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New Architectures for Digit-Level Single,
Hybrid-Double, Hybrid-Triple Field Multiplications
and Exponentiation Using Gaussian Normal Bases
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Abstract—Gaussian normal bases (GNBs) are special set of
normal bases (NBs) which yield low complexity GF (2m) arith-
metic operations. In this paper, we present new architectures for
the digit-level single, hybrid-double, and hybrid-triple multipli-
cation of GF (2m) elements based on the GNB representation
for odd values of m > 1. The proposed fully-serial-in single
multipliers perform multiplication of two field elements and offer
high throughput when the data-path capacity for entering inputs
is limited. The proposed hybrid-double and hybrid-triple digit-
level GNB multipliers perform, respectively, two and three field
multiplications using the same latency required for a single digit-
level multiplier, at the expense of increased area. In addition, we
present a new eight-ary field exponentiation architecture which
does not require precomputed or stored intermediate values.

Index Terms—Digit-Level Multipliers, Finite Fields, Finite
Field Exponentiation, Finite Field Multiplication, Gaussian Nor-
mal Basis, Hybrid-Double Multiplication, Normal Basis.

I. INTRODUCTION

B INARY extension fields GF (2m) are heavily used
in cryptography, error control coding, random number

generation, and digital signal processing [1], [2], [3], [4].
A GF (2m) element is usually represented with respect to
(w.r.t) a basis by a set of m coordinates from the binary
field GF (2). A basis of GF (2m) is a set of m linearly
independent field elements [1], [5]. Polynomial bases (PBs)
and normal bases (NBs) are two popular representations of
GF (2m) elements [1], [5]. In these two representations, the
field addition of two elements is accomplished by bit-wise
GF (2) additions (XOR). On the other hand, multiplication is
more complicated than addition, and is a basic field operation
for accomplishing more involved computations such as field
inversion and exponentiation. The latter is a fundamental
operation for the Diffie-Hellman key exchange algorithm [6]
and is also used for other cryptographic applications such
as random number generation [7], [3], [4]. Exponentiation is
usually accomplished through iterations of squarings and mul-
tiplications [5]. Therefore, efficient GF (2m) multipliers with
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low output latencies are demanded for increasing throughput
of such an important field operation.

In the NB representation, squarings are implemented as
cyclic shifts [5]. Therefore, NBs are considered advantageous
for use in the hardware designs of binary extension fields’
arithmetic [8] due to the free cost of squaring operations. In
particular, Gaussian normal bases (GNBs) - a special subset
of the NBs which offer field operations with smaller area and
time overheads compared to the general NB - are often used
for efficient hardware implementations of field multiplication,
for example see the IEEE standard [5] and the National
institute of standards and technology (NIST) standard [9].
In this paper, we focus on field multiplication based on the
GNB representation for GF (2m) with odd values of m which
include the five fields recommended by NIST for Elliptic curve
digital signature algorithm (ECDSA) [9].

Massey and Omura [10] proposed the original scheme for
multiplication of two field elements in the NB representation.
For clarity of reference, in what follows, we refer to the
multiplication of two field elements as single multiplication.
After the work of Massey and Omura, a number of designs
were proposed in an attempt to optimize the throughput and/or
space complexities of the single NB multiplier [11], [12],
[13], [8], [14], [15]. Generally, the different proposed designs
can be divided into two categories of parallel and digit-level
computations. For high throughput, the parallel implementa-
tion generates all the output bits of the single multiplication
in one clock cycle [11], [12], [13], [8]. In GF (2m), this
is achieved by m2 two input AND gates and a number of
two input XOR gates which is quadratic/sub-quadratic in m.
To trade-off between space and throughput, digit-level single
multipliers are deployed [11], [16], [15], [14], [17]. In digit-
level single multiplication, the space complexity is traded-off
with the number of required clock cycles in such a way that
d, 1 ≤ d < m, bits are processed in parallel during each one
of the k =

⌈
m
d

⌉
clock cycles of computations. In this paper,

we propose three new digit-level architectures for the single
GNB multiplication, which follow different input/output order
schemes, as stated next.

There are three schemes in terms of types of inputs and
output for the digit-level (DL) multipliers: parallel-in-parallel-
out (PIPO) [18], [15], [14], serial-in-parallel-out (SIPO) [19],
[16], and parallel-in-serial-out (PISO) [10], [17], [20]. In
the PIPO and PISO, both inputs are preloaded to the input
registers in advance of computations. The output is generated
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in parallel after k iterations in the PIPO, while it is generated
one digit at a time throughout the k iterations in the PISO.
The output in the SIPO scheme is generated in parallel after
k iterations. There are two variants of the SIPO scheme.
The first variant (denoted as SIPO in this paper) requires the
preloading of only one input in a single multiplier [19]. The
other variant is denoted fully-serial-in-parallel-out (FSIPO)
which does not require any preloading of the operands. This
makes the FSIPO multipliers advantageous for achieving high
throughput in applications where the data path capacity for
inputs preloading is small and m is large. In this paper,
we propose two new digit-level architectures for the FSIPO
single GNB multiplication, in addition to an area efficient
version of the MSD DL-PISO single GNB multiplier which
was originally presented in [21].

By combining a DL-PISO and a DL-SIPO single GNB
multipliers, a DL-PIPO hybrid-double GNB multiplier has
been recently proposed in [22], which performs two field mul-
tiplications using the same latency required for a single field
multiplication (i.e. k iterations). It is noted that the authors
of [22] have shown the hybrid-double multiplier to be useful
for applications where two dependent field multiplications are
involved, such as double exponentiation. In this paper, we
propose a new DL-SIPO hybrid-double GNB multiplier. More-
over, and for the first time in literature, we propose a DL-PIPO
hybrid-triple GNB multiplier by combining our proposed DL-
PISO single and DL-SIPO hybrid-double GNB multipliers.
The proposed digit-level hybrid-triple multiplication scheme
accomplishes three field multiplications using the latency re-
quired for a single digit-level multiplication. Furthermore, and
based on the new hybrid-triple GNB multiplier, we propose an
eight-ary field exponentiation architecture. Compared to the
existing eight-ary schemes [23], [24], the proposed architecture
offers almost the same latency while it does not require any
precomputation or storage of the field element’s odd powers
which are less than 8.

In the following, we present the contributions of this work.

Contributions

The contributions of this paper are summarized in Figure
1. In this paper, we propose seven new digit-level architec-
tures for the GF (2m) single, hybrid-double, and hybrid-triple
multiplication, in addition to a new digit-level architecture
for the GF (2m) eight-ary exponentiation, based on the GNB
representation when m is odd. The contributions of this work
are explained as follows:
• We propose two new architectures for MSD/LSD DL-

FSIPO single GNB multipliers (Figures 2a and 3) to
increase throughput in data-path constrained applications
for large m. The MSD version is extended / optimized
based on Feng’s original bit-level (BL) FSIPO NB multi-
plier [16], while the LSD version is presented for the first
time in literature. Moreover, we derive complexities for
our proposed architectures, as there are no space / time
complexities presented in [16]. In addition, we reduce the
XOR count through applying sub-expression sharing to
the multiplication by the normal element β.

MSD/LSD DL-FSIPO 
Single GNB 

Multipliers (Figures 
2a and 3)

Area Efficient MSD 
DL-PISO Single 
GNB Multiplier 

(Figure 4a)

Low Area / High 
Speed MSD DL-

SIPO Hybrid-Double 
GNB Multipliers 

(Figures 5a and 5b)

Low Area / High 
Speed DL-PIPO 

Hybrid-Triple GNB 
Multipliers

(Figures 6a and 6b)

Eight-ary Field 
Exponentiation 

Architecture (Figure 8)

Figure 1: Summary of contributions.

• We propose an area efficient MSD DL-PISO single GNB
multiplier (Figure 4a), where the number of XOR gates
of the original MSD DL-PISO GNB multiplier in [21] is
reduced by applying the sub-expression sharing presented
in [25].

• We propose low area/high speed designs for an MSD
DL-SIPO hybrid-double GNB multiplier (Figure 5). It is
noted that the proposed digit-level hybrid-double GNB
multiplier is the first SIPO scheme, as the one presented
in [22] follows a DL-PIPO scheme.

• We propose, and for the first time in literature, low
area/high speed designs for a DL-PIPO hybrid-triple
GNB multiplier (Figure 6). The proposed digit-level
PIPO hybrid-triple GNB multipliers perform three field
multiplications using the latency of only one digit-level
multiplication, at the expense of more space complexity.

• Finally, we propose an architecture which accomplishes
eight-ary field exponentiation (Figure 8). The proposed
scheme has almost same latency as offered by exiting
eight-ary exponentiation schemes [23], [24], however, it
does not require any precomputed or stored intermediate
values.

