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Abstract—Multiplication is one of the most important operations in finite field arithmetic. It is used in cryptographic and coding

applications, such as elliptic curve cryptography and Reed-Solomon codes. In this paper, we consider the finite field multiplication used

in elliptic curve cryptography and design concurrent error detection circuits. It is shown in the literature that the Montgomery

multiplication can be used in cryptography to accelerate the scalar multiplication. Here, we use a parity-based concurrent error

detection approach to increase the reliability of different Montgomery multipliers available in the literature. First, we consider bit-serial

Montgomery multiplication and propose an error detection circuit. Then, we apply the same technique on the digit-serial Montgomery

multiplication. Finally, we consider low time-complexity bit-parallel Montgomery multiplication and design the required components to

implement the concurrent error detection circuits. ASIC implementations have been completed to analyze the time and area overheads

of the proposed schemes. Also, the error detection capability is investigated by software simulations. We show that our approach

results in efficient error detection schemes with small time and area overheads.

Index Terms—Montgomery multiplication, concurrent error detection, finite fields, elliptic curve cryptography.

Ç

1 INTRODUCTION

FINITE field arithmetic has important applications in
coding theory and cryptography. The main operation

in the elliptic curve cryptography (ECC) [1], [2], is the scalar
multiplication which is based on finite field arithmetic.
Furthermore, one of the most important operations in the
finite field arithmetic is multiplication. This operation has
been studied in the literature extensively and different
multiplication algorithms have been proposed, e.g., [3], [4],
[5], [6], [7], [8], [9], [10], and [11].

The Montgomery multiplication algorithm over binary

extension fields is outlined in [7] and is based on the original

Montgomery multiplication algorithm of [12] which is

proposed for integers. In [7], three Montgomery multi-

plication algorithms are proposed for bit-serial, digit-serial,

and bit-parallel multiplication. In [13], bit-parallel Montgom-

ery multiplication and squaring algorithms are proposed

using irreducible trinomials which provide better time

complexity in comparison to the bit-parallel polynomial

basis multipliers and squarers. Another Montgomery multi-

plier is proposed in [14] which provides a low latency. Very

recently, a number of bit-serial and bit-parallel Montgomery

multipliers are proposed in [15], which show that the

Montgomery multiplication can accelerate the ECC scalar

multiplication. The Montgomery multiplication is used in

[16] to implement an ECC-based cryptosystem.

Concurrent error detection is a process used to test the
operation of a system while it is operating normally [17].
Different techniques [18] are used in this regard, which
include hardware duplication, parity codes, time redun-
dancy, redundant residue number system [19], etc. Due to
the fact that fault injection and active attacks are used
against cryptosystems (cf. [20], [21]), it is very important to
increase the reliability of the elliptic curve-based crypto-
systems, and in particular, its main arithmetic operation,
i.e., multiplication. There are different works available in
the literature which consider concurrent error detection for
finite field multiplication. In [22], a parity-based approach is
used to detect errors in bit-serial polynomial and normal
basis multipliers. A similar technique is used in [23] for bit-
serial and bit-parallel polynomial basis multipliers. This
scheme is extended to a multibit parity approach in [24] for
error detection in bit-serial and bit-parallel polynomial basis
multipliers. Based on interlacing parity codes, another
approach is proposed in [25] for a bit-parallel polynomial
basis multiplier. In addition to the parity-based approaches,
time redundancy is also used for error detection in finite
field multiplication. This technique is mainly used for
semisystolic and systolic implementations of the finite field
multiplication. In [26], time-redundancy-based error detec-
tion techniques are proposed for different pipelined systolic
multipliers. For more time-redundancy-based approaches,
one can refer to [27], [28], and [29], to name a few.

Concurrent error detection for the Montgomery multi-
plication over binary fields has been considered in the
literature. In [30], a time-redundancy-based error detection
approach is used for the semisystolic array implementation
of the Montgomery multiplication [30]. Their approach uses
REcomputing with Shifted Operands (RESO) and alternate
data retry. Also, [31] proposes an improved time-redun-
dancy-based approach for the semisystolic array imple-
mentation, as well as a single-bit parity-based technique for
concurrent error detection in the bit-serial Montgomery
multiplication.
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In this paper, we extend our previous work on
concurrent error detection in the Montgomery multiplica-
tion [31] to increase the error detection capability, which
can be used as a countermeasure against natural faults and
fault attacks in cryptography. First, we consider bit-serial
Montgomery multiplication and propose a concurrent error
detection circuit for the bit-serial multiplier of [7]. Then, we
consider digit-serial Montgomery multiplication and pro-
pose a multibit concurrent error detection circuit for the
digit-serial Montgomery multiplier of [7]. We note that to
the best our knowledge, no previous work has considered
error detection in digit-serial polynomial basis multiplica-
tion. Finally, we choose the bit-parallel Montgomery multi-
plier proposed in [15] and derive the concurrent error
detection structure. We have implemented the proposed
structures in ASIC and simulated their error detection
capability using C++ for various cases. The results show
that the area and time overheads are small and the error
detection capability is significant.

The remainder of this paper is organized as follows: In
Section 2, we present a brief introduction to finite fields
and the Montgomery multiplication, and present our error
detection approach. In Section 3, we present a concurrent
error detection circuit for bit-serial Montgomery multiplica-
tion. In Sections 4 and 5, we consider concurrent error
detection in digit-serial and bit-parallel Montgomery multi-
plication, respectively. In Section 6, we present our analysis
and complexity results in terms of error simulations and ASIC
implementations. Finally, we conclude this paper in Section 7.

2 PRELIMINARIES

2.1 Binary Extension Fields

The binary extension field GF ð2mÞ is constructed using an
irreducible polynomial F ðzÞ of degree m shown as

F ðzÞ ¼ zm þ fm�1z
m�1 þ � � � þ f1zþ 1; ð1Þ

where fi 2 f0; 1g for i ¼ 1 to m� 1. This field contains 2m

field elements and is an extension of the basic field
GF ð2Þ ¼ f0; 1g. The field elements can be represented
using different representation bases. Assuming x is a root
of F ðzÞ, i.e., F ðxÞ ¼ 0, any field element of GF ð2mÞ can be
represented as a polynomial of degree m� 1. For instance,
if A 2 GF ð2mÞ, then it can be represented as

A ¼ am�1x
m�1 þ � � � þ a1xþ a0;

where ai 2 f0; 1g for i ¼ 0 to m� 1. This representation is
called the polynomial basis. In this basis, addition of two
field elements is carried out by pairwise XOR operation, e.g.,

AþB ¼ ðam�1 þ bm�1Þxm�1 þ � � � þ ða0 þ b0Þ:

The multiplication and squaring operations are more
complicated and require more resources.

2.2 The Montgomery Multiplication over GF ð2mÞ
The Montgomery multiplication over binary extension
fields is proposed in [7] and is based on the Montgomery
multiplication algorithm for integers introduced in [12]. To
explain this multiplication algorithm, we assume that A and
B are two field elements of GF ð2mÞ, F ðzÞ is an irreducible
polynomial of degree m and F ðxÞ ¼ 0. Now, let r be a fixed

polynomial satisfying gcdðr; F ðxÞÞ ¼ 1, and r�1 and _F ðxÞ be
two polynomials computed using the extended euclidean
algorithm to satisfy

r � r�1 þ F ðxÞ � _F ðxÞ ¼ 1: ð2Þ

The general case of the Montgomery multiplication over
GF ð2mÞ is formulated as

C ¼ A �B � r�1 mod F ðxÞ; ð3Þ

where r�1, computed in (2), is in fact the inverse of r
modulo F ðxÞ. Algorithm 1 shows the Montgomery multi-
plication algorithm proposed in [7] to obtain C as
formulated in (3).

