
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

1

High-Speed Hybrid-Double Multiplication
Architectures Using New Serial-Out Bit-Level

Mastrovito Multipliers
Ebrahim A. Hasan Abdulrahman, and Arash Reyhani-Masoleh, Member, IEEE

Abstract—The Serial-out bit-level multiplication scheme is characterized by an important latency feature. It has an ability to sequentially
generate an output bit of the multiplication result in each clock cycle. However, the computational complexity of the existing serial-out
bit-level multipliers in GF (2m) using normal basis representation, limits its usefulness in many applications; hence, an optimized serial-
out bit-level multiplier using polynomial basis representation is needed. In this paper, we propose new serial-out bit-level Mastrovito
multiplier schemes. We show that in terms of the time complexities, the proposed multiplier schemes outperform the existing serial-
out bit-level schemes available in the literature. In addition, using the proposed multiplier schemes, we present new hybrid-double
multiplication architectures. To the best of our knowledge, this is the first time such a hybrid multiplier structure using the polynomial
basis is proposed. Prototypes of the presented serial-out bit-level schemes and the proposed hybrid-double multiplication architectures
(10 schemes in total) are implemented over both GF (2163) and GF (2233), and experimental results are presented.

Index Terms—serial-out, polynomial basis, bit-level multiplier, Mastrovito multiplier, hybrid-double multiplication

F

1 INTRODUCTION

F INITE field arithmetic has been widely applied in
applications of different fields like error-control cod-

ing, cryptography, and digital signal processing [1], [2],
[3], [4]. The arithmetic operations in the finite fields
over characteristic two GF (2m) have gained widespread
use in public-key cryptography such as point multi-
plication in elliptic curve cryptography [5], [6], and
exponentiation-based cryptosystems [7], [8]. The finite
field GF (2m) has 2m elements and each of its elements
can be represented by its m binary coordinates based
on the choice of field-generating polynomial. For such a
representation, the addition is relatively straight-forward
by bit-wise XORing of the corresponding coordinates of
two field elements. On the other hand, the multiplication
operation requires larger and slower hardware. Other
complex and time-consuming operations such as expo-
nentiation, and division/inversion are implemented by
the iterative application of the multiplication operations.
Much of the ongoing research in this area is focused on
finding new architectures to implement the arithmetic
multiplication operation more efficiently (see for exam-
ple [9], [10], [11]).

Finite field multipliers with different properties are ob-
tained by choosing different representations of the field
elements. With the advantages of low design complexity,
simplicity, regularity, and modularity in architecture, the

• Ebrahim A. Hasan Abdulrahman is with the Faculity of Information
Technology, Department of Computer Engineering, The University of
Bahrain, Sakheer, Bahrain (E-mail: eabdulrahman@uob.edu.bh).

• Arash Reyhani-Masoleh is with the Department of Electrical and Com-
puter Engineering, Western University, London, Ontario, Canada (E-mail:
areyhani@uwo.ca).

standard or polynomial basis (PB) representation, is ex-
tensively used for cryptographic applications [12], [13].
In the PB, a multiplier requires a polynomial multiplica-
tion followed by a modular reduction. In practice, these
two steps can be combined into a single step by using
the so-called Mastrovito matrix [14], [15]. The properties
and complexities of the PB multipliers depend heavily
on the choice of a field-generating polynomial. In this
paper, we first consider an irreducible polynomial with
ω, ω ≥ 3, non-zero terms (denoted by ω-nomials). We
then obtain a further optimized structure for the special
irreducible trinomial (ω = 3).

The implementation of finite field multipliers can
be categorized, in terms of their structures, into three
groups of parallel-level, digit-level and bit-level types.
The bit-level multiplier scheme, which processes one bit
of input per clock cycle, is area-efficient and suitable for
resource-constrained and low-weighted devices. The bit-
level type multiplication algorithms, when the PB is used
are classified as least significant bit first (LSB-first), and
most significant bit first (MSB-first) schemes [16].

