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Abstract—The secure hash algorithm (SHA)-3 has been selected in
2012 and will be used to provide security to any application which
requires hashing, pseudo-random number generation, and integrity
checking. This algorithm has been selected based on various benchmarks
such as security, performance, and complexity. In this paper, in order to
provide reliable architectures for this algorithm, an efficient concurrent
error detection scheme for the selected SHA-3 algorithm, i.e., Keccak,
is proposed. To the best of our knowledge, effective countermeasures
for potential reliability issues in the hardware implementations of
this algorithm have not been presented to date. In proposing the
error detection approach, our aim is to have acceptable complexity
and performance overheads while maintaining high error coverage.
In this regard, we present a low-complexity recomputing with rotated
operands-based scheme which is a step-forward toward reducing the
hardware overhead of the proposed error detection approach. Moreover,
we perform injection-based fault simulations and show that the error
coverage of close to 100% is derived. Furthermore, we have designed the
proposed scheme and through ASIC analysis, it is shown that acceptable
complexity and performance overheads are reached. By utilizing the
proposed high-performance concurrent error detection scheme, more
reliable and robust hardware implementations for the newly-standardized
SHA-3 are realized.

Index Terms—Application-specific integrated circuit (ASIC), high
performance, reliability, secure hash algorithm (SHA)-3, security.

I. Introduction

The selection process for choosing a new secure crypto-
graphic hash algorithm, i.e., secure hash algorithm (SHA)-
3, was initiated by the National Institute of Standards and
Technology (NIST) in 2007 to increase security and perfor-
mance of hash functions. After three rounds of assessments,
the winner algorithm for this standard has been chosen in
2012 as Keccak [1]. In this selection process, five SHA-3
finalists were assessed by the research community in terms
of different aspects, such as software implementations, e.g.,
[2], hardware application-specific integrated circuit (ASIC)
implementations [3]–[5], and field-programmable gate array
(FPGA) implementations [5]–[7].

It is expected that Keccak, the winner of the SHA-3
competition, will provide confidentiality to various security-
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constrained applications such as the ones used for generat-
ing digital signatures and message authentication codes. For
example, it can be utilized as an added integrity-checking
measure for mobile ad hoc networks (MANETs) which lack
physical layer security [8] or in conjunction with the efficient
implementations for the point multiplication in elliptic curve
cryptography (ECC). Integrity assurance of implantable and
wearable medical devices, smart buildings, smart fabrics,
Internet of nano-Things, and smart infrastructures as well as
building automation systems, networked control systems, and
wireless sensor networks can be provided by this recently-
standardized secure hash algorithm as well [9].

Natural faults (defects) detection has been the center of
many previous works [10]–[17]. Thus, reliability and fault
immunity for the hardware implementations against natural
defects need to be among the assessment aspects for the
SHA-3 algorithm. To counteract the faults occurring in the
cryptographic hardware systems, several error detection ap-
proaches have been presented to date, evaluating all of them
is beyond the scope of this paper; refer to [18]–[20], for the
error detection schemes for SHA-1 and SHA-2. Moreover,
for the AES, several error detection schemes such as the
ones presented in [21]–[23], aim at developing more robust
hardware implementations for this algorithm. Furthermore, the
authors in [15] and [24] proposed error detection methods for
Grøstl, a SHA-3 finalist. It is also noted that error detection
of the arithmetic operations utilized in the cryptographic hard-
ware systems has gained attention in the literature [25]–[26].
However, to the best of our knowledge, mechanisms for
making the selected SHA-3 algorithm immune against faults
have not been reported to date.

We summarize our contributions in this paper as follows.

1) We consider an error detection approach based on
the time-redundancy techniques, i.e., the recomputing
with rotated operands (RERO) scheme. Through the
RERO-based approach, low hardware overhead is added
to the original designs, suitable for lightweight and low-
power implementations.

2) To evaluate the error detection capability of the proposed
scheme in response to transient and permanent faults,
the proposed error detection structures are simulated.
Through our simulations, we demonstrate that the pro-
posed scheme reaches high error coverage.