Unlike the polynomial basis multiplication, where the
multiplication is done modulo F ðxÞ, in the Montgomery
multiplication shown in Algorithm 1, Step 2 is done in
modulo r and Step 3 requires a division by r. In [7], it is
proposed that r ¼ xm results in a better multiplication
algorithm because modulo xm operation is performed by
using the m least significant coordinates of the operation.
Also, a division by xm is performed by shifting to the right.
Thus, choosing the polynomial r, also known as the
Montgomery factor, significantly affects the efficiency of
this multiplication. Note that r ¼ xu, 0 < u < m, has the
same properties, however, choosing the value of u from this
interval can result in faster Montgomery multiplication (see
for example [13] or [15]).

2.3 Concurrent Error Detection Approach

Here, we explain our approach to implement concurrent
error detection circuits for different Montgomery multi-
pliers. In this approach, the residue of one of the
operands (A as shown in Fig. 1) modulo a fixed
polynomial ðxl þ 1Þ is computed and the residue of the
multiplication product modulo the same polynomial is
predicted (i.e., C mod ðxl þ 1Þ). Different polynomials can
be used to compute the residues. In this paper, we choose
xl þ 1, where 1 < l < m is the number of the redundant
bits used for concurrent error detection. Note that using
l ¼ 1 is equivalent to the single-bit parity-based approach,
whereas 1 < l < m results in an l-bit interlacing parity
code. Throughout this paper, we will use the hat notation
to denote modulo ðxl þ 1Þ reduction, i.e.,

Â ¼ A mod ðxl þ 1Þ ¼ âl�1x
l�1 þ � � � þ â1xþ â0;

where A 2 GF ð2mÞ, âi 2 f0; 1g, and 0 � i � l� 1. Also, we
will use the following properties of modular reduction:

ðAþBÞ mod ðxl þ 1Þ ¼ Âþ B̂; ð4Þ

where A and B are two field elements of GF ð2mÞ and
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ðb � AÞ mod ðxl þ 1Þ ¼ b � Â; ð5Þ

where b 2 GF ð2Þ.
The concurrent error detection approach has been

depicted in Fig. 1. It is assumed that A and Â are given at

the same time, and the multiplication and concurrent error

detection blocks run in parallel. The output of the con-

current error detection block is the predicted C mod ðxl þ 1Þ.
To find the possible errors, the actual Ĉ is computed using

the output of the multiplier (i.e., C) and compared to the

predicted one. The error signal is asserted high, if the actual

and predicted residues are different. Note that there is a

connection between the Concurrent Error Detection module

and the multiplier in Fig. 1.

3 CONCURRENT ERROR DETECTION IN THE

BIT-SERIAL MONTGOMERY MULTIPLICATION

OVER GF ð2mÞ
In this section, we consider the concurrent error detection

scheme for the bit-serial Montgomery multiplier proposed

in [7]. A single-bit parity code has been applied on this

multiplier in [31]. However in this paper, we use another

approach using multibit parities to improve the error

detection capability of this multiplier.
Algorithm 2 shows the bit-serial Montgomery multi-

plication algorithm proposed in [7]. Combining Steps 4 and

5 of this algorithm, one can obtain

T ¼ ðT 0 þ t00F ðxÞÞ=x: ð6Þ

It can be shown that the operation formulated in (6) is
equivalent to T ¼ T 0 � x�1 mod F ðxÞ. This is because one can
write the following:

F 0ðxÞ ¼ F ðxÞ=x ¼ x�1 mod F ðxÞ
¼ fmxm�1 þ fm�1x

m�2 þ � � � þ f1:
ð7Þ

Then, 6 can be written as

T ¼ t0m�1x
m�2 þ � � � þ t01

� �
þ t00F 0ðxÞ ¼ T 0 � x�1 mod F ðxÞ:

ð8Þ

By replacing Steps 4 and 5 of Algorithm 2 with
T ¼ T 0 � x�1 mod F ðxÞ, one can obtain the modified algo-
rithm, as shown in Algorithm 3. The corresponding hardware
architecture of this multiplier has been depicted in Fig. 2. In
this figure,A andT are twom-bit registers initialized with the
coordinates of the operand A and 0 2 GF ð2mÞ, respectively.
Also, the module represented by �x�1 performs a multi-
plication by x�1 followed by a reduction by F ðxÞ. In this
paper, this module is named as the x�1-module and Fig. 3
shows its hardware implementation using white gates [15].

The other modules denoted by AND and XOR in Fig. 2

perform logical operations corresponding to Step 3 of
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Fig. 1. Concurrent error detection scheme.

Fig. 3. The x�1-module with error detection using l ¼ 2. The gray gates
show the overhead.

Fig. 2. Modified bit-serial Montgomery multiplication over GF ð2mÞ.



Algorithm 3 (i.e., T 0 :¼ T þ biA) using m two-input AND
gates and m two-input XOR gates, respectively.

3.1 Formulation

To design a concurrent error detection mechanism for this
multiplier, we consider each step in Algorithm 3 separately.
We begin with Step 3 of this algorithm and present the
following lemma.

Lemma 1. Assume that T ði�1Þ is the content of T at the ði� 1Þth
iteration of Algorithm 3 and T̂ ði�1Þ ¼ t̂ði�1Þ

l�1 xl�1 þ � � � þ
t̂
ði�1Þ
1 xþ t̂ði�1Þ

0 . Now, the coordinates of T̂ 0ðiÞ in Step 3 of

Algorithm 3 can be computed as t̂0
ðiÞ
j ¼ t̂

ði�1Þ
j þ biâj, 0 � j < l.

Proof. Using the computation of T 0ðiÞ ¼ T ði�1Þ þ biA in Step 3
of Algorithm 3, and the properties 4 and 5, one can obtain
T̂ 0ðiÞ ¼ T̂ ði�1Þ þ biÂ. Thus, the coordinates of T̂ 0ðiÞ can be
obtained from

t̂0ðiÞj ¼ t̂
ði�1Þ
j þ biâj; 0 � j < l ð9Þ

and the proof is complete. tu
Step 4 of Algorithm 3 performs T ðiÞ ¼ T 0ðiÞ �x�1 mod F ðxÞ.

Thus, by computing the both sides of this equation modulo
ðxl þ 1Þ, one can obtain

T̂
ðiÞ ¼

�
T 0ðiÞ � x�1 mod F ðxÞ

�
mod ðxl þ 1Þ:

To consider the concurrent error detection for this
operation, we first present the following lemma for Step 4
of Algorithm 3.

Lemma 2. Let T 0 and T ¼ T 0 � x�1 mod F ðxÞ be two field

elements in GF ð2mÞ constructed by the irreducible polynomial
F ðzÞ and F ðxÞ ¼ 0. Also, assume T̂ 0 ¼ t̂0l�1x

l�1 þ � � � þ t̂01xþ
t̂00 and F̂ 0ðxÞ ¼ f̂ 0l�1x

l�1 þ � � � þ f̂ 01xþ f̂ 00, where F 0ðxÞ is
defined in (7). Then, the coordinates of T̂ ¼ T mod ðxl þ 1Þ
can be found as follows:

t̂j ¼
t̂
0
jþ1 þ t00f̂

0
j 0 � j < l� 1

t̂
0
0 þ t00

�
1þ f̂ 0l�1

�
j ¼ l� 1:

(

Proof. Computing (8) modulo ðxl þ 1), one can write the
following:

T̂ ¼ t0m�1x
m�2 þ � � � þ t01 þ t00F 0ðxÞ

� �
mod ðxl þ 1Þ: ð10Þ

First, we consider the first m terms in (10) and write

ðt0m�1x
m�2 þ � � � þ t01Þ mod ðxl þ 1Þ

¼
��
t0m�1x

m�1 þ � � � þ t01xþ t00
�
� x�1 þ t00x�1

�
mod ðxl þ 1Þ;

which can be rewritten as��
t̂0l�1x

l�1 þ � � � þ t̂01xþ t̂00
�
� x�1 þ t00x�1

�
mod ðxl þ 1Þ;

or�
t̂0l�1x

l�2 þ � � � þ t̂01 þ t̂00x�1 þ t00x�1
�

mod ðxl þ 1Þ: ð11Þ

Taking into account that x�1 mod ðxl þ 1Þ ¼ xl�1 and
by applying the properties mentioned in (4) and (5) on
(10) and (11), one can write

T̂ ¼ ðt̂00 þ t00ð1þ f̂ 0l�1ÞÞxl�1 þ � � � þ ðt̂02 þ t00f̂ 01Þx
þ ðt̂01 þ t00f̂ 00Þ;

which completes the proof. tu

3.2 Architecture

The hardware structure of the x�1-module with its error
detection mechanism is shown in Fig. 3 for the general
irreducible polynomial F ðxÞ and l ¼ 2. In this figure, the
white gates perform the normal function of the module
and the gray gates are the overhead to perform the
error detection. It is noted that F ðxÞ is usually fixed in
cryptographic applications, and as a result, most of the
gates shown in Fig. 3 can be removed.