The bit-level multiplier can be further categorized into
two types of either parallel or serial output. In the
traditional parallel-out bit-level (POBL) multipliers [16],
all of the output bits of the multiplication (from the first
bit to the last bit) are generated at the end of the last clock
cycle. Serial-out bit-level (SOBL) multipliers, on the other
hand, generate an output bit of the product sequentially,
after a certain number of clock cycles. A multiplica-
tion scheme based on serial-out architecture, i.e., SOBL,
has certain advantages as compared to the traditional
parallel-out architecture. For instance, combining a SOBL
with a traditional LSB-first POBL one, would make fast
exponentiation and inversion possible [17], [18]. The

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

2

author of [19], has proposed a SOBL multiplication
architecture that is constructed by the trinomials and
the ω-nomials irreducible polynomials in GF (2m) using
PB representation. In this paper, alternative schemes for
the serial-out multiplication in the PB over GF (2m) for
both trinomial and ω-nomial irreducible polynomial are
developed. We summarize our contributions as follows:
• We have proposed a new scheme for the SOBL

multiplication architecture in the PB over GF (2m)
for the ω-nomials, then we further optimized it
for the irreducible trinomials. Both schemes have
lower critical path delay compared to previously
published results.

• In order to investigate the applicability of the pro-
posed SOBL schemes, we employed the proposed
two SOBL schemes, and the SOBL scheme proposed
in [19], to present, to our knowledge, the first ap-
proach for hybrid-double multiplication architecture
in the PB over GF (2m).

• We extended the traditional POBL multiplier
schemes presented in [16] to propose two new LSB-
first/MSB-first POBL double multiplication architec-
tures, which perform two multiplications together
after 2m clock cycles.

• To obtain the actual implementation results, all
the proposed schemes, i.e., 2 SOBL multipliers, 3
hybrid-double multiplication architectures, 2 dou-
ble multiplication architectures, and the counterpart
ones, i.e., LSB-first POBL [16], MSB-first POBL [16],
and SOBL scheme proposed in [19] are coded in
VHDL (10 schemes in total), and implemented on
ASIC technology over both GF (2163) and GF (2233).

The organization of this paper is as follows. Notation
and mathematical background are given in Section 2. In
Section 3, the formula for a new SOBL multiplication is
presented. Section 4 is the core of our paper, in which
a novel architecture for the SOBL multiplier for both
the trinomial and the ω-nomial irreducible polynomial
are presented. In Section 5, new double multiplication
architectures using PB are proposed and discussed. In
Section 6, the proposed architectures and the previously
reported ones are compared in terms of area, delay and
I/O loading complexities. In Section 7, the performance
of the proposed multiplier schemes are investigated by
implementing each multiplier and the counterpart mul-
tipliers as well as the double multiplication architectures
on ASIC technology. Finally, the conclusion is presented
in Section 8.

2 PRELIMINARIES

The binary extension field GF (2m) can be viewed as
an m-dimensional vector space defined over GF (2) [1].
A set of m linearly independent vectors (elements of
GF (2m)) is chosen to serve as the basis of representa-
tion. An explicit choice for a basis is the ordered set{
αm−1, · · · , α2, α, 1

}
, where α ∈ GF (2m) and is a root

of an irreducible polynomial P (x). This basis is called
the polynomial basis (PB). Each element is represented
by a polynomial of degree m− 1, whose coefficients are
the binary digits 0 or 1. All arithmetic operations are
performed modulo 2.

A straightforward GF (2m) multiplication computa-
tions consists of two parts, the product of two field
elements, followed by a modular reduction [20], [21].
Suppose A = (am−1, · · · , a1, a0), B = (bm−1, · · · , b1, b0)
are two arbitrary field elements, i.e., A, B ∈ GF (2m),
then to obtain the field multiplication of A and B, AB
is computed first; it is then followed by the modular
reduction, i.e., C , AB mod P (α).

In [14], [15], Mastrovito has proposed an efficient
dedicated parallel multiplication method that combines
the two parts of the product and the modular reduction
into a single step. He showed that the coordinates of C
are obtained from the matrix-by-vector product of

c = [cm−1, · · · , c1, c0]
T

= M · b, (1)

where T denotes the transposition; the column vector
b = [bm−1, · · · , b1, b0]

T contains the coordinates of the
multiplier B = (bm−1, · · · , b1, b0) ∈ GF (2m), and M is
an m × m binary matrix whose entries depend on the
coordinates of A ∈ GF (2m). This equation was implicitly
used in [22], [23], and [24] to derive the parallel-level
multiplier and is now used in this work to design a new
SOBL multiplier.