The paper is organized as follows. In Section II, we give a brief
introduction about multiplication in the GNB representation.
In Section III, we present the proposed MSD/LSD DL-FSIPO
single GNB multiplication schemes. Section IV explains the
proposed MSD DL-PISO single GNB multiplier. Section V
presents the proposed MSD DL-SIPO hybrid-double and DL-
PIPO hybrid-triple GNB multiplication schemes. Section VI
introduces the new eight-ary field exponentiation architecture.
Section VII concludes the paper.

II. PRELIMINARIES

In this section, we first briefly review formulations for the
bit-level (BL) PISO multiplication of two GF (2m) elements
represented in the GNB. After this, we show how one accom-
plishes the multiplication of an arbitrary field element by the
normal element β.
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A. Formulation for the BL-PISO GF (2m) Single Multiplica-
tion in the GNB Representation

Here, we present the formulations for accomplishing bit-
level PISO multiplication of two GF (2m) elements repre-
sented in the GNB.

For any m > 1 and not divisible by 8, if there exists a
prime number p = mT + 1 such that gcd (mT/g,m) = 1
where 2g ≡ 1 (mod p), then, there exists a Gaussian normal
basis (GNB)

{
β20 , . . . , β2m−1

}
of type T for representing the

GF (2m) elements. Here, β is known as the normal element.
It is noted that T is an even integer if m is odd. Any element
A ∈ GF (2m) can be represented w.r.t the GNB as A =∑m−1
i=0 aiβ

2i = (a0, . . . , am−1), where ai ∈ {0, 1}.
Now, let PA (V ) = AV = (p0, . . . , pm−1) denote the result

of multiplying A by V = (v0, . . . , vm−1). Then, by using
the following formulation, one obtains the l-th coordinate of
PA (V ), for 0 ≤ l < m [21]

pl =alv((l+1)) +

m−1∑
i=1

a((l+i))

 T∑
j=1

v((l+R[i,j]))

 , (1)

where ((q)) = q mod m and 0 ≤ R [i, j] < m, for 1 ≤ i < m
and 1 ≤ j ≤ T , is an integer entry of an (m− 1)× T matrix
R. R [i, j] corresponds to the position of the j-th 1 in the i-th
row of the GNB’s multiplication matrix M [21]. This scheme
for computing the l-th coordinate of the field multiplication
requires m AND gates and at most (m− 1)T XOR gates,
with a propagation delay of TA + (dlog2me+ dlog2 T e)TX
[22], where TA and TX denote the propagation delay in a two
input AND gate and a two input XOR gate, respectively.

In the following section, we show how the GNB multipli-
cation of an arbitrary field element by the normal element β
is accomplished.

B. Multiplication by the Normal Element β

Here, we present the formulation for accomplishing field
multiplication of an arbitrary GF (2m) element V =
(v0, . . . , vm−1) represented in the Gaussian normal ba-
sis

{
β, . . . , β2m−1

}
of type T by the normal element

β = (1, 0, . . . , 0). By substituting for (a0, . . . , am−1) with
(1, 0, . . . , 0) in (1), and considering all values of l =
0, . . . ,m− 1, we obtain [21]

Pβ (V ) =v1β +

m−1∑
i=1

 T∑
j=1

v((i+R[m−i,j]))

β2i , (2)

which requires at most (m− 1) (T − 1) XOR gates, with a
propagation delay of dlog2 T eTX . It is noted that for T > 2,
one can reduce the number of XOR gates required for realizing
(1) or (2) through applying signal reuse to M (see [26], [27]
for example), where the amount of XOR savings is obtained
through simulation.

In the following section, we present the formulations and
architectures for the proposed MSD / LSD DL-FSIPO single
GNB multipliers. We also derive the formulations for space
and time complexities of these proposed multipliers.

III. PROPOSED DL-FSIPO SINGLE GNB MULTIPLIERS

In the following, we start by presenting the proposed MSD
DL-FSIPO single GNB multiplier, followed by the LSD one.
In addition to their proofs, the proposed digit-level formula-
tions presented in this section, i.e. (3), (4), (5), and (6), have
been verified through simulations using the Sage tool [28]. It
is noted that the proposed multipliers in this section do not
require preloading of inputs, and perform the multiplication
operation as the input digits enter the multiplier. This is
advantageous, especially for large values of m, to achieve high
throughput in applications where the parallel preloading of the
inputs is not possible due to limited capacity of the data path.

A. Proposed MSD DL-FSIPO Single GNB Multiplier

In this section, we propose a digit-level MSD architecture
for the FSIPO single GNB multiplication. In what follows, we
first derive the formulations for the MSD DL-FSIPO single
multiplication in the GNB. This is followed by presenting
the proposed architecture of the MSD DL-FSIPO single GNB
multiplier. The section ends by analyzing the space and time
complexities.

1) Formulations: In this section, we derive formulations
for digit-level multiplication of two GF (2m) elements rep-
resented in the GNB, where the two inputs of the multiplier
are entered serially, digit-by-digit, in an MSD first order. In
what follows, we show the proposed MSD first recursive
construction of field elements when represented in the GNB.

Lemma 1. Given a digit size 0 < d < m, we construct a
field element A = (a0, . . . , am−1) ∈ GF (2m) represented in
the GNB, recursively, starting from the most significant digit
Ak−1 (total of k =

⌈
m
d

⌉
digits A0 through Ak−1), as follows:

A(i) =Ak−1−i +
(
A(i−1)

)2d
(3)

where i takes values from 0 to k−1, A(−1) = 0, A = A(k−1),
and Ak−1−i =

∑d−1
j=0 ad(k−1−i)+jβ

2j is the (k − 1− i)-th
digit of A = (A0, . . . , Ak−1) with ad(k−1−i)+j = 0 for
d (k − 1− i) + j ≥ m.

Proof. By substituting for i = 0, . . . , k − 1 in (3), we get

A(k−1) =A0 +

(
A1 + · · ·

(
Ak−2 + (Ak−1)

2d
)2d
· · ·
)2d

=

0∑
i=k−1

A2d(k−1−i)

k−1−i ,

and by noticing that Ak−1−i =
∑d−1
j=0 ad(k−1−i)+jβ

2j we
obtain

A(k−1) =

0∑
i=k−1

d−1∑
j=0

aj+d(k−1−i)β
2j+d(k−1−i)

=

d−1∑
j=0

ajβ
2j +

d−1∑
j=0

aj+dβ
2j+d

+ · · ·+

d−1∑
j=0

aj+d(k−1)β
2j+d(k−1)

=

m−1∑
j=0

ajβ
2j ,



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2481408, IEEE Transactions on Computers

4

where the last result is achieved since aj+d(k−1) = 0 for j +
d (k − 1) ≥ m.

Then, the multiplication of the GF (2m) elements A and B
is obtained as follows.

Proposition 1. Let E = AB be the multiplication of the two
elements A,B ∈ GF (2m) represented in the GNB. By using
construction (3), one obtains E = A(k−1)B(k−1) through the
following recurrence proceeding from i = 0 to k − 1

A(i)B(i) =
∑d−1
j=0

((
ad(k−1−i)+j

(
Bk−1−i +

(
B(i−1))2d)+

bd(k−1−i)+j

(
A(i−1)

)2d )2−j

β

)2j

+
(
A(i−1)B(i−1)

)2d
.

(4)

Proof. A(i)B(i) is obtained by substituting for A(i) and B(i)

in A(i)B(i), using (3), as

A(i)B(i) =

(
Ak−1−i +

(
A(i−1))2d)(Bk−1−i + (B(i−1))2d)

=Ak−1−i

(
Bk−1−i +

(
B(i−1)

)2d)
+

Bk−1−i

(
A(i−1)

)2d
+
(
A(i−1)B(i−1)

)2d
,

and by substituting for Ak−1−i =
∑d−1
j=0 ad(k−1−i)+jβ

2j

in Ak−1−i

(
Bk−1−i +

(
B(i−1))2d), and for

Bk−1−i =
∑d−1
j=0 bd(k−1−i)+jβ

2j in Bk−1−i
(
A(i−1))2d

we get

A(i)B(i) =
∑d−1
j=0 ad(k−1−i)+jβ

2j
(
Bk−1−i +

(
B(i−1))2d)+

d−1∑
j=0

bd(k−1−i)+jβ
2j
(
A(i−1)

)2d
+
(
A(i−1)B(i−1)

)2d
which yields

A(i)B(i) =
∑d−1
j=0

((
ad(k−1−i)+j

(
Bk−1−i +

(
B(i−1))2d)+

bd(k−1−i)+j

(
A(i−1)

)2d )2−j

β

)2j

+
(
A(i−1)B(i−1)

)2d
.

It is noted that the correctness of (4) has also been verified
using simulations with the Sage tool [28]. It is also noted that
Lemma 1 and Proposition 1 are applicable to general NBs.

In (4), the multiplication of A by B (elements of GF (2m))
represented in the GNB, is reduced recursively to a number of
bit-wise AND operations, field additions, multiplications with
the normal element β, and cyclic shifts for computing the
powers 2−j , 2j , and 2d. Notice that the addition of the digit
Bk−1−i to

(
B(i−1))2d in (4) is a free of cost concatenation.