3) Finally, the original SHA-3 and our proposed error
detection scheme are synthesized using a 65-nm ASIC
standard-cell library to obtain the area overheads and
the performance metrics. Our synthesis results show
acceptable overhead for the proposed technique, while
achieving very high error coverage.

The organization of the paper is as follows. In Section II,
preliminaries regarding the SHA-3 algorithm are provided.
Section III presents our proposed error detection scheme. In
Section IV, through fault-injection simulations, we evaluate the
error coverage capabilities of the proposed scheme. Section V
is presented to benchmark the overheads of the proposed
scheme on ASIC utilizing a 65-nm standard-cell library.
Finally, conclusions are made in Section VI.
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II. Preliminaries

In this section, we briefly explain the SHA-3 algorithm.

A. Keccak

The core of the Keccak algorithm is the permutation f

which is repeatedly applied to a fixed-length state of b = r + c

bits, where r and c are bit rate and capacity, respectively.
Higher values of r improve the speed whereas higher values of
c correspond to higher security level. The input message is first
padded to get a length multiple of r. Then, through five internal
steps for each round, the absorbing phase is performed. Finally,
the squeezing phase occurs in which the first r bits of the state
are returned as the output block [1].

There are seven possible types for Keccak and for the
sake of brevity, we focus on the recommended type, namely,
Keccak-f[r + c = 1600] (c = 1024 and r = 576). In
Keccak-f[1600], 1600 is the width of the underlying permu-
tation (in bits). For this type of Keccak, the state consists of
an array of 5 × 5 lanes, each of length w = 64 bits. The
recommended number of rounds for Keccak-f[1600] is 24 [1].

Let us introduce the five internal steps of each of the
24 rounds of Keccak-f[1600] shown in Fig. 1. For all these
steps, 0 ≤ x, y ≤ 4. The first internal step is θ as follows:

C[x] ← A[x, 0] ⊕ A[x, 1] ⊕ A[x, 2] ⊕ A[x, 3] ⊕ A[x, 4]

D[x] ← C[x − 1] ⊕ rot(C[x + 1], 1) (1)

A[x, y] ← A[x, y] ⊕ D[x].

In (1), A[x, y] denotes a particular lane in the state A,
with C and D being internal states. Moreover, the opera-
tions on indices are bitwise XOR, modulo-5 addition and
subtraction represented as ⊕, +, and −, respectively. Finally,
rot(C[x + 1], 1) is the bitwise cyclic shift operation, moving
bit at position i into position i + 1 (modulo the lane size).

The next two steps are ρ and π as follows: B[y, 2 ×x + 3 ×
y] ← rot(A[x, y], r[x, y]). We note that the constants r[x, y]
are the rotation offsets (refer to [1]).

The second to last step is χ, i.e., A[x, y] ← B[x, y] ⊕
(B[x + 1, y].B[x + 2, y]). The overline and . symbols represent
NOT and AND operations, respectively. Finally, in the last
step, we have A[0, 0] ← A[0, 0]⊕RC, where RC is the round
constant specific for each of the 24 rounds of Keccak-f[1600].
Lastly, in the final squeezing phase, the first r bits of the state
are returned as the output block.

B. RERO Method

RERO [27] is a technique for concurrent error detection
introduced for arithmetic units. As mentioned earlier, it is a
redundancy-based technique. Suppose R and R−1 are n-bit
rotations (or cyclic shifts) toward the least and most significant
bits of a binary operand, respectively, where n is less than
the size of the operand. Moreover, let x be the input to an
arithmetic function f and f (x) be its output in such a way
that R−1(f (R(x))) = f (x). To apply the RERO method, we
need to store the result of the f (x) computation (first run) and
compare it against the result of the R−1(f (R(x)) computation
(second run). If the results are different, it indicates an error
alerted by the error indication flag.

Fig. 1. Five internal steps in the Keccak algorithm.