Remark 1. The concurrent error detection circuit in the x�1-
module requires at most l two-input XOR gates for a
fixed irreducible polynomial F ðzÞ. However, assuming
F ðzÞ is an !-nomial (i.e., F ðzÞ has ! nonzero coordinates),
this circuit requires at most minð!; lÞ two-input XOR
gates. Note that in practical cryptographic applications !
equals three or five [32].

The overhead circuit to perform concurrent error
detection in the bit-serial Montgomery multiplier is shown
in Fig. 4. In this figure, T̂ 0 and Â are two l-bit registers
which store T 0 mod ðxl þ 1Þ and A mod ðxl þ 1Þ, respec-
tively. The gray blocks labeled AND and XOR perform
logical operations based on Lemma 1, and the block labeled
�x�1 CED, is constructed using Lemma 2 and is similar to
the left-hand side of Fig. 3. Finally, t00 ¼ t

ði�1Þ
0 þ bia0 is the

LSB of T 0 computed by the multiplier shown in Fig. 2.
The bit-serial Montgomery multiplier shown in Fig. 2

requires 2m� 1 two-input XOR gates and 2m� 1 two-input
AND gates for general irreducible polynomials. Also, it
requires two m-bit registers to store T and A. The critical
path delay of this multiplier is 2TA þ 2TX, where TA and TX
represent the delays of a two-input AND gate and a two-
input XOR gate, respectively.

Since both Figs. 2 and 4 have the critical path delay of
2TA þ 2TX , implementing the proposed concurrent error
detection mechanism imposes time and area overheads as a
result of the comparison and modulo ðxl þ 1Þ blocks in Fig. 1.
Besides these two components, the area overhead of the
concurrent error detection circuit (without fixing the
irreducible polynomial) is 2l two-input AND gates, 2l two-
input XOR gates, and 2l flip-flops.
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multiplier.



Remark 2. Using Lemma 1, one can design similar
concurrent error detection circuits for the bit-serial
multipliers of [15].

4 CONCURRENT ERROR DETECTION IN

DIGIT-SERIAL MONTGOMERY MULTIPLICATION

OVER GF ð2mÞ
In this section, we consider concurrent error detection for
the digit-serial Montgomery multiplier proposed in [7]. In
this multiplier, the operand B is split into D-bit digits
(D � 2) as

B ¼ Bn�1x
ðn�1ÞD þ � � � þB1x

D þB0;

where n ¼ dmDe, Bi ¼
PD�1

j¼0 biDþjx
j for 0 � i � n� 2 and

Bn�1 ¼
Pm�1�Dðn�1Þ

j¼0 bðn�1ÞDþjx
j. This Montgomery multi-

plication algorithm is shown in Algorithm 4.

From (2), it follows that F ðxÞ � _F ðxÞ ¼ 1 mod xD for the
Montgomery multiplication over binary extension fields
and r ¼ xm. It is noted that the following property also
holds [7]:

F0ðxÞ � _F 0ðxÞ ¼ 1 mod xD; ð12Þ

where F0ðxÞ and _F0ðxÞ in (12) are polynomials with the
degree of at most ðD� 1Þ and represent the least significant
digits of F ðxÞ and _F ðxÞ, respectively. One can notice that
_F 0ðxÞ ¼ 1 simplifies the digit-serial Montgomery multi-

plication. Now, we assume that the irreducible polynomial
is of the form F ðxÞ ¼ xm þ

Pm�1
i¼kþ1 fix

i þ xk þ 1, where k is
the degree of the second smallest nonzero term in F ðxÞ. In
this case, for D � k, we always have F0ðxÞ ¼ 1. Replacing
F0ðxÞ with 1 in (12) results in _F 0ðxÞ ¼ 1, which simplifies
Step 4 of Algorithm 4 to M :¼ C00 mod xD ¼ C00.

Now, Steps 5 and 6 of Algorithm 4 can be combined as

C ¼ C0 þ C00F ðxÞ
� �

=xD: ð13Þ

Similar to (6), (13) can be written as follows:

C ¼ C0 � x�D mod F ðxÞ: ð14Þ

It is shown in [33] that this operation is optimized for the
shifted polynomial basis if D � k. It is also true for the
Montgomery multiplication and is compatible with our
previous assumption to have _F 0ðxÞ ¼ 1. Thus, we will use
the condition D � k in the rest of this paper. Replacing
Steps 5 and 6 of Algorithm 4 with 14, the modified digit-
serial Montgomery multiplication algorithm is shown in
Algorithm 5.

4.1 Formulation

Now, we design the concurrent error detection scheme for

this multiplier, where D � k. Let Bi, 0 � i < n, denote the

ith digit of B in Step 3 of Algorithm 5 and Bi;j, 0 � j < D

represent its jth coordinate. It can be represented in the

polynomial basis as

Bi ¼ Bi;D�1x
D�1 þ � � � þBi;1xþBi;0: ð15Þ

Using (15), the multiplication of A by Bi in Step 3 of

Algorithm 5 modulo ðxl þ 1Þ can be written as

A �Bi mod ðxl þ 1Þ ¼
XD�1

j¼0

Bi;j � A � xj mod ðxl þ 1Þ: ð16Þ

The following lemma is used to evaluate (16).

Lemma 3. Let A be a field element in GF ð2mÞ and

Â ¼ A mod ðxl þ 1Þ¼
Pl�1

t¼0âtx
t. Then A � xj mod ðxl þ 1Þ

can be obtained by j-bit circular left shift of Â, where j � 0.

Proof. If j ¼ 0, the lemma is clear. For j > 0, first we

compute A � x mod ðxl þ 1Þ as

A � x mod ðxl þ 1Þ ¼ x �
Xl�1

t¼0

âtx
t

 !
mod ðxl þ 1Þ: ð17Þ

Taking into account that xl mod ðxl þ 1Þ ¼ 1, (17) can
be written as

A � x mod ðxl þ 1Þ ¼
Xl�2

t¼0

âtx
tþ1 þ âl�1: ð18Þ

One can notice that A � x mod ðxl þ 1Þ in (18) is
obtained by one-bit circular left shift of Â. Similarly, it
can be shown that A � xj mod ðxl þ 1Þ is obtained by j-bit
circular left shift of Â. tu

Assuming ÂðjÞ ¼ A � xj mod ðxl þ 1Þ, (16) can be rewritten

as

A �Bi mod ðxl þ 1Þ ¼
XD�1

j¼0

Bi;j � ÂðjÞ:

Consequently, from Step 3 of Algorithm 5 and using the

property mentioned in (4), one can obtain the following:

Ĉ0 ¼ Ĉ þ
XD�1

j¼0

Bi;j � ÂðjÞ; ð19Þ

where Ĉ ¼
Pl�1

t¼0 ĉtx
t.
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Step 4 of Algorithm 5 performs a multiplication by x�D

followed by a reduction by F ðxÞ and we present the
following lemma to design the concurrent error detection
circuit for this operation.