This is because the most significant digit of B(i−1) is 0d for
0 ≤ i < k, where 0d denotes a string of zeros of length d.

Since it is already given that A(−1) = B(−1) = 0, therefore
by using (4), starting at i = 0, and proceeding up to i = k−1
(k clock cycles), we obtain the final result of the multiplication

E = A(k−1)B(k−1). At each step, the (k − 1− i)-th digit of
A and B, i.e. Ak−1−i and Bk−1−i, in addition to A(i−1),
B(i−1), and A(i−1)B(i−1), are used for computing A(i) and
B(i), and A(i)B(i) according to (3) and (4), respectively.

During the review phase of this paper, it has been pointed
out that the proposed multiplication algorithm in Propositions
1 and 2 (see Section III-B1) look similar to the one presented
in [29]. In fact, Propositions 1 and 2 build a GF (2m) element
recursively digit-by-digit, starting from the MSD and LSD,
respectively. This behavior results in a DL-FSIPO GNB mul-
tiplication scheme. The algorithm presented in [29] takes op-
posite action by recursively shrinking a GF (2m) element bit-
by-bit, starting from the LSB. The latter behavior constructs
a BL-PIPO GNB multiplication scheme, but not a DL-FSIPO
GNB one. In addition, the authors of [29] present a bit-parallel
GNB multiplier extended from their algorithm. Bit-parallel
multipliers do not require any input or output registers for their
processing and usually target high throughput applications by
generating the output in one clock cycle at the expense of
a space complexity which is quadratic in m for the scheme
in [29]. On the other hand, this paper focuses on digit-level
multiplications for resource constrained applications which
requires input / output registers and trade-off space complexity
against larger number of clock cycles.

Next, we present the proposed architecture of the MSD DL-
FSIPO single GNB multiplier.

2) Architecture: Figure 2 presents the architecture of the
proposed MSD DL-FSIPO single GNB multiplier. In this

d
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j
mmm
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Figure 2: (a) Architecture of the proposed MSD DL-FSIPO
single GNB multiplier. (b) Architecture of∇j . (c) Architecture
of βj .

figure, for 0 ≤ j < d and 0 ≤ i < k, we have: in1 = Bk−1−i+(
B(i−1))2d , in2 = ad(k−1−i)+j , in3 = bd(k−1−i)+j , and

in4 =
(
A(i−1))2d . � j and � j, respectively, represent left

and right j-bits cyclic shifts. Pβ represents the multiplication
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by β. This architecture is constructed based on (3) and (4). In
Figure 2a, d denotes digit size, k =

⌈
m
d

⌉
denotes total number

of cycles of computations, and 0 ≤ i < k refers to i-th clock
cycle.

Initially, the (m− d)-bits shift registers 〈X〉 and 〈Y 〉, and
the m-bits register 〈Z〉, are cleared (i.e., initialized by A(−1),
B(−1), and A(−1)B(−1), respectively). Then, at each i-th iter-
ation of the following k iterations, 〈X〉, 〈Y 〉, and 〈Z〉 update
their states from A(i−1), B(i−1), and A(i−1)B(i−1) to A(i),
B(i), and A(i)B(i), respectively, as follows. The two GF (2m)
input elements A and B are entered to registers 〈X〉 and 〈Y 〉,
respectively, one digit per a clock cycle, following a most
significant digit first order starting with the (k − 1)-th digits
(according to (3)). At the i-th iteration, 〈X〉 and 〈Y 〉 perform
a d-fold right shift (not cyclic) and, the (k − 1− i)-th digits of
A and B are written to the least significant d-bits of 〈X〉 and
〈Y 〉, respectively. At the same time, register 〈Z〉 accumulates

the result of the field addition
∑d−1
j=0 ∇j +

(
A(i−1)B(i−1))2d ,

where

∇j =
((

ad(k−1−i)+j

(
Bk−1−i +

(
B(i−1)

)2d)
+

bd(k−1−i)+j

(
A(i−1)

)2d )2−j

β

)2j

is generated as shown in Figures 2b and 2c. According to (4),
this results in writing A(i)B(i) to 〈Z〉. Then, after k clock
cycles, i.e. i = k− 1, we obtain 〈Z〉 = A(k−1)B(k−1) = AB.
It is noted that the proposed architecture implements Bk−1−i+(
B(i−1))2d in (4) by concatenating the d-bits of Bk−1−i to

the least significant digit of
(
B(i−1))2d (the concatenations

are shown by thick vertical lines in Figure 2, two in Figure
2a and one in Figure 2b). This concatenation is possible since
the least significant digit of

(
B(i−1))2d is simply 0d for all

0 ≤ i < k (notice from (4) that A(k−1) and B(k−1) are not
used in generating A(k−1)B(k−1)).

It is worth mentioning that, although our presented DL-
FSIPO multiplication algorithms are different from the one in
[29], however, they meet at the bit-parallel level. Accordingly,
one might construct a multiplexer based DL-FSIPO GNB
multipliers through applying partitioning to the bit-parallel
architecture presented in [29] (our proposed DL-FSIPO single
GNB multipliers are AND / XOR based). In this case, similar
efforts to those presented in this paper need to be taken in
order to optimize number of FFs and number of XOR gates
within the fixed multiplication by β. Also, notice that, the
underlying multiplication algorithm needs to be theoretically
aligned / proved according to our formulations. Otherwise, it
would be more natural to construct a DL-PIPO GNB multiplier
by partitioning of the architecture in [29], which reflects
the underlying multiplication algorithm presented in [29]. In
fact, the missing of reference to Feng’s original work [16]
throughout [29] indicates that authors of [29] were determined
to use a DL-PIPO algorithm.

In the following, we study the space and time complexities
of the proposed MSD DL-FSIPO single GNB multiplier.

3) Space and Time Complexities: The space complexity
of the proposed MSD DL-FSIPO single GNB multiplier is
listed in Table I. This includes the count of logic gates, Flip
Flop (FF), and preloading multiplexers. In this table, T is the
GNB type, while P and S denote either the corresponding
input/output is loaded/generated in parallel or in serial, respec-
tively. It is noted that this table shows the space complexity
of the proposed MSD DL-FSIPO single GNB multiplier
before applying sub-expression sharing. From Figure 2b, one
can see that each ∇j module, 0 ≤ j < d, consists of
m+m−d = 2m−d two input AND gates, and therefore, the
total number of two input AND gates in the d ∇j modules
of Figure 2a is d (2m− d). The total number of two input
XOR gates in the

∑
module of Figure 2a (a GF (2m) adder

which adds d+1 field elements) is dm. In addition, each ∇j
module has ≤ (m− d)+(T − 1) (m− 1) XORs out of which
≤ (T − 1) (m− 1) are contributed by the multiplications
by β (before sub-expression elimination, see Section II-B).
Therefore, the total number of XORs in the MSD DL-FSIPO
single GNB multiplier is ≤ d [(2m− d) + (T − 1) (m− 1)].
In addition, while register 〈Z〉 has m FFs, only m − d
FFs are required for each of registers 〈X〉 and 〈Y 〉, since
the (k − 1)-th digits in these two registers are always zeros
throughout the computations. Hence, the total number of FFs
is 2 (m− d) +m = 3m− 2d. One can also see that there are
no preloading multiplexers required for the proposed MSD
DL-FSIPO single GNB multiplier.

On the other hand, Table II reports the time complexity
of the proposed digit-level MSD FSIPO single GNB multi-
plier, in terms of the propagation delay of the correspond-
ing levels of two input XOR and AND gates through the
critical path. As seen from Figure 2a, the critical path of
the proposed architecture passes through one ∇j module and
the

∑
module. The propagation delay of a ∇j module is

TA+(1 + dlog2 (T )e)TX , where dlog2 (T )eTX is the propa-
gation delay through βj (due to the multiplication with β, see
Section II-B). Therefore, by adding the delay of the

∑
module

(a GF (2m) adder which adds d+1 field elements), which is
dlog2 (d+ 1)eTX , the total propagation delay of the proposed
multiplier becomes TA + [1 + dlog2 (d+ 1)e+ dlog2 T e]TX .

4) Bit-Level Case: It is noted that the original bit-level
FSIPO NB multiplication scheme was presented by Feng [16]
for an MSB order of the inputs. By considering a single-
bit digit size, one obtains a bit-level MSB FSIPO single
GNB multiplier from our proposed digit-level architecture.
Our MSB BL-FSIPO single GNB multiplier offers a maximum
propagation delay of TA + 3TX , while it requires 13 FFs,
9 ANDs, and 13 XORs (for GF

(
25
)

and T = 2). On the
other hand, the GF

(
25
)

multiplier presented in [16] has a
maximum propagation delay of TA + 6TX and requires 13
FFs, 9 ANDs, and 15 XORs. In addition, we further reduce
the space complexity of our proposed architecture (for T > 2)
through applying sub-expression sharing techniques to the
multiplication by β (see [26], [27] for example).

