsr;c þ kr;c þ or;cÞ ¼ 0 2 GF ð28Þ; 0 � c � 3; ð35Þ

where each summation is over GF ð28Þ which consists of eight

modulo-2 additions.

Proof. After adding the columns of OO, according to (8), one

reaches

o0;0 þ o1;0 þ o2;0 þ o3;0 ¼ ðfeg16 þ f9g16 þ fdg16

þ fbg16Þðs000;0 þ s001;0 þ s002;0 þ s003;0Þ;
ð36Þ

o0;1 þ o1;1 þ o2;1 þ o3;1 ¼ ðfeg16 þ f9g16 þ fdg16

þ fbg16Þðs000;1 þ s001;1 þ s002;1 þ s003;1Þ;
ð37Þ

o0;2 þ o1;2 þ o2;2 þ o3;2 ¼ ðfeg16 þ f9g16 þ fdg16

þ fbg16Þðs000;2 þ s001;2 þ s002;2 þ s003;2Þ;
ð38Þ

o0;3 þ o1;3 þ o2;3 þ o3;3 ¼ ðfeg16 þ f9g16 þ fdg16

þ fbg16Þðs000;3 þ s001;3 þ s002;3 þ s003;3Þ:
ð39Þ

We have feg16 þ f9g16 þ fdg16 þ fbg16 ¼ f1g16. Noting

that the right-hand sides of (36)-(39) are the additions of

the columns of the output state of InvMixColumns, the

addition of the column elements of SS00 is equal to that of

the corresponding column ofOO, i.e.,
P3

r¼0 s
00
r;c ¼

P3
r¼0 or;c,

0 � c � 3. Furthermore, for the AddRoundKey transfor-

mation, we have

X3

r¼0

s00r;c ¼
X3

r¼0

sr;c þ
X3

r¼0

kr;c; 0 � c � 3: ð40Þ

Therefore, according to (40), we reach

X3

r¼0

or;c ¼
X3

r¼0

sr;c þ
X3

r¼0

kr;c; 0 � c � 3: ð41Þ

Considering (41), one can obtain
P3

r¼0ðsr;c þ kr;c þ or;cÞ ¼
ð0; 0; . . . ; 0Þ 2 GF ð28Þ and the proof is complete. tu
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AES decryption.



Similar to the AES encryption, for the AES decryption,
we introduce the four 8-bit error indication flags for four
columns of the state as

Ec ¼
X3

r¼0

ðsr;c þ kr;c þ or;cÞ; 0 � c � 3: ð42Þ

These 32 error indication flags for four columns of the state
can be utilized for the fault detection of the AddRoundKey
and InvMixColumns transformations combined. This is
shown in Fig. 6. It is noted that like the AES encryption,
these error indication flags can be compressed so that n,
1 � n � 32, error indication flags for these two transforma-
tions are achieved. This gives us the freedom in the number
of the error indication flags used in the fault detection
scheme of the AddRoundKey and InvMixColumns trans-
formations. It is interesting to note that our simulations for
the AES decryption show that using 16 error indication
flags, more than 99 percent of the errors are covered.

Similar to the AES encryption, in the last round of the
AES decryption, three transformations are used, i.e.,
InvMixColumns is removed. We present the following for
the fault detection of this round.

Remark 3. Similar to the fault detection scheme for the other
rounds of the AES decryption, one can use (34) for the last
decryption round to derive 16 error indication flags for
InvShiftRows and InvSubBytes combined. Furthermore,
one can use (41) for the relation of the inputs and the output
of AddRoundKey (see also Fig. 6 by removing InvMix-
Columns). Therefore, (42) can also be used for the last
round. Consequently, by removing the InvMixColumns
transformation, one can also utilize the fault detection
scheme in Fig. 6 for the last decryption round of the AES.

4.2.3 Further Improvements

Using subexpression sharing, the proposed fault detection
scheme for a typical AES decryption round can be modified
so that its hardware complexity is reduced. As shown in
Fig. 6, the error indication flags of InvShiftRows and
InvSubBytes are obtained utilizing the output state of
InvSubBytes, i.e., SS. As shown in Fig. 6, this output state
is also used in obtaining the error indication flags of
AddRoundKey and InvMixColumns. Therefore, similar to
the fault detection scheme for the AES encryption, we can
perform subexpression sharing to obtain these two sets of
error indication flags to have low-complexity fault detection
scheme of the AES decryption. First, we present the
following for the inverse S-boxes by rearranging Corollary 2
so that we are able to present a low-complexity fault
detection scheme for the AES decryption.