III. Error Detection Approach

In this section, first we briefly describe the motivations for
this paper, and then we present an efficient error detection
scheme for the SHA-3 algorithm. We note that although
we have considered the hash size of 512 (which is usually
recommended and is the highest one), the proposed scheme
is applicable to other hash sizes. In the next two sections, the
presented scheme is benchmarked in terms of error coverage
and performance metrics.

A. Motivations

SHA-3 is one of the important cryptographic tools which is
being used for system and information security. This crypto-
graphic tool can be used in assuring data integrity as changing
one single bit in the input message can change about half of
the output digest (denoted as avalanche effect). It also can help
to achieve authenticity and nonrepudiation more efficiently as
signing the entire input message or data is costly.

We can consider two reasons for having error detection for
such an important cryptographic tool.

1) Digital circuits are prone to natural faults and this is
the case for the hardware implementations of SHA-3
as well.

2) Malicious attacks such as those based on fault injections
can target the availability of this algorithm which, in
turn, result in malfunctioning of the integrity-checking
process. This can induce much overhead to the system
especially the constrained nodes such as those used
in sensitive applications, e.g., security of implantable
and wearable medical devices or constrained industrial
setups.

Both of the above items can cause the integrity check to fail,
introducing some levels of denial-of-service (DOS). Appar-
ently, this is not desirable as it contradicts availability which
is one of the features of a secure system. Also, regardless of
the security point of view, such unreliable systems may need to
restart or reinitialized for several times. Such behavior means
more energy consumption and more cost.

Concurrent error detection can help to detect the errors as
much as possible and stop the system or process gracefully to
resolve the issue. We note that for malicious attacks, error
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Fig. 2. Keccak algorithm modified for the presented RERO-based approach.

detection can reduce the choices of attacks and may not
prevent them completely. However, inducing this difficulty
is of much great importance and can be intensified by other
security measures to have reliable architectures.

B. Proposed Concurrent Error Detection Scheme

We propose a RERO-based error detection method for
Keccak-f[1600] which is also applicable to other variants of
Keccak.

A simplified structure for the presented RERO-based error
detection approach is shown in Fig. 2. As seen in this figure,
a pipeline-register has been placed after the π step (compare
Figs. 1 and 2). This location for placing the registers is chosen
to break the timing path in to approximately equal halves.
Let us denote the two halves of pipelined stages by H1 and
H2. Now, we briefly explain the utilized method through this
figure. In Fig. 2, the original input is first applied to the
architecture in the first cycle. In the second cycle, while the
second half of the circuit (H2) executes this first input, the
rotated variant of the first input is fed to the first half of the
circuit (H1). This trend is consecutively executed until the last
rotated input is derived. It is worth mentioning that for second
runs, we rotated each of 26 input words (25 state words and
one RC word) by a number between 1 and 63, where each
word has 64 bits. We also note that for detecting the errors, the
outputs of the runs with the rotated-inputs are rotated back and
compared against the original inputs. Any mismatch indicates
an error.

We take advantage of subpipelining to reduce the through-
put degradation of the proposed scheme. In this regard, the
order of applying the inputs is managed so that we take
advantage of concurrent executions. Although the added sub-
pipelining registers slightly increase the induced hardware
overhead, it is more preferable to use 100% time-redundancy
schemes which introduce much more overall design overhead.
Time-redundancy techniques inherently tend to increase the
number of cycles needed for computations. This reduces

Fig. 3. Pipelined scheduling for data path of the proposed schemes.

TABLE I

Injection of Transient and Permanent Faults for the

RERO-Based Scheme for 1 000 000 Random Inputs

the throughput of the hardware implementations accordingly.
Therefore, in our proposed approach, by introducing sub-
pipelining, we increase the frequency of the clock to make
sure the design throughput is close to the one for the original
structure.