Table III estimates the corresponding space and time com-
plexity readings for the case of bit-level (d = 1) versions of the
different multipliers in Tables I and II, considering the type-4
GNB of GF

(
2163

)
, based on the STMicroelectronics 65nm
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Table I: Space complexity of digit-level single GNB multipliers. PIL / SIL = Parallel / Serial input loading.

Multiplier FF AND XOR 2 : 1 1-bit MUX Input Input OutputPIL SIL 1 2

DL-PISO [10] 2m d [T (m− 1) + 1] d [T (m− 1)] 2m 2d P P S
DL-PISO [17] 2m dm d [T (m− 1)] 2m 2d P P S

DL-PISO1 [22] 2m dm ≤ d
[
(T − 1)

(
(m− 1)− d−1

2

)]
+ d (m− 1) 2m 2d P P S

DL-PIPO [25] 3m dm d
[
(m−1)(T−1)

2
+m

]
2m 2d P P P

DL-SIPO1 [22] 2m dm ≤ d (T − 1)
[
(m− 1)− d−1

2

]
+ dm m d S P P

MSD / LSD DL-FSIPO2
3m− 2d d (2m− d) ≤ d [(2m− d) + (T − 1) (m− 1)] 0 0 S S P(Figures 2 & 3)

MSD DL-PISO1
2m dm ≤ d

[
(T − 1)

(
(m− 1)− d−1

2

)]
+ d (m− 1) 2m 2d P P S(Figure 4a)

1 without applying group sub-expression elimination. 2 without applying sub-expression elimination.

Table II: Time complexity of digit-level single GNB multipliers in terms of number of two input AND and XOR gates levels.

Multiplier Propagation Serial Preloading Computation
Delay Latency Latency

DL-PISO [10] TA + (dlog2 (T (m− 1) + 1)e)TX k k
DL-PISO [17] TA + (dlog2me+ dlog2 T e)TX k k
DL-PISO [22] TA + (dlog2me+ dlog2 T e)TX k k
DL-PIPO [25] TA + (dlog2 (d+ 1)e+ dlog2 T e)TX k k
DL-SIPO [22] TA + (dlog2 (d+ 1)e+ dlog2 T e)TX k k

MSD / LSD DL-FSIPO
TA + [1 + dlog2 (d+ 1)e+ dlog2 T e]TX 0 k(Figures 2 & 3)

MSD DL-PISO
TA + (dlog2me+ dlog2 T e)TX k k(Figure 4a)

Table III: Space and time complexity readings for the case of type-4 GNB of GF
(
2163

)
bit-level single multipliers. TP/G

estimated in Kbps/Gate.

Multiplier CPD Serial Input Loading Parallel Input Loading
nsec Total Gates2 Latency TP/G @ 1 GHz Total Gates2 Latency TP/G @ 1 GHz

BL-PISO [10] 0.43 3333.75 326 150 3981.75 164 250
BL-PISO [17] 0.43 2726.25 326 183 3374.25 164 295
BL-PIPO [25] 0.15 2853.5 326 175 3501.5 164 284
LSB BL-SIPO [22] 0.15 2726.25 326 183 3050.25 164 326
MSB / LSB BL-FSIPO1 (Figures 2 & 3, d = 1) 0.19 3854.5 163 259 3854.5 163 259
1 without elimination. If we apply the elimination in [26], savings is 127 XORs = 254 GE. 2 with MUXs.

CMOS standard library. Synthesis results based on this library
using Synopsys Design Vision tool reports the area (measured
in (µm)

2) for a two input NAND, two input AND, two input
XOR, D-type FF, and a 2 : 1 1-bit MUX as 2.08, 2.6, 4.16,
7.8, and 4.16, respectively. The total NAND gate equivalency
(GE) for any design is obtained through dividing its total area
by the area of a single NAND gate. According to the same
library, the propagation delay measured in nano seconds (nsec)
for a two input NAND, two input AND, two input XOR, D-
type FF, and a 2 : 1 1-bit MUX are 0.02, 0.03, 0.04, 0.05,
and 0.03, respectively. In Table III, CPD denotes critical path
delay. Latency denotes the number of clock cycles required
for computing the m-bits of output. TP is throughput (@ 1
GHz) and TP/G denotes throughput per total GE estimated
in Kbps/Gate. Throughput is estimated as the number of the
multiplier’s output bits (i.e., m) divided by latency and multi-
plied by a speed of 1 GHz, that is, TP = m

latency × (1 GHz).
As one can see from this table, the bit-level version of the
proposed DL-FSIPO single GNB multiplier offers half the
latency and provides the best normalized throughput compared
to the other multipliers in the case of serial loading of inputs.
Moreover, one can further reduce the space complexity of the

proposed architecture through applying sub-expression sharing
techniques to the multiplication by β. For example, if we apply
the elimination algorithm proposed in [26], we save 127 XORs
which is equivalent to 254 GE.

Note that, even though a DL-SIPO single GNB multiplier
requires only one parallel input, the problem of preloading
of this single input might still exist if m is large and the
underlying application is resource constrained and has a lim-
ited capacity input data-path (for example, NIST recommends
163 ≤ m ≤ 571 for ECDSA [9]).

In the following section, we introduce the proposed LSD
DL-FSIPO single GNB multiplier.

B. Proposed LSD DL-FSIPO Single GNB Multiplier

In this section, we present the LSD DL-FSIPO single
GNB multiplier. We start by deriving the formulations for the
LSD DL-FSIPO single GNB multiplication scheme. Then we
present the architecture of the proposed multiplier. We end this
section by studying space and time complexities.

1) Formulations: Here, we derive the formulations for
digit-level multiplication of two GF (2m) elements based on
the GNB representation, where the two inputs of the multiplier
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are entered in an LSD first order. In the following we first show
how we construct the elements of GF (2m) when represented
in the GNB, digit by digit, starting from the least significant
digit.

Lemma 2. Given the digit size 0 < d < m, an arbitrary
GF (2m) element A = (a0, . . . , am−1) represented in the
GNB is constructed, recursively, starting with its least sig-
nificant digit (k =

⌈
m
d

⌉
digits), as follows:

A(i) =
(
Ai +A(i−1)

)2−d

(5)

where i takes values from 0 to k−1, A = A(k−1), A(−1) = 0,
and Ai =

∑d−1
j=0 adi+j−rβ

2j is the i-th digit of A such that
adi+j−r = 0 for di + j − r < 0 given r = kd − m which
represents the number of left padded zeros.

Proof. By substituting for i = 0, . . . , k − 1 in (5), we get

A(k−1) =

(
Ak−1 + · · ·

(
A1 + (A0)

2−d
)2−d

· · ·
)2−d

=

k−1∑
i=0

A2−d(k−i)

i ,

and by noticing that Ai =
∑d−1
j=0 adi+j−rβ

2j we obtain

A(k−1) =

k−1∑
i=0

d−1∑
j=0

adi+j−rβ
2j−d(k−i)

=

k−1∑
i=0

d−1∑
j=0

adi+j−rβ
2j+di

2−dk

.

Now, let l = di + j, and notice that dk = m + r (since
r = kd−m), then

A(k−1) =

(
m+r−1∑
l=0

al−rβ
2l

)2−m−r

=

(
m−1∑
l=−r

alβ
2l+r

)2−r

=

m−1∑
l=0

alβ
2l ,

where the last result is achieved since al = 0 for l < 0.

Then, the multiplication of two GF (2m) elements A and
B represented in the GNB and constructed by (5), is obtained
as follows.

Proposition 2. Let E = AB be the multiplication of two
elements A,B ∈ GF (2m) represented in the GNB. Therefore,
using construction (5), E = A(k−1)B(k−1) is obtained by the
following recurrence

A(i)B(i) =

[ d−1∑
j=0

((
adi+j−r

(
Bi +B(i−1)

)
+

bdi+j−rA
(i−1)

)2−j

β

)2j

+A(i−1)B(i−1)
]2−d

,

(6)

where i proceeds from 0 to k − 1, and A(−1) = B(−1) =
A(−1)B(−1) = 0.

Proof. A(i)B(i) is obtained by substituting for A(i) and B(i)

in A(i)B(i), using (5), as
A(i)B(i) =

[(
Ai +A(i−1)) (Bi +B(i−1))]2−d

=
[
Ai

(
Bi +B(i−1)

)
+BiA

(i−1) +A(i−1)B(i−1)
]2−d

,

and by substituting for Ai =
∑d−1
j=0 adi+j−rβ

2j in
Ai
(
Bi +B(i−1)), and for Bi =

∑d−1
j=0 bdi+j−rβ

2j in
BiA

(i−1) we get

A(i)B(i) =

[ d−1∑
j=0

adi+j−rβ
2j
(
Bi +B(i−1)

)
+

d−1∑
j=0

bdi+j−rβ
2jA(i−1) +A(i−1)B(i−1)

]2−d

which yields

A(i)B(i) =

[ d−1∑
j=0

((
adi+j−r

(
Bi +B(i−1)

)
+

bdi+j−rA
(i−1)

)2−j

β

)2j

+A(i−1)B(i−1)
]2−d

.