Corollary 3. Let s0 ¼ s07�7 þ s06�6 þ s05�5 þ s04�4 þ s03�3 þ
s02�

2 þ s01�þ s00 2 GF ð28Þ and s ¼ s7�
7 þ s6�

6 þ s5�
5 þ

s4�
4 þ s3�

3 þ s2�
2 þ s1�þ s0 2 GF ð28Þ be the 8-bit input

and output of the inverse S-box. Then, the following equation
holds for all the possible patterns of s and s0:

P ðMMss0þmmÞ ¼ s00sa þ s01sb þ s02sc þ s03ðsa þ s4Þ
þ s04ðsb þ s3 þ s7Þ þ s05ðsa þ s7Þ
þ s06ðsb þ s6Þ þ s07ðs5 þ scÞ þ s6 þ s7 ¼ u0;

ð43Þ

where

sa ¼ s0 þ s1 þ s5; sb ¼ s0 þ s4;

sc ¼ sa þ s2 þ s6; and

u0 ¼ ðs0 _ s1 _ . . . s7Þ
_
�
s00 _ s01 _ s02 _ s03 _ s04 _ s05 _ s06 _ s07

�
:

Proof. According to Theorem 3 and Corollary 2, one can
rewrite (21) and swap the input and the output to derive
(43). Therefore, the proof is complete. tu

To implement the signature presented in the left-hand
side of (43), 20 XOR gates and eight AND gates are needed.
Then, it is compared with u0 to obtain the error indication
flag of each inverse S-box.

Using Corollary 3 and Theorem 5, we derive 16 low-
complexity signatures for the AddRoundKey and InvMix-
Columns transformations, i.e., four signatures for each
column of the state matrix. This is performed by modulo-2
addition of two sets of four coordinates of (42) for each
column, i.e., Ec ¼ ðec;7; ec;6; . . . ; ec;0Þ 2 GF ð28Þ, 0 � c � 3.
For the AES decryption, let �Ec ¼ ðec;3; ec;2; ec;1; ec;0Þ and
�Ec ¼ ðec;7; ec;6; ec;5; ec;4Þ. Then, the four error indication

flags for column c of the state are

Ec ¼ �Ec þ �Ec; 0 � c � 3: ð44Þ

One can utilize four sets of modulo-2 additions of the output
bits of each inverse S-box precomputed in Corollary 3, i.e.,
s0 þ s4, s1 þ s5, s2 þ s6, and s3 þ s7, to obtain the low-
complexity error indication flags in (44). This is shown in
Fig. 7. As seen in this figure, similar to the AES encryption,
the CSs unit has been utilized to obtain 64 common
subexpressions. Then, these outputs are used in obtaining
the two sets of 16 error indication flags for the AES
decryption, respectively. It is noted that in Fig. 7, the
hardware implementation of (43) is used in (34) which is less
complex when the common subexpressions are used.

The proposed fault detection scheme for InvMixColumns
requires 48 XOR gates with two XOR gates in the critical
path. Compared to the scheme presented in [10] for the
InvMixColumns transformation, the proposed scheme has
less area and critical path delay. It is noted that the authors
in [10] have not presented the equations for the parity-based
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Fig. 7. The proposed low-complexity fault detection scheme for the ith
round of the AES decryption utilizing subexpression sharing.



fault detection scheme of InvMixColumns, mentioning that
they have the same structure as those of MixColumns but
they are more complicated. Therefore, at least a 25 percent
area overhead reduction and a 33 percent reduction in the
critical path delay are expected for the proposed scheme.

5 ERROR SIMULATIONS

We have considered both single and multiple stuck-at
errors for the proposed scheme. These models cover both
natural faults and fault attacks [25]. If exactly 1 bit error
appears at the output of the AES encryption or decryption
rounds, the presented parity-based fault detection scheme
is able to detect it and the error coverage of the proposed
scheme is about 100 percent. This is because in this case, one
of the 8-bit four error indication flags in (33) or (44) alarms
the error. However, due to the technological constraints,
single stuck-at error may not be applicable for an attacker to
flip exactly 1 bit to gain more information [25]. Thus,
multiple bits will actually be flipped, and hence, multiple
stuck-at errors are also considered in this paper.

For the multiple stuck-at error models, we rely on
simulations for both burst and random errors. In the case of
fault attacks, it is more likely that a transient burst error
appears instead of 1-bit flips due to the present constraints
[25]. Moreover, most internal faults are modeled by
transient random errors [25]. It is noteworthy that the
results of our simulations are valid for the transient errors.
Furthermore, in case of occurring permanent internal faults,
the same simulation results are achieved.