Lemma 4. Let S and S0 ¼ S � x�D mod F ðxÞ be two field
elements in GF ð2mÞ constructed by the irreducible polynomial
F ðzÞ ¼ zm þ

Pm�1
j¼kþ1 fjz

j þ zk þ 1 and F ðxÞ ¼ 0. Assuming
Ŝ ¼ ŝl�1x

l�1 þ � � � þ ŝ1xþ ŝ0, then Ŝ0 is obtained as

Ŝ0 ¼
Xl�1

i¼0

ŝ iþDj jx
i þ
XD�1

i¼0

six
�Dþij j þ

XD�1

j¼0

sD�1�j
Xl�1

i¼0

f̂ 0iþjj jx
i;

where D � k and F̂ 0ðxÞ ¼ F 0ðxÞ mod ðxl þ 1Þ ¼
Pl�1

i¼0 f̂
0
ix
i.

Proof. We begin deriving the error detection formulation
with

S0 ¼ðsm�1x
m�D�1 þ � � � þ sDþ1x

þ sD þ sD�1x
�1 þ � � � þ s0x

�DÞ mod F ðxÞ:
ð20Þ

For D � k and 1 � i < D, one can write the following
recursive formulation:

x�ðiþ1Þ mod F ðxÞ ¼ x�ðiÞ � x�1 mod F ðxÞ;

where

x�1 mod F ðxÞ ¼ F 0ðxÞ ¼ fmxm�1 þ � � � þ xk�1:

So, x�ðiþ1Þ mod F ðxÞ can be obtained by shifting F 0ðxÞi
bits to the right. Consequently, ðx�ðiþ1Þ mod F ðxÞÞ
mod ðxl þ 1Þ, 1 � i < D, can be computed by i-bit
circular right shift of F 0ðxÞ mod ðxl þ 1Þ. As a result, for
1 � i < D one can write�
x�ðiþ1Þ mod F ðxÞ

�
mod ðxl þ 1Þ ¼f̂ 0i�1x

l�1 þ � � � þ
f̂ 0iþ1xþ f̂ 0i:

ð21Þ

Let us represent S0 shown in (20) as

S0 ¼ S � x�D mod F ðxÞ ¼ S02 þ S01;

where

S01 ¼ ðsD�1x
�1 þ � � � þ s0x

�DÞ mod F ðxÞ;

and

S02 ¼ ðsm�1x
m�D�1 þ � � � þ sDþ1xþ sDÞ:

To obtain Ŝ01 ¼ S01 mod ðxl þ 1Þ, we use (21) and write

Ŝ01 ¼
XD�1

j¼0

sD�1�j
Xl�1

i¼0

f̂ 0iþjj jx
i; ð22Þ

where iþ jj j ¼ ðiþ jÞ mod l. Also, Ŝ02 ¼ S02 mod ðxl þ 1Þ
can be written as

Ŝ02 ¼ ðS � x�D þ sD�1x
�1 þ � � � þ s0x

�DÞ mod ðxl þ 1Þ:

Note that S � x�D mod ðxl þ 1Þ is obtained by D-bit
circular right shift of Ŝ. Thus, Ŝ02 can be written as

Ŝ02 ¼
Xl�1

i¼0

ŝ iþDj jx
i þ
XD�1

i¼0

six
�Dþij j: ð23Þ

Now using (22) and (23), one can conclude that

Ŝ0 ¼
Xl�1

i¼0

ŝ iþDj jx
i þ
XD�1

i¼0

six
�Dþij j þ

XD�1

j¼0

sD�1�j
Xl�1

i¼0

f̂ 0iþjj jx
i;

and the proof is complete. tu

Corollary 1. For the special case, where D � k and D � l, the
coordinates of Ŝ0 are obtained as ŝ0i ¼ ŝiþD þ

PD�1
j¼0 sD�1�jf̂

0
iþj,

w h e n 0 � i < l�D, a n d ŝ0i ¼ ŝi�ðl�DÞ þ si�ðl�DÞ þPD�1
j¼0 sD�1�jf̂

0
iþj, when l�D � i � l� 1.

4.2 Architecture

The concurrent error detection scheme for the digit-serial
Montgomery multiplication algorithm is shown in Fig. 5. In
this figure, the module labeled �x�D CED, implements
Lemma 4 and the modules labeled � and XOR, realize (19).
Also, Â and Ĉ are two l-bit registers which are initialized
with the coordinates of A mod ðxl þ 1Þ and 0, respectively.
We have presented Example 1 in Appendix A to explain the
structure of these modules in details.

The digit-serial Montgomery multiplier of Algorithm 4
requires two m-bit registers to store A and C. The �-module
requiresD�m two-input AND gates and ðD� 1Þ � ðm� 1Þ
two-input XOR gates. The XOR module requires m two-
input XOR gates. Finally, the x�D module requires D�
ðm� kÞ two-input AND gates and D� ðm� kþ 1Þ � 1 two-
input XOR gates. Note that all the AND gates in the x�D

module can be removed if F ðzÞ is fixed. The critical path
delay of the �-module together with the XOR block is
TA þ log2ðDþ 1Þd e � TX. Also, the critical path delay of the
x�D-module is log2ðDþ 1Þd e � TX for a fixed F ðzÞ. As a
result, the maximum critical path delay of this multiplier is
TA þ 2 log2ðDþ 1Þd e � TX .

The concurrent error detection for the �-module is
implemented using D� l two-input AND gates and ðD�
1Þ � l two-input XOR gates. Two l-bit registers are required
to store Â and Ĉ. The number of the gates in the �x�D-CED
module depends on the values of D and l. For example, the
special case mentioned in Corollary 1 requires D� l two-
input AND gates and ðDþ 1Þ � l two-input XOR gates.
Note that the AND gates in this block can be removed if
F ðzÞ is fixed. Finally, the XOR block requires l two-input
XOR gates. For the special case mentioned in Corollary 1,
the critical path delay of the error detection scheme is
TA þ ð log2ðDþ 1Þd e þ log2ðDþ 2Þd eÞ � TX.
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Fig. 5. Concurrent error detection in digit-serial Montgomery
multiplication.



5 CONCURRENT ERROR DETECTION IN

BIT-PARALLEL MONTGOMERY MULTIPLICATION

OVER GF ð2mÞ
In this section, we study concurrent error detection for the
bit-parallel Montgomery multiplication. We apply the
concurrent error detection approach used in this paper
on the general bit-parallel Montgomery multiplier of [15].
This multiplier is based on a more general case of the
Montgomery multiplication which generates

C ¼ A �B � x�u mod F ðxÞ; ð24Þ

where 0 < u � m. In this case, (24) can be written as

C ¼ bm�1x
m�u�1 þ � � � þ bu þ � � � þ b0x

�u� �
�A mod F ðxÞ;

or

C ¼ bm�1Ax
m�u�1 þ � � � þ buAþ � � � þ b0Ax

�u mod F ðxÞ:
ð25Þ

In this section, we use AðiÞ to represent

AðiÞ ¼ Axi mod F ðxÞ: ð26Þ

The multiplication shown in (25) can be done by using
the matrix M, whose columns show the representation of
AðiÞ with respect to the polynomial basis for i 2 ½�u;m�
u� 1� [15]. So, the matrix M has m rows and m columns,
and this matrix should be computed in the first step. Then,
the Montgomery multiplication over GF ð2mÞ can be
formulated as

C ¼M �BT ; ð27Þ

w h e r e C ¼ ½c0; c1; . . . ; cm�1�T a nd B ¼ ½b0; b1; . . . ; bm�1�.
Therefore, the second step of the bit-parallel Montgomery
multiplication obtains (27), which can be written as

C ¼ bm�1A
ðm�u�1Þ þ � � � þ buAþ � � � þ b0A

ð�uÞ: ð28Þ

5.1 Formulation

We have explained the procedure to detect errors in the x�1-
module in Lemma 2. For the x-modules, first we define the
following:

F 00ðxÞ ¼ xm mod F ðxÞ ¼ fm�1x
m�1 þ � � � þ f1xþ 1; ð29Þ

and represent F 00ðxÞ mod ðxl þ 1Þ as

F̂ 00 ¼ F 00ðxÞ mod ðxl þ 1Þ ¼
Xl�1

t¼0

f̂ 00t x
t: ð30Þ

Now, we present the following lemma which is similar to
the results obtained in [24] and [25].