Notice that Lemma 2 and Proposition 2 are also applicable
to general NBs. In (6), and similar to (4), the multiplication
of A by B (elements of GF (2m)) represented in the GNB, is
reduced recursively to a number of bit-wise AND operations,
field additions, multiplications with the normal element β, and
cyclic shifts for computing the powers 2−j , 2j , and 2−d. It is
noted that the field addition of the term Bi in (6) is realized
through concatenation. The concatenation is possible since the
least significant digit of B(i−1) is always 0 for 0 ≤ i < k (only
B(k−1) has a non zero LSD; however, B(k−1) is not used in
computing A(k−1)B(k−1)).

Since it is already given that A(−1) = B(−1) = 0, therefore,
starting at i = 0, and proceeding up to i = k−1, we obtain the
final result of the multiplication AB = A(k−1)B(k−1). As one
can see from (6), at each step, the i-th digits in A and B, i.e.
Ai and Bi, together with A(i−1) , B(i−1), and A(i−1)B(i−1),
are used for computing A(i)B(i).

Next, we present the proposed architecture of the LSD DL-
FSIPO single GNB multiplier.

2) Architecture: Here, we introduce the architecture of
the proposed LSD DL-FSIPO single GNB multiplier. This
architecture is shown in Figure 3, which is constructed based
on (5) and (6). In this figure, i denotes the i-th clock cycle
of the computations, 0 ≤ i < k. First, the (m− d)-bits
shift registers 〈X〉 and 〈Y 〉, and the m-bits register 〈Z〉 are
cleared (in other words, 〈X〉, 〈Y 〉, and 〈Z〉 are loaded with
A(−1), B(−1), and A(−1)B(−1), respectively). After this, and
at each of the following i-th iterations, 0 ≤ i < k, registers
〈X〉, 〈Y 〉, and 〈Z〉 change states from A(i−1), B(i−1), and
A(i−1)B(i−1) to A(i), B(i), and A(i)B(i), respectively, as
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Figure 3: Architecture of the proposed LSD DL-FSIPO single
GNB multiplier. Architecture of ∇j and βj (which is a
component of ∇j) blocks are shown in Figures 2b and 2c,
respectively, where in Figure 2b, and at iteration 0 ≤ i < k,
we have: in1 = Bi + B(i−1), in2 = adi+j−r, in3 = bdi+j−r,
and in4 = A(i−1).

follows. At iteration i, 〈X〉 and 〈Y 〉 perform a d-fold left shift
(not cyclic) and, at the same time, the i-th digits of the field
elements A and B are written to the most significant d-bits of
〈X〉 and 〈Y 〉, respectively, according to (5). Moreover, and at
the same time, register 〈Z〉 accumulates the d-fold left cyclic
shift of

∑d−1
j=0 ∇j + A(i−1)B(i−1), where the architecture of

∇j is captured in Figure 2b and implements((
adi+j−r

(
Bi +B(i−1)

)
+ bdi+j−rA

(i−1)
)2−j

β

)2j

for in1 = Bi + B(i−1), in2 = adi+j−r, in3 = bdi+j−r,
and in4 = A(i−1). Therefore, after the i-th clock cycle,
〈Z〉 = A(i)B(i), as one can see from (6). After k clock cycles
we get 〈Z〉 = A(k−1)B(k−1) = AB. It is noted that, the
least significant digit of B(i−1) is always 0d for 0 ≤ i < k,
where 0d denotes a string of zeros of length d. Therefore,
the proposed architecture implements Bi + B(i−1) in (6) by
concatenating Bi to the least significant digit of B(i−1).

In the following, we analyze the space and time complexi-
ties of the LSD DL-FSIPO single GNB multiplier.

3) Space and Time Complexities: The space complexity
of the proposed LSD DL-FSIPO single GNB multiplier is
listed in Table I, in terms of the count of logic gates, FFs,
and preloading multiplexers. In Section III-A3, we found that
each ∇j module, 0 ≤ j < d, has 2m − d AND gates
and ≤ (m− d) + (T − 1) (m− 1) XOR gates. Figure 3, on
the other hand, shows that the number of two input XOR
gates in the

∑
module (a GF (2m) adder which adds d + 1

field elements) is dm. And hence, the total number of two
input AND gates is d (2m− d), while the total number of
XOR gates adds up to ≤ d [(2m− d) + (T − 1) (m− 1)]. In
addition, one can notice that, while register 〈Z〉 has m FFs,
registers 〈X〉 and 〈Y 〉 have m− d FFs each, since their least
significant digits will always be zero throughout the k clock
cycles of computations. This adds up to a total of 3m − 2d

FFs. It is also noted that no preloading MUXs required for the
proposed LSD DL-FSIPO single GNB multiplier.

The time complexity of the proposed LSD DL-FSIPO single
GNB multiplier is reported in Table II, in terms of levels of the
propagation delay of two input XOR and AND gates through
its critical path. Similar to the proposed MSD DL-FSIPO
single GNB multiplier (see Section III-A3), Figure 3 shows
that the propagation delay of the proposed LSD architecture
is equivalent to the sum of the propagation delays through
one ∇j module and the

∑
module. Hence, the maximum

propagation delay in the proposed LSD DL-FSIPO single
GNB multiplier is TA + [1 + dlog2 (d+ 1)e+ dlog2 T e]TX ,
as shown in Table II.

IV. PROPOSED DL-PISO SINGLE GNB MULTIPLIER

In this section, we present the proposed architecture of
the area efficient MSD DL-PISO single GNB multiplier. This
multiplier is an area-optimized instance of the one presented
by the authors of [21], which is based on (1), and hence,
the reader is referred to [21] for more details about the
formulations. The area reduction is accomplished through
applying the group sub-expression sharing algorithm presented
in [25]. In what follows, we first show the architecture of the
proposed multiplier, followed by analyzing its space and time
complexities.

A. Architecture

Here, we present an area efficient architecture for the MSD
DL-PISO single GNB multiplier, as it is shown in Figure 4a.
Notice that, the proposed DL-PISO GNB multiplier requires

<Y>
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Figure 4: (a) The proposed architecture of the MSD DL-PISO
single GNB multiplier. (b) Architecture of the Rd block before
applying sub-expression sharing. (c) Architecture of the IP
block. 0 ≤ i < k denotes the iteration number, k =

⌈
m
d

⌉
.

additional m-bit 2 : 1 multiplexers for parallel loading of
inputs, while it requires additional d-bit 2 : 1 multiplexers for
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serial loading of inputs. These multiplexers are not shown in
Figure 4a. The architecture in this figure differs from the LSD
DL-PISO single GNB multiplier, which is presented in [22], in
that it generates the multiplication output in the order of most
significant digit first. This is accomplished through generating
the d output bits z(i)d−1 through z(i)0 , during iteration i, where
0 ≤ i < k, as follows. In Figure 4a, a bit z(i)n denotes the
left most (least significant) coordinate of P 2−n

X(i)

(
Y (i)

)
, where

0 ≤ n < d and , X(i) = A2(i+1)d−t

and Y (i) = B2(i+1)d−t

(t = k× d−m) denote the contents of registers 〈X〉 and 〈Y 〉
at the i-th iteration of the computations. It is noted that z(i)n ,
the left most coordinate of P 2−n

X(i)

(
Y (i)

)
, is obtained according

to (1) as follows

z(i)n =x(i)n y
(i)
n+1 +

m−1∑
u=1

x
(i)
((n+u))

(
T∑
v=1

y
(i)
((n+R[u,v]))

)
. (7)

In (7), x(i)j and y(i)j , respectively, denote the j-th coordinates
(cells) of registers 〈X〉 and 〈Y 〉 during the i-th iteration.
Therefore, by initializing registers 〈X〉 and 〈Y 〉 such that
X(0) = A2d−t

and Y (0) = B2d−t

, one obtains the most signif-
icant digit of the output. It is noted that the t-fold left cyclic
shift in A2d−t

and B2d−t

is implemented in order to allow for
appending zeros to the t most significant bits of the first output
digit (most significant digit), i.e.,

(
z
(0)
d−t, . . . , z

(0)
d−1

)
. This is

required for compatibility of integration with the proposed
MSD DL-FSIPO single GNB multiplier (see Section V). Then,
at the i-th iteration, 0 ≤ i < k, one has X(i) = A2(i+1)d−t

and
Y (i) = B2(i+1)d−t

, due to the d-fold right cyclic shifts which
are applied to 〈X〉 and 〈Y 〉 at each clock cycle, as shown
in Figure 4a. According to this, bit z(i)n of the i-th output
digit in Figure 4a maps to the output bit em−(d(i+1)−t)+n
of the multiplication result E = AB. For all 0 ≤ n < d,
the inner product in (7) is realized through an IP block in
Figure 4a, while the d instances (for 0 ≤ n < d) of the
m− 1 bits of

∑m−1
u=1

(∑T
v=1 y((n+R[u,v]))

)
β2u are generated

through the Rd block, which is shown in Figure 4b. This figure
shows the architecture of Rd before applying the group sub-
expression sharing algorithm presented in [25], where each R
block represents the matrix multiplication of the lower m− 1
rows of the multiplication matrix M by the corresponding m-
bits input vertical vector.