Sunar and Koç [22] have studied the Mastrovito
matrix M, and have presented a formulation for the
Mastrovito algorithm using the irreducible trinomials.
Halbutoğullari and Koç in [23] have presented a new
architecture for the Mastrovito multiplication and have
also shown that the coefficient of the product AB can be
obtained from the matrix-by-vector product of

d , [d2m−2, · · · , dm, dm−1, · · · , d0]
T

= Z · b,

where Z is a 2m−1×m binary matrix whose entries are

Z ,

a0 0 · · · 0 0
a1 a0 · · · 0 0
...

...
. . .

...
...

am−2 am−3 · · · a0 0
am−1 am−2 · · · a1 a0

0 am−1 · · · a2 a1

...
...

. . .
...

...
0 0 · · · am−1 am−2

0 0 · · · 0 am−1

. (2)

In [24], Zhang and Parhi have proposed the use of a
parallel-level Mastrovito multiplier based on a system-
atic design approach for the technique proposed in [23].

2.1 Notations
Let us now introduce the following notations, which will
be used in this paper: Column vectors are represented by
small boldfaced characters. Matrices are represented by
capital boldfaced characters, and to represent the entries

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

3

of a matrix, we use the common notation used in the
literature such as in [22], [23], [24], [25], and [19]. These
notations are summarized in TABLE 1.

TABLE 1: List of notations.

Symbol Description

b, bT Column and row vectors, respectively.
M(i, :) The ith row of the matrix M.
M(:, j) The jth column of the matrix M.
M(i: j) An entry with position (i,j) of the matrix M.

[vj , · · ·, vi] The range of bits in the vector v from position i to
position j, j > i.

〈rj , · · ·, ri〉 The range of bits in the register 〈R〉 from position
i to position j, j > i.

M[↓ n] A down shift of the matrix M by n positions,
emptied positions after the shifts are filled by zeros.

M(j, :)[→1] A right shift of the jth row of the matrix M by 1 position,
emptied positions after the shifts are filled by zeros.

v[f0, ↓ 1] A down shift of the vector v by one-bit with cell f0 fed
in its upper-most bit, i.e., for the vector v of length l-bits

v[f0, ↓ 1] = [f0,

l−1︷ ︸︸ ︷
0, · · · , 0]T + v[↓ 1].

ei||vT The process of concatenating an element ei and a vector v.

2.2 Reduction Process
Let us first define an irreducible polynomial with ω non-
zero terms, i.e., [19]

P (x) , xm +

ω−1∑
i=1

xti , (3)

where m
2 > t1 > t2 > · · · > tω−2 > tω−1 = 0. Then from

(3), we define two new sets: T is a set of degrees of
nonzero terms in (3), and N consists of ω − 1 elements,
which are the differences between m and the others
contains the non-zero terms in (3), i.e.,

T , {0, t1, · · · , tω−2} , and N , {0, ∆1, · · · , ∆ω−2} ,

where ∆1 = m−tω−2, ∆2 = m−tω−3, · · · , ∆ω−2 = m−t1.
Note that the Mastrovito matrix M, which is shown

in (1) can be obtained by reducing the matrix Z in (2)
using the generating polynomial (3). It is shown in [26],
that the entries of the matrix M can be obtained as

M = (L + Q ·U) , (4)

where L is an m × m lower triangular Toeplitz matrix,
which is defined as the first m rows of the matrix Z; U is
an (m− 1)×m upper triangular Toeplitz matrix, which
is defined as the last (m− 1) rows of Z, i.e.,

L ,

a0 0 0 0 · · · 0
a1 a0 0 0 · · · 0
...

...
. . .

. . .
...

am−2 am−3 · · · a1 a0 0
am−1 am−2 · · · a2 a1 a0

 ,

U ,

0 am−1 am−2 · · · a1

0 0 am−1 · · · a2

...
...