As mentioned, the throughput improvement approach is
carried out through a subpipelining method to compensate
for the inherent throughput reduction of the time-redundancy
approaches. Then, processing of the inputs to the pipelined
stages is scheduled to improve the throughput degradations
of the error detection approach. Using this method, higher
frequencies are achieved which compensate for the higher
number of cycles needed for calculations. We have shown
our scheduling in Fig. 3. As seen in this figure, the orders of
cycles of normal (Ni) and rotated (Ri) operations are shown,
where 1 ≤ i ≤ n and n is the number of cycles in the
original (nonpipelined) approach. In this scheme, Ri and Ni are
performed at the same cycle but in different pipelined stages.
Then, in the next cycle, Ni+1 and Ri are performed.

If we consider 48 cycles needed for the original pipelined
architecture of Keccak-f[1600] to execute 24 rounds of five
steps each, the number of cycles is intact when the RERO-
based approach is utilized. This is because of the feedback
structure of the rounds of Keccak-f[1600] (see Fig. 2). Con-
sequently, as it is also shown later when we derive the
overhead of the proposed approach through ASIC syntheses,
low degradation in throughput is observed compared to the
original Keccak-f[1600]. Finally, the proposed approach is
capable of detecting both transient and permanent errors with
very high coverage. Due to its low hardware overhead, the
presented approach is suitable for the applications requiring
high performance and low complexity.

IV. Fault-Injection Simulations

To evaluate the error detection capability of the proposed
scheme, we have performed injection-based fault simulations
coded in C programming language. We need to select the
number of bit-rotations for the simulations (has to be selected
once at the very beginning of the second run and is fixed
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TABLE II

ASIC Syntheses and Overhead Assessments Using TSMC 65-nm Standard-Cell

till the end of that run). Although our proposed approach is
not restricted to this fixed number, for simulations, this has
been selected as 32. In fact, one can use different options to
either select a fixed rotation number for the entire design or
to make the rotation number programmable for each time this
scheme is used. Apparently, the second method needs a bit
more hardware control and will result in a slightly more area
overhead. In our work, we consider the fixed rotation approach
(first one) as our goal in this paper is to describe the actual
scheme, its capability and efficiency.

We have used the C-model of the SHA-3 algorithm avail-
able in [28]. The faults that we consider are stuck at 0
and stuck at 1. Both single-bit and multiple-bit faults were
injected at the input state of the algorithm as well as the
round constant (RC) which is being used in the last internal
step. We refer to the locations that fault were injected as
fault locations. The number of fault locations for a single
round is 1664(= 25 × 64 + 64). The reason for performing
injection at these locations is to achieve some speed up as a
complete injection on all internal nets is very time consuming.
Moreover, we consider the transient faults to occur at both
runs independently. Therefore, the fault locations for transient
faults are twice of the above numbers. However, for permanent
faults, each fault can occur at the same location for both runs
with the same polarity. Therefore, the number of fault locations
for this type is half of that for the transient one.

For single-bit fault-injection, we generated 1 000 000 ran-
dom inputs and for each random input, both the stuck at 0
and the stuck at 1 faults were injected at the above men-
tioned locations. For multiple-bit fault-injection simulations,
similarly, 1 000 000 random inputs were generated and 500
multiple-bit faults were injected per each random input. For
each multiple-bit fault-injection, say n-bit fault-injection, n

random locations from the above mentioned locations were
chosen and the stuck at 0 or the stuck at 1 faults were
randomly injected.

Let the number of all the faults, detected faults, and masked
faults be denoted as AF , DF , and MF , respectively. The
number of faults that can manifest into errors, i.e., in case
of no fault protection, they can produce erroneous result at
the output of the circuit, is AF − MF . Then, the percentage
of error detection is calculated as DF

AF - MF%.
The error detection results for transient fault-injections into

all functions/circuits using RERO-based method are presented
in Table I. As shown in the table, all the injected single-bit
transient faults can be detected in the RERO-based scheme.
Multiple-bit faults can also be detected with very high prob-
ability for transient faults. Moreover, the table shows that
the faults with higher weight (with more number of bits)

can be detected with higher rate in such a way that all the
injected faults with random number of bits can be detected.
Based on our experiments, all the permanent injected faults are
detected no matter what the number of injected faults is. The
error detection capability for permanent multiple-bit faults is
slightly higher than that for the transient ones. The reason can
be explained by an example. A 2-bit transient fault (with same
polarity for both bits) may not be detected if one fault occurs at
the first run and in the bit, say, 0, of a word and the second one
occurs at the second run and in the bit 32 of the same word.
Occurrence of such faults for permanent type is less probable.