Lemma 5. Let S and S00 ¼ S � x mod F ðxÞ be two field
elements in GF ð2mÞ constructed by the irreducible poly-
nomial F ðzÞ and F ðxÞ ¼ 0. Assuming Ŝ ¼ S mod ðxl þ
1Þ ¼ ŝl�1x

l�1 þ � � � þ ŝ1xþ ŝ0, the coordinates of Ŝ00 ¼
S00 mod ðxl þ 1Þ equal

ŝ00j ¼
ŝ j�1j j þ sm�1

�
1þ f̂ 00j

�
if j ¼ m mod l

ŝ j�1j j þ sm�1f̂
00
j otherwise;

(

where j� 1j j represents ðj� 1Þ mod l.

Proof. The field element S can be represented as

S ¼
Pm�1

t¼0 stx
t. Then, S � x ¼ sm�1x

m þ � � � þ s1x
2 þ s0x.

Using (29), one can write the following:

S � x mod F ðxÞ ¼ sm�1F
00ðxÞ

þ sm�2x
m�1 þ � � � þ s1x

2 þ s0x:
ð31Þ

Using (30) and the property mentioned in (5), one can
obtain the following:

sm�1F
00ðxÞ mod ðxl þ 1Þ ¼ sm�1

Xl�1

t¼0

f̂ 00t x
t: ð32Þ

The rest of the terms in (31) can be written as

sm�2x
m�1 þ � � � þ s1x

2 þ s0x ¼ S � xþ sm�1x
m: ð33Þ

For the right-hand side of (33), one can write

ðS � xþ sm�1x
mÞ mod ðxl þ 1Þ

¼ ðŝl�1x
l�1 þ � � � þ ŝ1xþ ŝ0Þ � xþ sm�1x

mj j;

where mj j ¼ m mod l. Taking into account that

xl mod ðxl þ 1Þ ¼ 1, one can obtain

ðS � xþ sm�1x
mÞ mod ðxl þ 1Þ ¼

Xl�2

t¼0

ŝtx
tþ1 þ ŝl�1

þ sm�1x
mj j:

ð34Þ

Now using (31), (32), and (34), Ŝ00 can be written as

Ŝ00 ¼ S00 mod ðxl þ 1Þ ¼ sm�1

Xl�1

t¼0

f̂ 00t x
t þ
Xl�2

t¼0

ŝtx
tþ1 þ ŝl�1

þ sm�1x
jmj;

and the proof is complete. tu
So far, we have obtained the concurrent error detection

for AðiÞ, i 2 ½�u;m� u� 1�. We denote AðiÞ mod ðxl þ 1Þ as

ÂðiÞ. To design the concurrent error detection scheme for

obtaining (27), we present the following lemma:

Lemma 6. Assuming AðiÞ, i 2 ½�u;m� u� 1�, is defined based

on 26 and ÂðiÞ ¼ AðiÞ mod ðxl þ 1Þ ¼
Pl�1

t¼0 â
ðiÞ
t x

t, the co-

ordinates of Ĉ ¼ C mod ðxl þ 1Þ ¼
Pl�1

t¼0 ĉtx
t can be obtained

by ĉt ¼
Pm�1

j¼0 bj � âðj�uÞt .

Proof. To obtain Ĉ, one can compute both sides of (28)

modulo ðxl þ 1Þ and use the properties mentioned in (4)

and (5) to obtain

C mod ðxl þ 1Þ ¼ bm�1 � Âðm�u�1Þ þ � � � þ buÂþ � � � þ b0Â
ð�uÞ:

This results in the following:

ĉt ¼
Xm�1

j¼0

bj � âðj�uÞt ; ð35Þ

where 0 � t < l, and the proof is complete. tu
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5.2 Architecture

Using Lemmas 2 and 5, one can design the concurrent error
detection circuit for the first step of the bit-parallel Mon-
tgomery multiplication (i.e., computing the matrix M). The
x�1-module with concurrent error detection was shown
before in Fig. 3. The concurrent error detection circuit for the
x-module is shown in Fig. 6 for l ¼ 2. Note that most of the
gates can be removed if one fixes the irreducible polynomial.
However, in the general case, the x-module requires ðm� 1Þ
two-input AND gates and ðm� 1Þ two-input XOR gates.
Also, its concurrent error detection circuit requires l two-
input AND gates and l two-input XOR gates. The critical path
delay of this module is still TA þ TX. The following remark
provides more details about the area complexity.

Remark 3. The concurrent error detection in the x-module
requires at most l two-input XOR gates for a fixed
irreducible polynomial. Assuming F ðzÞ is an !-nomial,
this circuit requires at most minð!; lÞ two-input XOR
gates, where in practical cryptographic applications ! is
three or five [32].

First, we investigate the time and area complexities of
concurrent error detection in computing the matrix M. We
assume that there are � and � gray XOR gates in x�1 and
x modules, respectively. For irreducible trinomials (respec-
tively pentanomials), the maximum value of � and � is three
(respectively five). As a result, the concurrent detection
scheme for the matrix M requires at most u � �þ ðm� u�
1Þ � � two-input XOR gates. In this case, obtaining ÂðiÞ for
i 2 ½�u;�1� has the delay of du��l e � TX and obtaining ÂðiÞ for
i 2 ½1;m� u� 1� has the delay of dðm�u�1Þ�

l e � TX. Conse-
quently, the theoretical time complexity of the concurrent
error detection to obtain the matrix M is

Y ¼ max
u � �
l

� �
� TX;

ðm� u� 1Þ � �
l

� �
� TX

� �
: ð36Þ

It is interesting to note that u instances of the x�1-module
and ðm� u� 1Þ instances of the x-module are cascaded in
the bit-parallel Montgomery multiplication, whereas in bit-
parallel polynomial basis multiplication ðm� 1Þ instances
of the x-module are cascaded [25]. This results in reducing
the time overhead of the concurrent error detection process
in the Montgomery multiplication.

Now, we consider the time and area complexities of the
concurrent error detection scheme for the second step (i.e.,
obtaining (27)). Obtaining (35) requires l�m two-input
AND gates and l XOR-trees with m inputs. Thus, the total
number of XOR gates required to obtain (35) is l� ðm� 1Þ.

The time complexity of computing (35) is TA þ TXORm,
where TXORm represents the delay of an XOR tree with
m inputs. One can notice that this time complexity is equal
to the time complexity of obtaining (27). As a result,
obtaining ÂðiÞ, i 2 ½�u;m� u� 1�, accounts for the time
overhead of concurrent error detection scheme in this
multiplier. Example 2 in Appendix A explains the con-
current error detection in GF ð27Þ.

6 ANALYSIS AND SIMULATION RESULTS

In this section, we first consider the error detection
capability, and then, the time and area overheads of the
proposed concurrent error detection circuits.