. . .
. . .

...
0 0 · · · am−1 am−2

0 0 · · · 0 am−1

 ,

(5)

and Q is a reduction matrix, which is formalized in [24],
[26], and [25] as

Q =
∑
n∈N

Q̂[→ n], (6)

where
Q̂ =

∑
t∈T

Im×(m−1) [↓ t] , (7)

where Im×(m−1) represents an m×(m−1) identity matrix.
Then, using (6) and (7) the matrix M in (4) can be

written as [24]

M = L + S +
∑

t∈T −{0}

S[↓ t], (8)

where the matrix S is an m×m upper triangular Toeplitz
matrix with the following form:

S ,

0 sm−1 sm−2 · · · s1

0 0 sm−1 · · · s2

...
...

. . .
. . .

...
0 0 · · · 0 sm−1

0 0 · · · 0 0

 , (9)

where the row 0 of S, i.e., S(0, :) can be computed as
[24]

S(0, :) = [0, sm−1, · · · , s1] =
∑
n∈N

U(0, :)[→ n]. (10)

3 PROPOSED SERIAL-OUT BIT-LEVEL MAS-
TROVITO MULTIPLICATION ALGORITHM

From (4) and (8), one can define a matrix P as

P = Q ·U = S +
∑

t∈T −{0}

S[↓ t]. (11)

In (11), the rows produced due to the reductions corre-
sponding to the xti terms in (3) are identical to the rows
produced at the first reduction iteration. Thus, we can
store the elements of row S(0, :), so that they can be
added later to obtain the rows ti, 1 ≤ i ≤ ω − 2, of the
matrix P, i.e., P(ti, :), for ti ∈ T − {0}. Then, the rows
P(j, :), for 0 ≤ j ≤ m− 1 can be obtained as

P(j, :) =

S(0, :), for j = 0,
P(j−1, :)[→1], for 0<j & j 6= ti,
P(j−1, :)[→1]+S(0, :), for j = ti,

(12)

for 1 ≤ i ≤ ω − 2.
From the Toeplitz matrix L, which is shown in (5), one

can see that the rows L(j, :), for 0 ≤ j ≤ m − 1 can be
obtained as

L(j, :) =

[a0, 0, · · · , 0︸ ︷︷ ︸

m−1

], for j = 0,

L(j−1, :)[aj ,→ 1], for 0<j≤m−1.
(13)

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

4

From (12) and (13), the row j of the matrix M in (4), i.e.,
M(j, :), for 0 ≤ j ≤ m− 1, is obtained as

M(j, :)=

L(0, :)+S(0, :), j = 0,
M(j−1, :)[aj , →1], 0<j & j 6= ti,
M(j−1, :)[aj , →1]+S(0, :), j= ti,

(14)

for 1 ≤ i ≤ ω − 2.
From (10) and (13), one can see that the row 0 of the

matrix M in (14) can be obtained as

M(0, :)=L(0, :)+S(0, :)= [a0, sm−1, sm−2, · · · , s1]. (15)

After calculating M(j, :) and based on (1), one can
serially obtain cj , for 0 ≤ j ≤ m− 1 as

cj = M(j, :) · b. (16)

3.1 Proposed SOBL Multiplication Algorithm for ω-
nomials
From (10), (14), (15), and (16), we propose the following
algorithm, which outlines the process of serially generat-
ing the coordinates of C starting from c0 to ending cm−1

for the multiplication of the two field elements A and B.

Algorithm 1 Proposed Serial-Out Bit-Level Mastrovito
Multiplier for ω-nomials xm + xt1 + · · ·+ xtω−2 + 1

Input : The parameters of the ω-nomial irreducible polynomial:
m, t1, · · · , tω−2,

A =
(
am−1, · · · , a0

)
, B =

(
bm−1, · · · , b0

)
∈ GF (2m).

Output : cj , where C =
(
cm−1, · · · , c0

)
= AB mod P (α).

/* Set signal vectors sT , yT , and zT of length m−1, m−1, and m bits,
respectively */

Initialize : yT = [ym−2, · · · , y0] = (am−1, · · · , a1) ;
zT = [zm−1, · · · , z0] = (bm−1, · · · , b0) ;
sT = [sm−1, · · · , s1] = (am−1, · · · , a1) .