The following is the space and time complexity analysis of
the proposed MSD DL-PISO single GNB multiplier.

B. Space and Time Complexities

Here, we discuss the space and time complexities of the
proposed MSD DL-PISO single GNB multiplier in Figure
4a. In this figure, an IP block consists of m AND gates and
m − 1 XOR gates, as it is shown in Figure 4c. Furthermore,
for area efficiency, the Rd block of Figure 4a realizes a
group sub-expression shared version of the d R blocks in
Figure 4b based on the algorithm presented in [25]. It is
noted that one can find the number of eliminations due to
this sharing through simulation. Therefore, the architecture
of Figure 4a requires a total of 2m FFs, dm ANDs, and

≤ d
[
(T − 1)

(
(m− 1)− d−1

2

)]
+ d (m− 1) XORs, as pre-

sented in Table I, where ≤ (T − 1) (m− 1) is the number of
XOR gates in each R block before sub-expression sharing (see
Section II-B) and the term d(d−1)

2 is due to the elimination of
common rows between different R matrices which are used
in implementing the d R blocks [22].

For the time complexity, one can see that the critical
path of Figure 4a has a propagation delay equals to TA +
(dlog2 T e+ dlog2me)TX , as presented in Table I, where the
delay through the area optimized Rd block is dlog2 T eTX
[22], and that through an IP module is TA + dlog2meTX .

In the following, we combine the proposed MSD DL-FSIPO
and DL-PISO single GNB multipliers to construct an MSD
DL-SIPO hybrid-double and a DL-PIPO hybrid-triple GNB
multipliers.

V. PROPOSED DIGIT-LEVEL HYBRID-DOUBLE AND
HYBRID-TRIPLE GNB MULTIPLIERS

A hybrid-double digit-level GNB multiplication architecture
has been recently proposed by the authors of [22], which
performs two field multiplications (multiplication of three field
elements) using the same latency required for a single field
multiplication (i.e. k =

⌈
m
d

⌉
iterations for a digit size d). To

accomplish this, the authors of [22] have extended the LSB
BL-PISO GNB multiplier in [21] and the LSB BL-SIPO GNB
multiplier in [19] to the digit-level, then, by combining these
two digit-level single GNB multipliers, they constructed their
DL-PIPO hybrid-double GNB multiplier.

In this section, we present four new architectures for
GF (2m) digit-level hybrid multiplications, two for an MSD
DL-SIPO hybrid-double multiplication (a low area and a high
speed designs) and, for the first time, two architectures (low
area / high speed) for a DL-PIPO hybrid-triple multiplication
(multiplication of four field elements), when the field elements
are represented in the GNB. In order to construct the proposed
hybrid-double multiplier, we combine the MSD DL-PISO
single GNB multiplier presented in Section IV-A with the
proposed MSD DL-FSIPO single GNB multiplier of Figure
2a. On the other hand, the proposed hybrid-triple multiplier
is constructed by combining the MSD DL-PISO single GNB
multiplier presented in Section IV-A with the MSD DL-SIPO
hybrid-double GNB multiplier proposed in this section1.

In the following, we first present the proposed architectures
of the MSD DL-SIPO hybrid-double GNB multiplier, followed
by those of the proposed DL-PIPO hybrid-triple GNB multi-
plier. We conclude this section by analyzing the space and
time complexities of the two proposed hybrid multipliers.

A. Proposed MSD DL-SIPO Hybrid-Double GNB Multiplier

This section presents the architecture of the proposed MSD
DL-SIPO hybrid-double GNB multiplier. It is noted that the
hybrid-double GNB multiplier proposed by the authors of [22]
follows a DL-PIPO scheme of its inputs/outputs, while our

1It is noted that one can build an LSD DL-SIPO hybrid-double architecture,
as well as a DL-PIPO hybrid-triple architecture, by combining the LSD
DL-PISO GNB multiplier presented in [22] with the LSD DL-FSIPO GNB
multiplier which is proposed in this paper.
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proposed architecture is the first DL-SIPO scheme for the
digit-level hybrid-double GNB multiplication. Figure 5 shows
two versions of the proposed MSD DL-SIPO hybrid-double
GNB multiplier, one for a low area design (Figure 5a) and the
other for a high speed design (Figure 5b). It is noted that the

(Figure 4a)

MSD

(Figure 2a)

(a)

d
<W>

d d-t m

E

MSD

1

t
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d
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DL-PISO 
(Figure 4a)m

A

B

MSD 
DL-

FSIPO 
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dC||0
d
 =(C0 Ck-1)||0

d

(b)

Figure 5: Architectures of the proposed MSD DL-SIPO
hybrid-double GNB multiplier, where t = k × d − m: (a)
Low area design. (b) High speed design. The appended 0d

(zero digit) in input C balances the timing due to pipelining.

most significant t-bits - where t = k×d−m, k =
⌈
m
d

⌉
, and d

is the digit size - of the first output digit (most significant digit)
of the MSD DL-PISO single GNB multipliers in Figure 5 are
set to zero through the MSD signal. As can be seen from
the figure, the low area MSD DL-SIPO hybrid-double GNB
multiplier is built from MSD DL-PISO and DL-FSIPO single
GNB multipliers with the output of the former connected to
one input of the latter. On the other hand, the high speed
version follows from the low area version by inserting the d-
bits register 〈W 〉 between the output of the DL-PISO, and the
input of the DL-FSIPO, single GNB multipliers, as can be
seen from Figure 5b. This, in turn, shortens the propagation
delay of the multiplier’s critical path, which results in reaching
higher operating frequencies compared to the low area version.
However, it adds one extra clock cycle to the latency. Each one
of the two versions of the proposed MSD DL-SIPO hybrid-
double GNB multiplier takes three inputs, two of which are
m-bits wide each (inputs A and B in Figure 5), while the third
one has only d-bits (input C in Figure 5).

Initially, A and B are loaded to the input registers of the
MSD DL-PISO single GNB multiplier, while the input/output
registers of the MSD DL-FSIPO single GNB multiplier are
cleared out. In the low area version, at the i-th clock cycle, 0 ≤
i < k, the MSD DL-PISO single GNB multiplier generates the
(k − 1− i)-th output digit for the multiplication AB, while
the MSD DL-FSIPO single GNB multiplier generates E(i) =
(AB)

(i)
C(i) (according to (3) and (4)). After k iterations, the

output register of the MSD DL-FSIPO single GNB multiplier
holds the result of the triple multiplication, i.e., E(k−1) =
(AB)

(k−1)
C(k−1). In the high speed version, an extra clock

cycle is required at the beginning to store the MSD output
digit of the DL-PISO single GNB multiplier to register 〈W 〉.

In the following, we introduce the proposed architectures
for the DL-PIPO hybrid-triple GNB multiplier.

B. Proposed DL-PIPO Hybrid-Triple GNB Multiplier

In this section, we present the proposed architectures for
the DL-PIPO hybrid-triple GNB multiplier. To the best of
the authors’ knowledge, this is the first digit-level hybrid
GNB multiplier proposed in the literature which performs
three GF (2m) multiplications using the same latency of a
single digit-level field multiplication (multiplying of four field
elements of A, B, C, and D together). Figures 6a and 6b
present two variants of the proposed DL-PIPO hybrid-triple
GNB multiplier. Figure 6a is a low area design, while Figure
6b shows a high speed design. The most significant t-bits,

m

m
m

(Figure 5a)
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Figure 6: Architectures of the proposed DL-PIPO hybrid-triple
GNB multiplier: (a) Low area design. (b) High speed design.

t = k × d − m, of the first output digit of the MSD DL-
PISO single GNB multipliers in these figures are set to zero
through the MSD signal. In Figure 6a, the low area DL-
PIPO hybrid-triple GNB multiplier is constructed from one
MSD DL-PISO single, and one low area MSD DL-SIPO
hybrid-double, GNB multipliers with the output of the former
connected to the serial input of the latter. The high speed
DL-PIPO hybrid-triple GNB multiplier instance uses a high
speed MSD DL-SIPO hybrid-double GNB multiplier. Also,
it has a d-bits register 〈V 〉 inserted between the output of
the MSD DL-PISO single GNB multiplier and the input of
the high speed MSD DL-SIPO hybrid-double GNB multiplier
(see Figure 6b). This leads to shorter critical path, and hence,
results in reaching higher operating frequencies compared to
the low area instance; however, at the expense of one extra
clock cycle.