We use stuck-at error model at the outputs of the AES
transformations. This type of error forces multiple nodes to
be stuck at logic one (for stuck-at one) or zero (for stuck-at
zero) independent of the error-free values. It is noted that
we use Fibonacci implementation of the Linear Feedback
Shift Registers (LFSRs) with 128 output taps for injecting
random multiple errors, where the numbers, locations, and
types of the errors are randomly chosen. In this regard,
maximum sequence length polynomial for the feedback is
selected as LðXÞ ¼ X128 þX29 þX27 þX2 þ 1 according to
the maximum sequence length taps presented in [26].

We use the fault detection schemes presented in the
previous section and shown in Figs. 5 and 7 for the AES
encryption and decryption, respectively. In our simulations
using Xilinx ISE version 9.1 Simulator [4], we use the error
indication flags at the outputs of ShiftRows (cover the errors
for SubBytes and ShiftRows) and AddRoundKey (cover the
errors for MixColumns and AddRoundKey) for the AES
encryption in Fig. 5. Moreover, for the AES decryption in
Fig. 7, we obtain the error indication flags at the outputs of
InvSubBytes (cover the errors for InvShiftRows and InvSub-
Bytes) and InvMixColumns (cover the errors for Ad-
dRoundKey and InvMixColumns). The results of our
simulations show that by having these two sets of error
indication flags, an acceptable error coverage is achieved.

In our simulations, we inject errors in two manners, i.e.,
burst and random errors, and obtain the error coverage for
these two cases, the details of which are as follows:

Burst errors. The first type of errors that we consider is
the burst errors. For this type of errors, we assume that
stuck-at errors occur at the output of only one transforma-
tion at a time, i.e., the errors are injected at the 128-bit

output of only one transformation in the AES encryption/
decryption in Figs. 5 and 7. This includes both stuck-at zero
and stuck-one errors. Then, using two series of 16-bit
signatures shown in these figures, the error coverage is
obtained. The results of our simulations for the burst errors
in the AES encryption and decryption are shown in Fig. 8.
In this figure, the solid and dashed lines represent the error
coverage for the AES encryption and decryption, respec-
tively. As seen in this figure, we have injected up to 700,000
burst errors at the transformation outputs, one at a time,
and have monitored the errors that are covered by the error
indication flags. It is noted that because the errors are
injected only at the output of one transformation, only one
of the two series of the error indication flags can detect
them. As seen in this figure, after injecting up to 700,000
burst errors, for both the AES encryption and decryption,
the error coverage for the two sets of error indication flags is
greater than 99.996 percent.

Random errors. The second type of errors is random
errors, where errors are injected at random locations, i.e.,
four 128-bit outputs of the transformations. Our simula-
tions show that after injecting up to 700,000 random errors,
the higher error coverages of very close to 100 percent are
obtained, i.e., all the errors are covered by at least one of
the two series of the error indication flags. We also expect
the error coverage of close to 100 percent if we increase the
number of errors injected. The high error coverages of the
proposed scheme for the AES rounds are suitable for the
security-constrained applications on FPGAs. These include
any AES algorithms implemented on the FPGAs as well as
the bitstream security mechanisms.

6 AES FPGA IMPLEMENTATIONS AND

COMPARISONS

The proposed schemes in this paper are structure-indepen-
dent and can be applied to the AES using both the LUT-
based and the composite field S-boxes and inverse S-boxes.
In this section, we have implemented both of these
structures so that we are able to compare the results for
the presented schemes with those using LUTs and
composite fields. In what follows, we consider the
implementation of both the AES encryption and decryption.

For the FPGA implementations, we have used VHDL as
the design entry for ISE version 9.1. Furthermore, the
synthesis is performed using Xilinx Synthesis Tool (XST) on
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detection schemes.



Virtex-4 and Virtex-5 families [4]. It is noted that the results
of the implementations in this section, i.e., the number of
occupied slices and the minimum periods (maximum
working frequencies), are all postplace and route results.