6.1 Error Detection Capability

Theoretically, using modulo ðxl þ 1Þ operations to imple-
ment error detection, which is equivalent to the interlacing
parity codes in GF ð2mÞ, has the error detection probability
of [25]

2mþl � 2m

2mþl
¼ 1� 1

2l
:

However, to evaluate the error detection capability of the
proposed scheme, we have modeled all three Montgomery
multipliers using C++. We have selected the binary
extension field GF ð2163Þ constructed by the type-II irredu-
cible pentanomial F ðzÞ ¼ z163 þ z72 þ z71 þ z70 þ 1. It has
been assumed that the faults are permanent and are injected
at the inputs and outputs of the gates or flip-flops. As a
result in all the simulations, for each two-input AND and
XOR gate, we have considered six possible stuck-at fault
situations. Also, we have considered two possible stuck-at
faults for the flip-flops. Eight values of l, i.e., l ¼ 2, 4, 6, 8, 10,
12, 14, and 16, have been chosen. For each of the three
Montgomery multipliers considered in this paper, we have
conducted four experiments and in each experiment, we
have used 1,000 random values for A and B, and run the
program 1,000 times. In total, each experiment has been run
1,000,000 times. At each iteration in the first experiment, we
have injected one stuck-at fault at a random location. In the
second and third experiments, two and three stuck-at faults
have been injected at random locations, respectively. The
last experiment is carried out by injecting a random number
of stuck-at faults in each iteration at random locations.

The results of our simulations have been summarized in
Table 1. The column titled “Error Occurred” shows the
number of cases, where the fault injection has resulted in an
error. Also, the column titled “Error Detected” shows how
many of erroneous multiplication products have been
detected. The table shows that after injecting random
number of stuck-at faults using l ¼ 8, in the bit-serial,
digit-serial (D ¼ 2), and the bit-parallel Montgomery multi-
pliers 99.6 percent, 99.61 percent, and 99.61 percent of the
errors have been detected.

6.2 Time and Area Overheads

We have summarized the theoretical complexity of the
presented multipliers with error detection in Table 2. The
results for the digit-serial multiplier are for the special case
D � l using a fixed F ðzÞ. Also, for the bit-parallel multiplier,
F ðzÞ is assumed to be fixed and Y is shown in (36).
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Fig. 6. Error detection in the x-module using l ¼ 2.



To find the practical overheads, we have described the bit-
serial, digit-serial, and bit-parallel Montgomery multipliers
using VHDL and implemented it on 0:18 �m CMOS ASIC
technology using the Synopsys Design Analyzer. The Map
Effort was set to medium and the type-II irreducible
pentanomial F ðzÞ ¼ z163 þ z72 þ z71 þ z70 þ 1 is used for all
the implementations.

For the bit-serial multiplier, the implementations have
been done with a target clock period of 3.0 ns and the
results are obtained for the original multiplier and the
multiplier with error detection capability. We have selected
15 values for l, i.e., 2 � l � 16, and obtained the area
overheads as depicted in Fig. 7. Note that this figure also
includes the area overheads of the final modulo ðxl þ 1Þ
operation and comparison shown in Fig. 1.

Similarly, we have implemented the digit-serial Mon-

tgomery multiplier on ASIC with a target clock period of

10.0 ns. The multiplier has been implemented with two

digit sizes, i.e., D ¼ 2 and D ¼ 8, and the concurrent error

detection circuit has been implemented with 2 � l � 16. The

time and area overheads are shown in Figs. 8 and 9,

respectively. Note that Fig. 9 includes the area overheads of

the final modulo ðxl þ 1Þ operation and comparison shown

in Fig. 1. However, the time overheads of these modules are

negligible in comparison to the time complexity of the digit-

serial Montgomery multiplier and therefore, Fig. 8 shows

the time overhead in critical path delay of the multiplier.
Theoretically, the hardware implementation of the bit-

parallel Montgomery multiplier requires 162� 3 two-input
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Error Detection Capability



XOR gates to obtain the matrix M. Also, obtaining (27)

requires 1632 two-input AND gates and 163� 162 two-

input XOR gates. In total, this multiplier requires 1632 ¼
26;569 AND gates and 166� 162 ¼ 26;892 XOR gates. To

investigate the theoretical overhead of the concurrent error

detection process, we choose 1 < l � 16, and provide the

number of the required gates in Table 3. The number of the

required AND gates is computed from (35) and the number

of the XOR gates is based on (35) and Lemmas 2 and 5.
To have a better evaluation of the proposed concurrent

error detection approach for the bit-parallel Montgomery

multiplier, it has been implemented on ASIC with a target

clock period of 30.0 ns using F ðzÞ ¼ z163 þ z72 þ z71 þ z70 þ 1

as the irreducible polynomial. Note that the ASIC imple-

mentations also include the final modulo ðxl þ 1Þ operation

and comparison modules shown in Fig. 1. The ASIC

implementation results for the area overhead are shown in
Fig. 10. One can observe that the greatest area overhead
occurs when l ¼ 16 and is equal to 11.32 percent. The time
overhead of the concurrent error detection scheme has been
depicted in Fig. 11 for 1 < l � 16. It is interesting to note that
some values of l (e.g., l ¼ 4 and 7) result in a very low time
overhead. The time overhead for l ¼ 8 is 27.80 percent.

The concurrent error detection schemes for the systolic
Montgomery multiplication have been considered in [30] and
[31]. These schemes are based on time-redundancy which
detect all the single cells faults. However, the technique is
only applicable on pipelined multipliers. The parity-based
approach used in [31] is for the bit-serial Montgomery
multiplier and can detect approximately 50 percent of the
errors. The schemes proposed in this paper are for unpipe-
lined Montgomery multipliers and offer a very high error
detection capability as compared to [31].

7 CONCLUSIONS

In this paper, we have considered concurrent error
detection for the Montgomery multiplication over binary
extension fields. Three different multipliers, namely the bit-
serial, digit-serial, and bit-parallel multipliers, have been
considered and the concurrent error detection scheme has
been derived and implemented for each of them.

The time and area overheads of the proposed schemes
have been reported and ASIC implementation have been
done to confirm the theoretical overheads. The results show
that the proposed schemes result in small time and area
overheads. Furthermore, our software simulations have
shown that the proposed concurrent error detection has a
significant error detection capability.
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Fig. 8. ASIC implementation results for the time overhead in digit-serial
Montgomery multiplication.

Fig. 9. ASIC implementation results for the area overhead in digit-serial

Montgomery multiplication.

Fig. 7. ASIC implementation results for the area overhead in bit-serial
Montgomery multiplication.

TABLE 2
Theoretical Area and Time Complexities



APPENDIX

Example 1. Let m ¼ 11, D ¼ k ¼ l ¼ 4, C0 ¼
P13

i¼0 c
0
ix
i, and

Ĉ0 ¼ C0 mod ðx4 þ 1Þ ¼ ĉ03x3 þ ĉ02x2 þ ĉ01xþ ĉ00. I n t h i s

c a s e , ĉ00 ¼ c00 þ c04 þ c08 þ c012, ĉ01 ¼ c01 þ c05 þ c09 þ c013,

ĉ02 ¼ c02 þ c06 þ c010, and ĉ03 ¼ c03 þ c07 þ c011. We assume that

Â ¼ â3x
3 þ â2x

2 þ â1x
1 þ â0. For this example, the hard-

ware realization of (19) has been depicted on the left-hand

side of Fig. 12a using gray cells and gates. The right-hand

side of this figure implements Step 3 of Algorithm 5. The

dashed line labeled with XOR shows that all the cells in

the same column should be added together using XOR

trees in order to obtain C0 and Ĉ0. Now,

C0 � x�4 ¼ c013x
9 þ � � � þ c04 þ c03x�1 þ � � � þ c00x�4;

and C0 � x�4 mod F ðxÞ can be written as

c013x
9 þ � � � þ c04 þ c03F ðxÞ � x�1 þ � � � þ c00F ðxÞ � x�4: ð37Þ

Since k ¼ 4, F ðxÞ � x�1 to F ðxÞ � x�4 are obtained by
right-shifting the coordinates of F ðxÞ. Note that F ðxÞ � x�1

is named F 0ðxÞ. The implementation of this operation is
shown in Fig. 12b using the cells and gates drawn in white.