Each one of the two proposed hybrid-triple GNB multi-
plier’s versions takes four m-bits inputs, denoted by A, B,
C, and D, and generates an m-bits output, i.e. E = ABCD.
Initially, A, B, C, and D are loaded to the input registers
of the MSD DL-PISO single GNB multipliers (including the
one in the DL-SIPO hybrid-double GNB multiplier), while
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Table IV: Space complexity of the digit-level hybrid-double and hybrid-triple GNB multipliers. PIL = Parallel input loading,
SIL = Serial input loading.

Multiplier D-FF AND XOR1
2 : 1 MUX

PIL SIL

DL-PIPO Hybrid-Double2 (low area) [22] 4m 2dm+ t ≤ d (T − 1) [2 (m− 1)− (d− 1)] + d (2m− 1) 3m 3d
DL-PIPO Hybrid-Double2 (high speed) [22] 4m+ d 2dm+ t ≤ d (T − 1) [2 (m− 1)− (d− 1)] + d (2m− 1) 3m 3d

MSD DL-SIPO Hybrid-Double (low area) (Figure 5a) 5m− 2d d (3m− d) + t ≤ d (T − 1)
[
2 (m− 1)− d−1

2

]
+ d (3m− (d+ 1)) 2m 2d

MSD DL-SIPO Hybrid-Double (high speed) (Figure 5b) 5m− d d (3m− d) + t ≤ d (T − 1)
[
2 (m− 1)− d−1

2

]
+ d (3m− (d+ 1)) 2m 2d

DL-PIPO Hybrid-Triple (low area) (Figure 6a) 7m− 2d d (4m− d) + 2t ≤ d (T − 1) [3 (m− 1)− (d− 1)] + d (4m− (d+ 2)) 4m 4d
DL-PIPO Hybrid-Triple (high speed) (Figure 6b) 7m d (4m− d) + 2t ≤ d (T − 1) [3 (m− 1)− (d− 1)] + d (4m− (d+ 2)) 4m 4d

1 without sub-expression elimination. 2Note: the authors of [22] did not count for the t ANDs which are required for appending zeros .

Table V: Time complexity of the digit-level hybrid-double and hybrid-triple GNB multipliers.

Multiplier Propagation Serial Loading Computation
Delay of Inputs Latency Latency

DL-PIPO Hybrid-Double (low area) [22] TPISO + TSIPO k k
DL-PIPO Hybrid-Double (high speed) [22] max {TPISO, TSIPO} k k + 1

MSD DL-SIPO Hybrid-Double (low area) (Figure 5a) TPISO + TFSIPO + TA k k
MSD DL-SIPO Hybrid-Double (high speed) (Figure 5b) max {TPISO, TFSIPO + TA} k k + 1

DL-PIPO Hybrid-Triple (low area) (Figure 6a) TPISO + TFSIPO + TA k k
DL-PIPO Hybrid-Triple (high speed) (Figure 6b) max {TPISO, TFSIPO + TA} k k + 1

the input/output registers of the MSD DL-FSIPO single GNB
multiplier (in the hybrid-double multiplier) are cleared out. In
the low area version, at the i-th clock cycle, 0 ≤ i < k,
the MSD DL-PISO single GNB multipliers generate their
(k − 1− i)-th output digits for AB and CD at the same time,
while the output register of the MSD DL-SIPO hybrid-double
multiplier computes E(i) = (AB)

(i)
(CD)

(i) (according to
(3) and (4)). After k iterations, the output register of the low
area DL-PIPO hybrid-triple GNB multiplier holds E(k−1) =
(AB)

(k−1)
(CD)

(k−1)
= ABCD. On the other hand, the high

speed version generates its final output after k+1 clock cycles,
since an extra clock cycle is required, at the beginning, to store
the MSD output digit of CD in register 〈V 〉 and the MSD
output digit of AB in register 〈W 〉 (see Figure 5b).

C. Space and Time Complexity Analysis

Here, we derive space and time complexities of proposed
digit-level hybrid-double and hybrid-triple GNB multipliers.
Table IV shows space complexities of proposed hybrid GNB
multipliers, while Table V presents their time complexities.
In the latter, TPISO = TA + (dlog2 T e+ dlog2me)TX
denotes the delay in the DL-PISO single GNB multiplier,
TSIPO = TA + (dlog2 (d+ 1)e+ dlog2 T e)TX denotes the
delay in the DL-SIPO single GNB multiplier, and TFSIPO =
TA+(1 + dlog2 (d+ 1)e+ dlog2 T e)TX denotes the delay in
the DL-FSIPO single GNB multiplier. Notice that, the loading
multiplexers listed in Table IV for parallel / serial inputs
loading (PIL / SIL) are not shown in Figures 5 and 6.

From Figure 5a, one obtains the space complexity of the
low area MSD DL-SIPO hybrid-double GNB multiplier (see
Table IV) by adding the space complexities of the MSD DL-
PISO and DL-FSIPO single GNB multipliers, in addition to
the t AND gates. Similarly, one can find the space complexity
of the low area DL-PIPO hybrid-triple GNB multiplier by

adding the gate count in its MSD DL-PISO single and DL-
SIPO hybrid-double GNB multipliers, in addition to the t AND
gates in Figure 6a, as can be seen from Table IV. Moreover, the
space complexities of the high speed versions of the proposed
hybrid-double and hybrid-triple GNB multipliers are achieved
by adding d and 2d FFs, respectively, to the space complexities
of the corresponding low area versions.

In addition, from Figures 5a and 6a, one finds that the low
area architectures of the proposed MSD DL-SIPO hybrid-
double GNB multiplier and the proposed DL-PIPO hybrid-
triple GNB multiplier offer maximum propagation delays
which are equivalent to TPISO + TFSIPO + TA. In the latter
formulation, TPISO and TFSIPO denote the propagation delay
through the MSD DL-PISO single GNB multiplier and the
MSD DL-FSIPO single GNB multiplier, respectively. On the
other hand, due to the insertion of registers (Figures 5b and
6b), the propagation delays of the high speed architectures of
the proposed digit-level hybrid-double and hybrid-triple GNB
multipliers are reduced to max {TPISO, TFSIPO + TA}.

The following briefly discusses advantages of digit-level
hybrid GNB multipliers for accomplishing double and triple
field multiplications, compared to digit-level single GNB mul-
tipliers with 2d and 3d digit sizes, respectively.

D. Hybrid Versus Single Digit-Level GNB Multipliers

The proposed digit-level hybrid-double and hybrid-triple
GNB multipliers are constructed using two and three digit-
level single GNB multipliers, respectively. Hence, for a fair
discussion, we compare the digit-level hybrid-double and
hybrid-triple GNB multipliers, of digit size d each, to digit-
level single GNB multipliers of digit sizes 2d and 3d, respec-
tively. In this section, we briefly discuss some cases in which
using the proposed digit-level hybrid-double and hybrid-triple
GNB multipliers is expected to have advantages over using
digit-level single GNB multipliers, for accomplishing double
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and triple field multiplications, respectively. In the future, a
more detailed study will be carried out to define the cases
in which using the proposed digit-level hybrid multipliers is
better, or not, compared to using a digit-level single multiplier.

In some cases, using the digit-level (digit size d) hybrid-
double and hybrid-triple GNB multipliers, for double and
triple field multiplications, respectively, can achieve lower
computational latency or space, and hence higher throughput,
compared to using digit-level single GNB multipliers with
digit sizes 2d and 3d, respectively.

For example, by using a digit-level hybrid-double GNB
multiplier with d =

⌈
m
3

⌉
, one obtains the result of a double

field multiplication after 3 clock cycles. However, a digit-level
single GNB multiplier computes the double field multiplica-
tion over 4 clock cycles for a digit size 2d = 2

⌈
m
3

⌉
.

As another example, a digit-level hybrid-triple GNB multi-
plier with d =

⌈
m
2

⌉
accomplishes a triple field multiplication

over 2 clock cycles, while the same latency can only be
achieved by using two bit-parallel GNB multipliers which is
expected to result in higher space complexity.

E. Hybrid Versus Tree-Structure of Systolic Multiplier in [30]

During review phase of this paper, it has been noted that a
tree structure of the systolic single GNB multiplier presented
in [30] might lead to triple multiplication with better latency
of 4

⌈√
m
d

⌉
. The following compares complexities for hybrid-

triple multiplication when conducted by our proposed hybrid-
triple GNB multiplier versus a tree structure constructed from
the systolic multiplier in [30].

The tree structure based on systolic multiplier in [30] is
shown in Figure 7a. The tree element (TE) is shown in Figure

A

B

m

m

m

m

m

m mC
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m
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Figure 7: (a) Tree structured triple multiplier based on systolic
GNB multiplier in [30]. (b) Tree element (TE).

7b. In Figure 7b, the systolic single GNB multiplier from [30]
is constructed out of γ =

⌈√⌈
m
d

⌉⌉
processing elements (PE)

of digit size d each. Since the digit size refers to the total
number of bits processed in parallel in a single clock cycle
[31], [32], therefore, the actual digit size of the multiplier in
[30] is γd.