Finally, the evaluation of the error detection capability is
based on fault-injection based simulation. The number of
locations of possible fault injections for transient and perma-
nent faults are reported in Table I. Also, the simulation is
repeated for 1 000 000 random inputs. Hence, the coverage is
reported according to the result of the simulation and is not
actually always 100% (see Table I). This is a simulation-based
benchmark and is not as accurate as math models; however, it
is typically considered as a fair measure to evaluate the error
detection capabilities of schemes.

V. Syntheses on ASIC and Overhead Derivations

This section presents the results of our ASIC syntheses
performed for SHA-3 algorithm to benchmark the overheads
induced. We note that ASIC is chosen based on the resources
available to us (library and tools) and because our presented
schemes are not dependent on the hardware platform,
similar overheads are expected if FPGAs are utilized for
the implementations. Through these ASIC syntheses, the
overheads in terms of hardware and timing are derived. We
have used the TSMC 65-nm standard-cell library [29] for the
presented post-synthesis results. VHDL has been used as the
design entry for the original and the error detection structures
to the Synopsys Design Compiler [30]. The VHDL code for
original design is from [28].

We have presented the results of our syntheses in Table II.
In this table, for the original SHA-3 algorithm, Keccak, and
the proposed error detection scheme, the areas (in terms of
μm2), maximum working frequencies (in terms of MHz),
and throughputs (in terms of Gb/s) have been obtained. In
order to make the area results meaningful when switching
technologies, we have provided the Nand-gate equivalency
(kilo gate equivalent, kGE). This is performed using the area
of a Nand gate in the utilized TSMC 65-nm CMOS library
which is 1.41μm2. Additionally, the area and throughput
degradations are presented in parentheses to benchmark the
proposed error detection schemes. We note that for the original
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algorithm, the area is dominated by the steps θ (54%) and χ

(45%), while three other steps constitute around 1%.
We have synthesized the original Keccak-f[1600] and its

error detection approach (we need 25 x 64 additional flip-
flops for this architecture). Two different experiments have
been performed for deriving the area and timing overheads.
In the first one, a period constraint has been imposed to
achieve the working frequency of more than 650 MHz for
the original algorithm (although this is applied to the fault
detection architecture as well, it does not affect its area due
to the high-speed nature of this architecture). This constraint
allows higher performance for the original structure at the
expense of higher area (suitable for high-speed applications).
Moreover, another experiment has been conducted by loosen-
ing the period constraint which has resulted in lower working
frequency for the original architecture and lower area. A
variant of Keccak-f[1600] is considered which operates one
round in each cycle (the total 5-step number of rounds is
24) to derive the hashed output. As seen in Table II (in the
parentheses), specifically, for the constrained architectures, the
area overhead and throughput degradation for the RERO-based
scheme for Keccak-f[1600] are 4.4% and 11.8%, respectively;
whereas, for the cases that these are loosened, the overheads
are 7.6% and 5.9%, respectively.

VI. Conclusion

We have presented a time-redundancy scheme for error
detection of the recently-standardized secure cryptographic
SHA-3 algorithm, i.e., Keccak. The proposed approach is
based on the low hardware overhead RERO-based approach.
We have also applied subpipelining to overcome the inherent
throughput degradation of this time-redundancy approach.
Through fault-injection analysis, it has been shown that the
error coverage is 100% for multiple random fault-injections.
Moreover, through ASIC synthesis, we have shown that the
area and throughput degradations for the RERO-based ap-
proaches are 4.4% and 11.8%, respectively. Thus, this ap-
proach is suitable for resource-constrained applications. Based
on the reliability requirements and available resources, one
may utilize the proposed error detection scheme for making
the hardware implementations of secure cryptographic SHA-3
algorithm more reliable.
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