Now, one can use (37) to obtain ðC ¼ C0 � x�D mod
F ðxÞÞ mod ðx4 þ 1Þ. The results are as follows:

ĉ0 ¼ c04 þ c08 þ c012 þ c03f̂ 00 þ c02f̂ 01 þ c01f̂ 02 þ c00f̂ 03;
ĉ1 ¼ c05 þ c09 þ c013 þ c03f̂ 01 þ c02f̂ 02 þ c01f̂ 03 þ c00f̂ 00;
ĉ2 ¼ c06 þ c010 þ c03f̂ 02 þ c02f̂ 03 þ c01f̂ 00 þ c00f̂ 01; and

ĉ3 ¼ c07 þ c011 þ c03f̂ 03 þ c02f̂ 00 þ c01f̂ 01 þ c00f̂ 02:

Using the coordinates of Ĉ0 defined in this example, the

coordinates of Ĉ can be rewritten as

ĉ0 ¼ ĉ00 þ c00 þ c03f̂ 00 þ c02f̂ 01 þ c01f̂ 02 þ c00f̂ 03;
ĉ1 ¼ ĉ01 þ c01 þ c03f̂ 01 þ c02f̂ 02 þ c01f̂ 03 þ c00f̂ 00;
ĉ2 ¼ ĉ02 þ c02 þ c03f̂ 02 þ c02f̂ 03 þ c01f̂ 00 þ c00f̂ 01; and

ĉ3 ¼ ĉ03 þ c03 þ c03f̂ 03 þ c02f̂ 00 þ c01f̂ 01 þ c00f̂ 02:

Fig. 12b shows the x�D module with the concurrent
error detection scheme. As mentioned previously, the
white cells and gates implement the normal function of
this block (i.e., a multiplication by x�D followed by a
reduction by F ðxÞ). The gray cells and gates in this figure
implement the concurrent error detection mechanism.
Note that the last row in this figure represents C and
Ĉ ¼ C mod ðxl þ 1Þ. Each cell in this row is obtained by
summing up all the cells in its corresponding column
(shown by a dashed line, labeled XOR).

Example 2. We consider bit-parallel Montgomery multi-
plication over GF ð27Þ using F ðzÞ ¼ z7 þ z4 þ z3 þ z2 þ 1,
where F ðxÞ ¼ 0. Choosing x2 as the Montgomery factor,
we have C ¼ A �B � x�2 mod F ðxÞ. Using the notation
presented before, this can be written as

C ¼ b7 �Að4Þ þ � � � þ b2 �Að0Þ þ � � � þ b0 �Að�2Þ:

The matrix M corresponding to this multiplication is
shown in Fig. 13, using the white gates. As it can be seen
from the figure, there are two x�1-modules and four
x-modules. Each of these modules includes three two-input
XOR gates. The critical path delay of this part is 3 � TX .

To obtain the concurrent error detection circuit, two
polynomials are defined as F 0ðxÞ ¼ x6 þ x3 þ x2 þ x, and
F 00ðxÞ ¼ x4 þ x3 þ x2 þ 1. It is assumed that l ¼ 3 and
consequently, F 0ðxÞ mod ðx3 þ 1Þ ¼ 1 � x2 þ 1 � xþ 0, which
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Fig. 11. ASIC implementation time overhead percentage of the
concurrent error detection in bit-parallel Montgomery multiplication
using F ðzÞ ¼ z163 þ z72 þ z71 þ z70 þ 1.

Fig. 10. ASIC implementation area overhead percentage of the

concurrent error detection in bit-parallel Montgomery multiplication

using F ðzÞ ¼ z163 þ z72 þ z71 þ z70 þ 1.

TABLE 3
Theoretical Time and Area Overheads in the Bit-Parallel Montgomery Multiplication



means f̂ 02 ¼ 1, f̂ 01 ¼ 1, and f̂ 00 ¼ 0. Also, F 00ðxÞ mod
ðx3 þ 1Þ ¼ 1 � x2 þ 1 � xþ 0, meaning f̂ 002 ¼ 1, f̂ 001 ¼ 1, and
f̂ 000 ¼ 0. Next, it is assumed that Að0Þ mod ðx3 þ 1Þ ¼
A mod ðx3 þ 1Þ ¼ â2x

2 þ â1xþ â0. Now, AðiÞ mod ðx3 þ 1Þ,
i 2 ½�2;�1�, is computed based on Lemma 2 using the
following recursive equation:

â
ðiÞ
0 ¼ â

ði�1Þ
1

â
ðiÞ
1 ¼ â

ði�1Þ
2 þ aði�1Þ

0

â
ðiÞ
2 ¼ â

ði�1Þ
0 ;

8><
>: ð38Þ

and AðiÞ mod ðx3 þ 1Þ, i 2 ½1; 4�, is obtained based on
Lemma 5, using

â
ðiÞ
0 ¼ â

ði�1Þ
2

â
ðiÞ
1 ¼ â

ði�1Þ
0

â
ðiÞ
2 ¼ â

ði�1Þ
1 þ aði�1Þ

6 :

8><
>: ð39Þ

Using (38) and (39), the concurrent error detection for step
one has been depicted in Fig. 13 using gray cells. It can be seen
from the figure that obtainingAðiÞ mod ðx3 þ 1Þ for i 2 ½�2; 4�
requires six two-input XOR gates in total. The longest path in
the concurrent error detection includes two XOR gates, and
as a result, its delay is 2 � TX.

The error detection for the second part is straightforward
and is obtained using (35) as follows:

ĉi ¼
X6

j¼0

bj � âðj�2Þ
i :

This requires 21 two-input AND gates and 18 two-input

XOR gates and has the critical path delay of TA þ 3 � TX.

Obtaining C in (35) itself requires 49 two-input AND gates

and 42 two-input XOR gates and has the delay of TA þ 3 � TX.

Now, it can be concluded that concurrent error detection in
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Fig. 13. Obtaining the matrix M with concurrent error detection for
F ðzÞ ¼ z7 þ z4 þ z3 þ z2 þ 1 using u ¼ 2.

Fig. 12. Concurrent error detection for m ¼ 11, D ¼ k ¼ l ¼ 4: (a) the � module, (b) the x�D module.



this example (excluding the final modulo ðxl þ 1Þ operation

and comparison) does not impose any time overhead and

requires 42 percent more AND gates and 40 percent more

XOR gate. It is noted that in the general case, the time and

area overheads depend on the parameters m, l, u, and F ðzÞ.

ACKNOWLEDGMENTS

The authors thank the reviewers for their constructive

comments. This work was supported in part by an NSERC

Discovery grant awarded to Arash Reyhani-Masoleh.

REFERENCES

[1] V.S. Miller, “Use of Elliptic Curves in Cryptography,” Proc.
Advances in Cryptology-CRYPTO 85, pp. 417-426, 1986.

[2] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. of Computation,
vol. 48, no. 177, pp. 203-209, 1987.

[3] E.D. Mastrovito, VLSI Architectures for Computation in Galois Fields,
PhD thesis, Linkoping Univ., 1991.

[4] L. Song and K. Parhi, “Low-Energy Digit-Serial/Parallel Finite
Field Multipliers,” The J. VLSI Signal Processing, vol. 19, no. 2,
pp. 149-166, 1998.

[5] A. Reyhani-Masoleh and M. Hasan, “Low Complexity Bit
Parallel Architectures for Polynomial Basis Multiplication over
GF ð2mÞ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945-959,
Aug. 2004.

[6] F. Rodriguez-Henriguez and C. Koc, “Parallel Multipliers Based
on Special Irreducible Pentanomials,” IEEE Trans. Computers,
vol. 52, no. 12, pp. 1535-1542, Dec. 2003.