/* Compute sT = S(0, :) */
Step 1 : For i = 1 to ω − 2 do

Step 1.1 : ∆i = m− tω−1−i ;

Step 1.2 : sT = [sm−1, · · · , s1]+[

∆i︷ ︸︸ ︷
0, · · · , 0 , am−1, · · · , a∆i+1] ;

Step 2 : End For
/* Set a signal vector wT of length m−1 bits, and initialize it with S(0, :),

and set a signal vector xT of length m bits, and initialize it with M(0, :) */
Step 3 : wT← sT ; xT← a0

∣∣∣∣sT ;
/* Processes of the loop started in Step 4 are computed in parallel */

Step 4 : For j = 0 to m− 1 do
/* Compute the inner product : cj = M(j, :) · b */
Step 4.1 : Output cj = xT • z;

/* Update xT with M(j+1, :) */
Step 4.2 : If j 6= ti − 1 Then

/* M(j+1, :)= M(j, :)[aj+1, → 1] */
Step 4.2.1 : xT ← [y0, xm−1, · · · , x1] ;

Step 4.3 : Else /* j = ti − 1 */
/* M(j+1, :)= M(j, :)[aj+1, → 1] + S(0, :) */

Step 4.3.1 : xT ← [y0, xm−1 + wm−2, · · · , x1 + w0] ;
Step 4.4 : End If
Step 4.5 : yT ← [y0, ym−2, · · · , y1] ;

Step 5 : End For

Algorithm 1 is indeed a bit-level algorithmic version of
the architecture of the parallel-level Mastrovito PB multi-
plier proposed in [24]. In Algorithm 1, the coordinates of
the row vector sT represent the entry of the first row of

the matrix S, i.e., S(0, :). These coordinates are obtained
as presented in (10). From the Toeplitz matrix S shown in
(9), one can see that the entry S(0:m−1) is zero; hence,
it is neglected in Algorithm 1. The row vector sT , is ini-
tialized with the coordinates from 1 to m−1 of the mul-
tiplicand A, i.e., sT = [sm−1, · · · , s1] = [am−1, · · · , a1].
Then, the elements of sT are accumulated in accordance
with (10) to produce the desired S(0, :) after a total of
ω − 2 loop iterations. Hence, at each for loop iteration,
i.e., in Step 1.2, coordinates from ∆i + 1 to m − 1, for
1 ≤ i ≤ ω − 2, of the multiplicand A are added with
entries of the previous iteration’s sT vector.

The following lemma proves the correctness of vector
sT contents in Algorithm 1.

Lemma 1 Let A be an arbitrary element in GF (2m) and sT

be a row vector of length m − 1 that is initialized with the
following entries sT = [sm−1, · · · , s1] = [am−1, · · · , a1].
Then, the entries of the vector sT at the end of the for loop at
Step 1 of Algorithm 1 become S(0, :).

Proof: Since the vector sT is initialized with the row 0
of the matrix U in (5), the recursive call to the for loop in
Step 1 accumulates sT in accordance with U(0, :)[→ ∆i].
Then, the final retuned vector (after a total of ω− 2 loop
iterations) satisfies S(0, :) as in (10).

As shown in the initialization step, the coordinates of
the multiplier B are stored in the row vector zT . Also the
coordinates from 1 to m − 1 of the multiplicand A are
stored in the row vector yT , which will be used to obtain
the rows j, for 1 ≤ j ≤ m−1, of the matrix L as stated in
(13). In Step 3, the operation xT ← a0

∣∣∣∣sT , represents the
concatenation of a0 and the row vector sT ; hence, M(0, :)
that is shown in (15), is generated and stored in xT . The
vector sT is also stored in wT , in order to be added later
for obtaining the rows M(ti, :), 1 ≤ i ≤ ω − 2, as seen in
(14).