We have implemented the original AES using LUT-based
S-boxes and inverse S-boxes on Virtex-4 (xc4vlx160-12) and
Virtex-5 (xc5vlx110-3) devices. It is noted that these larger
devices are chosen to have enough number of slices needed
for the fault detection scheme in [8] and [10]. We have used
pipelined distributed memories for the LUT-based S-boxes
and inverse S-boxes in the AES to increase the design speed
and the overall frequency. The XST uses the LUT resources
in the FPGAs in order to implement the distributed
memories. Furthermore, pipelining is achieved by describ-
ing the necessary registers in the design-entry language. The
schemes in [14], [8], [10], [13], Hardware Redundancy, and
the proposed ones in this paper (see Section 4) have been
implemented and the results are depicted in Table 1. As
seen in this table, the Error Coverage (EC percent), the
number of occupied slices, the maximum working fre-
quency (in megahertz), the throughput (in gigabits per
second), and the efficiency (in megabits per second/slice)
for the original schemes and the Fault Detection (FD) ones
are derived. Moreover, the slice overheads (overheads for
the number of occupied slices) are presented. It is noted that
there is a difference in the implementations of the LUT-
based S-boxes and inverse S-boxes using distributed
memories for the selected FPGAs. Specifically, for Virtex-5
and Virtex-4, 256 and 64 bits per CLB are specified for the
distributed memories, respectively. This causes the LUT
implementations for Virtex-5 to be more compact as
compared to those on Virtex-4 [4]. This can be observed in
Table 1. In this regard, the number of slices for the original
AES encryption and decryption using LUTs and the slice
overhead for the scheme in [8] and [10] whose area
overhead is dominated by the expansion of the S-box to
512� 9 memories is less on Virtex-5. This makes Virtex-5 a
suitable device family for the AES using memory-based

S-boxes and inverse S-boxes and their fault detection
schemes. Because of the higher number of slices for the
original AES encryption and decryption on Virtex-4, the
slice overheads of the proposed schemes and the scheme in
[13] are less as compared to those for Virtex-5.

As shown in Table 1, the number of slices for the original
decryption is more than that of the encryption. This is mainly
because of the InvMixColumns transformation which is more
complex than MixColumns in the AES encryption. Further-
more, the slice overhead for the scheme in [10] in which the
LUTs sizes are expanded to 512� 9 is less on Virtex-5 family
compared to Virtex-4. As shown in Table 1 in bold faces, the
proposed structure-independent scheme for the AES decryp-
tion is the most efficient and the most compact one among the
other schemes. Moreover, for the Virtex-5, the proposed
scheme for the AES encryption has the least slice overhead.
However, the slice overhead of the proposed scheme
implemented on Virtex-4 is slightly more than that of the
scheme in [13]. It is noted that the low overhead of the scheme
in [13] is because it uses 1-bit signatures for the 128-bit block
of data. While the proposed schemes and the one in [8] and
[10] use 16 bits for each 128-bit block. As shown in Table 1, this
leads to much higher error coverage.

The scheme in [19] is based on using the output of the
multiplicative inversion (not that of the S-box) to obtain a
signature for fault detection. This scheme cannot be applied
to the S-boxes using LUTs where the output of the multi-
plicative inversion is not accessible. Therefore, we have
implemented the original AES encryption which uses the
S-boxes using polynomial basis and composite fields in order
to have access to the output of the multiplicative inversion.
For this reason, we utilize the AES presented in [23]. This
implementation of the AES is a hardware optimization for
the scheme in [27], which is extensively used in the literature,
see, for example, [28], [29]. Then, we have implemented the
scheme of [19] and compared it with the proposed scheme
(see Section 4) presented in this paper. Moreover, the scheme
in [14] and Hardware Redundancy have been implemented.
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The results of the implementations are shown in Table 2. It
is worth noting that in [19], the fault detection scheme for the
AES decryption is not presented. Therefore, no comparison
for the AES decryption with this scheme is presented in this
table. It is noted that we have not used subpipelining for the
implementations and registers are only used at the output of
each round. Using subpipelining for the S-boxes using
composite fields, one can reach higher working frequencies
compared to those for LUT-based S-boxes. As seen in this
table, the number of slices for the original AES encryption
using S-boxes in composite fields is less than those of the
LUTs for Virtex-4 (compare Tables 1 and 2 for Virtex-4).
However, the original AES using LUT-based S-boxes is more
compact when Virtex-5 is used. As mentioned before, this is
due to the low number of slices needed for the implementa-
tion of the memories in this device family. As shown in
Table 2, the proposed scheme is the most compact and the
most efficient scheme compared to the scheme in [19], i.e.,
the efficiency degradations (percent degradation from the
efficiency of the original operations) and the slice overheads
are the least for two devices. It is noted that the proposed
scheme in this paper uses 16 error indication flags for the
128-bit output states of the transformations. However, the
scheme in [19] utilizes 32 error indication flags for each
output state. Therefore, more slice overhead and greater
error coverage are expected for that scheme. However, as
discussed earlier, this scheme cannot be applied to the AES
using LUTs.