[7] C. Koc and T. Acar, “Montgomery Multiplication in GF ð2kÞ,”
Designs, Codes and Cryptography, vol. 14, no. 1, pp. 57-69, 1998.

[8] H. Fan and Y. Dai, “Fast Bit-Parallel GF ð2nÞ Multiplier for All
Trinomials,” IEEE Trans. Computers, vol. 54, no. 4, pp. 485-490,
Apr. 2005.

[9] J. Massey and J. Omura, “Computational Method and Apparatus
for Finite Field Arithmetic,” US Patent 4,587,627. 1986.

[10] H. Wu, M. Hasan, and I. Blake, “New Low-Complexity Bit-
Parallel Finite Field Multipliers Using Weakly Dual Bases,” IEEE
Trans. Computers, vol. 47, no. 11, pp. 1223-1234, Nov. 1998.

[11] T. Beth and D. Gollman, “Algorithm Engineering for Public Key
Algorithms,” IEEE J. Selected Areas in Communications, vol. 7, no. 4,
pp. 458-466, May 1989.

[12] P. Montgomery, “Modular Multiplication without Trial Division,”
Math. of Computation, vol. 44, no. 170, pp. 519-521, 1985.

[13] H. Wu, “Montgomery Multiplier and Squarer for a Class of Finite
Fields,” IEEE Trans. Computers, vol. 51, no. 5, pp. 521-529, May 2002.

[14] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, “Balanced
Point Operations for Side-Channel Protection of Elliptic Curve
Cryptography,” IEEE Proc. Information Security, vol. 152, no. 1,
pp. 57-65, Oct. 2005.

[15] A. Hariri and A. Reyhani-Masoleh, “Bit-Serial and Bit-Parallel
Montgomery Multiplication and Squaring over GF ð2mÞ,” IEEE
Trans. Computers, vol. 58, no. 10, pp. 1332-1345, Oct. 2009.

[16] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “High-
Performance Public-Key Cryptoprocessor for Wireless Mobile
Applications,” Mobile Networks and Applications, vol. 12, no. 4,
pp. 245-258, 2007.

[17] S. Mitra and E. McCluskey, “Which Concurrent Error Detection
Scheme to Choose?” Proc. Int’l Test Conf., pp. 985-994, 2000.

[18] I. Koren and C.M. Krishna, Fault-Tolerant Systems. Morgan
Kaufman, 2007.

[19] Residue Number System Arithmetic: Modern Applications in Digital
Signal Processing, M. A. Soderstrand, W. K. Jenkins, G. A. Jullien,
and F. J. Taylor, eds., IEEE Press, 1986.

[20] C. Giraud and H. Thiebeauld, “A Survey on Fault Attacks,” Proc.
Smart Card Research and Advanced Applications VI, pp. 159-176, 2004.

[21] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan,
“The Sorcerer’s Apprentice Guide to Fault Attacks,” Proc. IEEE,
vol. 94, no. 2, pp. 370-382, Feb. 2006.

[22] S. Fenn, M. Gossel, M. Benaissa, and D. Taylor, “On-Line
Error Detection for Bit-Serial Multipliers in GF ð2mÞ,” J.
Electronic Testing: Theory and Applications, vol. 13, no. 1, pp.
29-40, 1998.

[23] A. Reyhani-Masoleh and M. Hasan, “Fault Detection Architec-
tures for Field Multiplication Using Polynomial Bases,” IEEE
Trans. Computers, vol. 55, no. 9, pp. 1089-1103, Sept. 2006.

[24] S. Bayat-Sarmadi and M. Hasan, “On Concurrent Detection of
Errors in Polynomial Basis Multiplication,” IEEE Trans. Very Large
Scale Integration Systems, vol. 15, no. 4, pp. 413-426, Apr. 2007.

[25] W. Chelton and M. Benaissa, “Concurrent Error Detection in
GF ð2mÞ Multiplication and Its Application in Elliptic Curve
Cryptography,” IET Circuits, Devices and Systems, vol. 2, no. 3,
pp. 289-297, 2008.

[26] S. Bayat-Sarmadi and M. Hasan, “Concurrent Error Detection in
Finite Field Arithmetic Operations Using Pipelined and Systolic
Architectures,” IEEE Trans. Computers, vol. 58, no. 11, pp. 1553-
1567, Nov. 2009.

[27] C.W. Chiou, C.-C. Chang, C.-Y. Lee, T.-W. Hou, and J.-M. Lin,
“Concurrent Error Detection and Correction in Gaussian Normal
Basis Multiplier Over GF ð2mÞ,” IEEE Trans. Computers, vol. 58,
no. 6, pp. 851-857, June 2009.

[28] C.-Y. Lee, C.W. Chiou, and J.-M. Lin, “Concurrent Error Detection
in a Bit-Parallel Systolic Multiplier for Dual Basis of GF ð2mÞ,” J.
Electronic Testing: Theory and Applications, vol. 21, no. 5, pp. 539-
549, 2005.

[29] C.-Y. Lee, C.W. Chiou, and J.-M. Lin, “Concurrent Error Detection
in a Polynomial Basis Multiplier over GF ð2mÞ,” J. Electronic
Testing: Theory and Applications, vol. 22, no. 2, pp. 143-150, 2006.

[30] C.W. Chiou, C.Y. Lee, A.W. Deng, and J.M. Lin, “Concurrent Error
Detection in Montgomery Multiplication over GF ð2mÞ,” IEICE
Trans. Fundamentals of Electronics, Communications and Computer
Sciences, vol. E89-A, no. 2, pp. 566-574, 2006.

[31] A. Hariri and A. Reyhani-Masoleh, “Fault Detection Structures for
the Montgomery Multiplication over Binary Extension Fields,”
Proc. Workshop Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 37-46, 2007.

[32] Recommended Elliptic Curves for Fed. Gov. Use http://
csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.
pdf, 2009.

[33] A. Hariri and A. Reyhani-Masoleh, “Digit-Serial Structures for the
Shifted Polynomial Basis Multiplication over Binary Extension
Fields,” Proc. Second Int’l Workshop Arithmetic of Finite Fields
(WAIFI), pp. 103-116, 2008.

Arash Hariri received the BSc degree from
Amirkabir University of Technology, Iran, in
2003, and the MSc degree from Shahid Beheshti
University, Iran, in 2006, both in computer
engineering. He is currently working toward the
PhD degree in electrical and computer engineer-
ing from The University of Western Ontario,
Canada. His current research interests include
computer arithmetic, cryptography, and fault
tolerance. He is a student member of the IEEE.

Arash Reyhani-Masoleh received the BSc
degree in electrical and electronic engineering
from Iran University of Science and Technology
in 1989, and the MSc degree in electrical and
electronic engineering from the University of
Tehran in 1991, both with the first rank, and the
PhD degree in electrical and computer en-
gineering from the University of Waterloo in
2001. From 1991 to 1997, he was with the
Department of Electrical Engineering, Iran

University of Science and Technology. From June 2001 to September
2004, he was with the Centre for Applied Cryptographic Research,
University of Waterloo, where he was awarded a Natural Sciences and
Engineering Research Council of Canada (NSERC) postdoctoral
fellowship in 2002. In October 2004, he joined the Department of
Electrical and Computer Engineering, University of Western Ontario,
London, Canada, where he is currently a tenured associate professor.
He has been awarded an NSERC Discovery Accelerator Supplement
(DAS) in 2010. Currently, he serves as an associate editor for
Integration, the VLSI Journal (Elsevier). His current research interests
include algorithms and VLSI architectures for computations in finite
fields, fault-tolerant computing, and error-control coding. He is a
member of the IEEE and the IEEE Computer Society.

HARIRI AND REYHANI-MASOLEH: CONCURRENT ERROR DETECTION IN MONTGOMERY MULTIPLICATION OVER BINARY EXTENSION... 1353



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