The space complexity of a TE in Figure 7b is obtained by
adding two m-bits registers (see Figure 7b) to the multiplier’s
complexity reported in [30], as follows:

FF = 3

(
1 +

⌈√
m

d

⌉)
m,AND =

⌈√
m

d

⌉
dm,

XOR ≤
⌈√

m
d

⌉
d (m− 1)

2
(T − 1) +

(
1 +

⌈√
m

d

⌉
d

)
m.

Table VI lists the estimated complexities for hybrid-triple
multiplication when GF

(
2163

)
elements are represented by

type 4 GNB. Complexities are listed for the tree structured
design in Figure 7 and for the proposed low area hybrid-triple
GNB multiplier, considering two cases for the latter. In the first
case, we increase the digit sizes of our proposed hybrid-triple
GNB multiplier to have similar digit size (i.e., comparable
area) to the one proposed in [30]. This is similar to what
has been commented in [32]. The second case compares the
hybrid-triple multiplier to the design of Figure 7 considering
comparable latencies.

The comparison in Table VI considers total NAND gate
equivalence (GE), throughput (TP), normalized throughput
per a NAND gate (TP/G), and Area x Time. In this table,
the throughput is estimated as the number of output bits per
latency multiplied by a speed of 1 GHz for both listed designs.
Time is the latency divided by a speed of 1 GHz (or multiplied
by delay of 1 nsec). The total GE is estimated using the
STMicroelectronics standard 65nm CMOS library metrics, as
explained in Section III-A4 of this paper.

The table shows that the hybrid-triple GNB multiplier
achieves lower readings of Area x Time regardless of having
comparable area or latency as the design in Figure 7.

Therefore, the proposed DL-PIPO hybrid-triple GNB multi-
plier accomplishes three field multiplications using the latency
required for a single field multiplication of same digit size,
at the expense of increasing the area. Hence, it can be
used to increase the throughput of applications where such
triple multiplications exist. In what follows, we present a
new architecture for the eight-ary field exponentiation, as an
application for our digit-level hybrid-triple GNB multiplier
presented in this section.

VI. PROPOSED ARCHITECTURE FOR FIELD
EXPONENTIATION

Exponentiation is a fundamental operation for the Diffie-
Hellman key exchange algorithm [6] and is also used for other
cryptographic applications such as random number generation
[7]. The n-ary scheme is used to increase throughput of
GF (2m) exponentiation [24], [23]. In the case of n = 23

(i.e. eight-ary scheme), to compute the exponentiation Ah for

A ∈ GF (2m) and a positive integer h =
∑dm

3 e−1
i=0 hi2

3i,
where 0 ≤ hi < 8, one rewrites h as h =

∑7
w=1 λ (w)w,

where λ (w) =
∑
{i:hi=w} 2

3i. Then, this eight-ary expo-
nentiation scheme requires finding the coefficients λ (w) and
precomputing and storing odd powers for 1 < w < 8. This
takes at most

⌈
m
3

⌉
+ 2 iterations to complete [24], [23]. In

this section, we present a new architecture for the eight-
ary field exponentiation scheme when the GF (2m) elements
are represented in the GNB. The proposed architecture is
based on the digit-level hybrid-triple GNB multiplier presented
in Section V-B (Figure 6) and computes the exponentiation
results using

⌈
m
3

⌉
iterations, while it does not require any

storage of precomputed values.
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Table VI: Comparing triple multiplication complexities based on proposed hybrid-triple versus design in Figure 7. Throughput
is measured at 1 GHz. γ =

⌈√⌈
m
d

⌉⌉
d.

d γ Digit Size FF AND XOR 2 : 1 MUX Total GE Latency TP TP/G Area x Time
(Gbps) (Kbps/Gate) (Gate x msec)

9 - d = 9 1123 5803 18675 652 49828.9 19 8.57 172 0.95
Low area 11 - d = 11 1119 7055 22737 652 59440.3 15 10.87 183 0.89

hybrid-triple 14 - d = 14 1113 8942 28770 652 73748.2 12 13.58 184 0.88
45 - d = 45 1051 27349 86895 652 211854.1 4 40.75 192 0.42

(Figure 6a) 44 - d = 44 1053 26778 85140 652 207666.4 4 40.75 196 0.42
84 - d = 84 973 47722 149100 652 360419.2 2 81.5 226 0.72

Tree structured 9 5 γd = 45 8802 22005 55299 - 170011.5 20 8.15 48 3.4
systolic GNB 11 4 γd = 44 7335 21516 54081 - 161487.5 16 10.19 63 2.58

multiplier (Figure 7) 28 3 γd = 84 5868 41076 102801 - 276898.2 12 13.58 49 3.32

The following first derives the formulations for field expo-
nentiation, followed by presenting the proposed architecture.

Proposition 3. Let F = Ah denotes the exponentiation of an
arbitrary GF (2m) element A represented in the GNB, where
1 < h < 2m is an arbitrary positive integer. Therefore, one
can compute F using the following recurrence:

F (i) =Ahk′−1−i

(
F (i−1)

)23
, (8)

where k′ =
⌈
m
3

⌉
, h =

∑k′−1
i=0 hk′−1−i8

k′−1−i, 0 ≤ hk′−1−i <
8, F (−1) = 1, and F = F (k

′−1).

Proof. By substituting for i = 0, . . . , k′ − 1 in (8), where
k′ =

⌈
m
3

⌉
and hk′−1−i ∈ [0, 7] are the coefficients of the

radix-8 representation of h, we get

F (k
′−1) =A(((hk′−18+hk′−2)8+hk′−3)8+···+h1)8+h0

=A
∑k′−1

i=0 hk′−1−i8
k′−1−i

.

That is, F (k
′−1) = F , since h =

∑k′−1
i=0 hk′−1−i8

k′−1−i.

Note that (8) reads h left-to-right. Similarly, one can
read h right-to-left by using F (i) = Ahi

(
F (i−1))2−3

, for
0 ≤ i < k′, where h = 23(k

′−1)∑k′−1
i=0 hi2

−3(k′−1−i)

and F =
(
F (k

′−1)
)23(k′−1)

. Based on (8), we proposed
the eight-ary exponentiation architecture of Figure 8, which
is constructed based on the proposed digit-level hybrid-triple
GNB multiplier of Figure (6) (either Figure 6a or Figure 6b,
depending on whether the target application requires a low area
design or a high speed design, respectively). As shown in this

A

m
(Figure 6a or 6b)
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Figure 8: Architecture of the proposed eight-ary field expo-
nentiation scheme. The 1 inputs to multiplexers represent the
field element 1 = (1, . . . , 1) represented in the GNB.

figure, the architecture is composed of one DL-PIPO hybrid-
triple GNB multiplier and four 2 : 1 m-bits multiplexers.
The first three multiplexers (0, 1, and 2), respectively, are
controlled by the coefficients s(i)0 , s(i)1 , and s(i)2 of the binary
representation of hk′−1−i = s

(i)
0 + s

(i)
1 2 + s

(i)
2 22, where

k′ =
⌈
m
3

⌉
and 0 ≤ hk′−1−i < 8 for all 0 ≤ i < k′ in (8). The

last multiplexer, i.e. 3, passes the field element 1 = (1, . . . , 1)
during the first iteration, while it selects the 3-fold right
cyclic shift of the multiplier’s output during the remaining
iterations. Therefore, by using this architecture one computes
F = Ah after k′ runs of the hybrid-triple multiplication. This
is equivalent to k′×(L+ 1) clock cycles in the case of parallel
preloading of the multiplier, where L = k if a low area hybrid
multiplier is used otherwise it becomes L = k + 1 for using
a high speed hybrid multiplier (k =

⌈
m
d

⌉
, d is the digit size).

Our proposed eight-ary exponentiation architecture does not
require any storage of precomputed values, while it has almost
the same latency, compared to the existing schemes. Also, it
is noted that the proposed architecture uses the same latency
regardless of the exponent’s value. This in turn prevents
leakage of time/power dissipation information.

VII. CONCLUSION

In this paper, we have proposed three new architectures
for digit-level (DL) single multiplication using GNB; two
multipliers with fully serial-in-parallel-out (FSIPO) and one
with parallel-in-serial-out (PISO). The two DL-FSIPO single
GNB multipliers have been proposed for the first time in the
literature. They do not require preloading of inputs and, hence,
are advantageous for applications where parallel loading of
inputs is not possible due to limited size of data-path.

Using the proposed single digit-level multiplier architec-
tures, we have proposed a new digit-level serial-in-parallel-
out (DL-SIPO) hybrid-double GNB multiplier and for the
first time in the literature a new digit-level parallel-in-parallel-
out (DL-PIPO) hybrid-triple GNB multiplier. The proposed
digit-level hybrid-double and hybrid-triple multipliers, perform
two and three field multiplications, respectively, using the
same latency as a single digit-level field multiplication, at the
expense of more area.

As an application of the proposed hybrid-triple multiplier,
we have presented a new digit-level eight-ary field exponenti-
ation architecture which offers computational latency similar
to the existing eight-ary schemes, however, without requiring
storage of precomputed values.
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