Furthermore, we have compared the proposed schemes
in this paper with the lightweight concurrent fault detection
scheme for the AES S-boxes presented in [18]. This scheme
is based on using normal basis for logic gate implementa-
tions of the S-boxes in the AES encryption. In this fault
detection scheme, the structure of the S-box using normal
basis has been divided into five blocks. Then, the predicted
parities of these blocks are obtained. Moreover, through an
exhaustive search among all available composite fields, the
optimum solution for the least overhead S-box and its
parity predictions is achieved. We have implemented the

AES encryption with the original S-boxes using normal
basis in composite fields proposed in [30] and verified with
the FPGA implementations in [18]. Then, the fault detection
scheme for the S-boxes in [18] has been utilized for the
SubBytes transformation, while the proposed scheme in this
paper (see Section 4) is used for the other transformations.
In other words, we derive five error indication flags for each
S-box in SubBytes (5� 16 ¼ 90 flags for the entire SubBytes
transformation), while the scheme in Fig. 5 is used for other
AES encryption transformations using 16-bit flags. More-
over, the proposed signature-based structure-independent
scheme in this paper, i.e., the scheme in Fig. 5, has been
implemented for the AES encryption with the S-boxes using
normal basis. The results of these implementations are also
presented and compared in Table 2. As seen in this table,
the FPGA implementations of the original AES encryption
with the S-boxes using normal basis representation in
composite fields have less area compared to the traditional
ones using polynomial basis, i.e., 6,752 and 3,692 compared
to 7,498 and 3,718 for two devices, respectively. In addition,
the proposed structure-independent scheme in this paper
has the least area overhead complexities and the most
efficiencies for both FPGA families. At this point, we would
like to mention that for the scheme in [18], higher error
coverage and slightly higher throughput are achieved
compared to the proposed scheme in this paper. However,
this is at the cost of the higher area overhead complexity. It
is also noted that the fault detection scheme in [18] not only
can be only applied for the composite field S-boxes, but is
also dependent on the composite fields and normal basis
chosen, i.e., the parity predictions would be different if
other composite fields are used. Whereas the proposed
scheme in this paper is independent of the structures of the
S-boxes used in the AES encryption.

Very recently, a fault-tolerant approach which is resistant
to fault attacks is proposed in [21]. This approach is based on
protecting the logic blocks and memories of the AES. To
protect the combinational logic blocks used in the four
rounds of the AES, either the parity-based scheme proposed
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in [10] or the duplication one presented in [31] is imple-
mented. Furthermore, to protect the memories used for
storing the expanded key and the state matrix either the
Hamming or Reed-Solomon error correcting code is im-
plemented. The results of the comparison of the proposed
scheme in this paper with the parity-based scheme of [8] and
[10] for protecting the combinational logic elements of the
AES are depicted in Table 1. Moreover, for certain AES
implementations containing storage elements, one can use
the error correcting code-based approach presented in [21] in
addition to the proposed scheme in this paper to make a
more reliable AES implementation.

7 CONCLUSIONS

In this paper, we have studied a number of fault detection
schemes for the encryption and the decryption of the AES.
New fault detection schemes which are independent of the
structures of the S-boxes and the inverse S-boxes have been
proposed. Our simulations show that for the AES encryp-
tion and decryption, these structure-independent schemes
reach the error coverage of approximately 100 percent.

Furthermore, our proposed fault detection schemes and
almost all of the previously reported ones have been
implemented on the recent Xilinx Virtex FPGAs. Their area
and delay overheads for the AES encryption and decryption
have been derived and compared. In our implementations,
we have considered using both the lookup-table-based and
the composite field AES structures. Our FPGA implementa-
tions show that for the AES encryption, the slice overhead of
the proposed scheme is around 9.8-26.9 percent, depending
on the FPGA family and the AES implementation. In
addition, for the AES decryption, lower slice overhead is
achieved. These slice overheads are less than those for the
other schemes which have the same error coverages.

According to our simulation and implementation results,
with acceptable error coverages, the structure-independent
schemes proposed in this paper have the highest efficiencies,
showing reasonable area and time complexity overheads.
Based on the AES structure chosen, the performance goals to
achieve, and the resources available, one can use combina-
tions of the presented schemes in order to have much more
reliable AES encryption and decryption structures.
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