The operation xT • z in Step 4.1, represents the inner
products of the coordinates of both the row vector xT

and the column vector z, i.e., xT • z =
∑m−1

i=0 xizi. It is
noteworthy to mention that at the end of the iteration j
of the loop started in Step 4, the output cj is computed
and at the same iteration the row j + 1 of the matrix
M, i.e., M(j+ 1, :) would be generated and stored in xT .
Hence, it would be ready for use in the next iteration.
The following lemma proves that the contents of xT at
the end of j iteration become the row M(j+ 1, :) as seen
in (14).

Lemma 2 Let A be an arbitrary element in GF (2m), yT be a
row vector of length m−1 that is initialized with the following
entries yT = [ym−2, · · · , y0] = [am−1, · · · , a1], wT be a
row vector of length m−1 that is initialized with S(0, :), and
xT be a row vector of length m that is initialized with row
0 of matrix M. Then, the coordinates of xT in the for loop at
Step 4 of Algorithm 1 returns the correct value of the next
row of the matrix M in (4).

Proof: The for loop in Step 4 of Algorithm 1 has two

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

5

conditional cases, for j 6= ti, for this case, the for loop
recursively computes

xT ← [y0, xm−1, · · · , x1], yT ← [y0, ym−2, · · · , y1],

and for j = ti, for this case, the for loop recursively
computes

xT ←[y0, xm−1 + wm−2, · · · , x1 + w0],
yT ←[y0, ym−2, · · · , y1],

by induction, each recursive call to the for loop in Step
4 of Algorithm 1, returns the next row of matrix M as
in (14).

The inner product generated in Step 4.1 and the bit
additions of Step 4.3.1 can be performed independently
and in parallel. Therefore, the computation time required
for obtaining each bit of the output result (cj), is propor-
tional to the longest delay that is the delay of the inner
product generated in Step 4.1.

4 MULTIPLIER ARCHITECTURES

In this section, an approach to the architecture design
of the SOBL multiplier for both the ω-nomials and
the irreducible trinomials is presented in detail. Both
architectures are capable of generating an output bit with
a total of one computational clock cycle. We remark that
the bit-level structure multiplier is considered as an iter-
ative architecture. Thus, for any bit-level (or digit-level)
multiplier, a main control unit that generates a counter
is required to generate the load, start, complete, and
other control signals. In our approach, additional control
signals are needed in computation of the multiplication
product, which can also be generated from the main
control unit. However, in order to provide a complete
and in-depth view of the components involved in our
approach, a binary counter that generates the necessary
control signals for the computation of the multiplication
product is included in our architecture. In our model,
a series carry synchronous counter is used, which is
implemented with a register for every bit and an AND
gate for every bit except the first and last bit. The carry-
in to carry-out delay in the series carry synchronous
counter is (dlog2me− 2)TA, where TA denotes the delay
of the 2-input AND gate. We further remark that the loop
iterations of the Algorithm 1 are mapped into hardware
clock counter that are also denoted by j.

4.1 Multiplier Architecture for ω-nomials
The architecture for the ω-nomials (irreducible polyno-
mials with ω non-zero terms) is depicted in Fig. 1(a). It
is composed of circuits S and CSC, a binary counter, an
IPm block, and four registers 〈W 〉, 〈X〉, 〈Y 〉, and 〈Z〉 that
are of length m− 1, m, t1, and m-bits, respectively. The
circuit S maps the implementation of the loop started
in Step 1 of Algorithm 1. The detailed implementation
of S is shown in Fig. 2. In this figure, an oval-shape
enclosure indicates a binary tree of XOR gates. It is

noted that the output signal s, which is generated by
the circuit S, is equal to that of corresponding row 0
of the matrix S, i.e., S(0, :). Let us consider the binary
extension field GF (2163) generated by the irreducible
pentanomial P (x) = x163 + x7 + x6 + x3 + 1. Given an
arbitrary field element A ∈ GF (2163), the coordinates of
s, are computed as

si =

ai + a160+i + a157+i + a156+i, 1 ≤ i ≤ 2,
ai + a157+i + a156+i, 3 ≤ i ≤ 5,
ai + a156+i, i = 6,
ai, 7 ≤ i ≤ 162,

(17)

for i = 1, 2, · · · 162. Equation (17), can be realized by an
architecture of 6 binary tree of the XOR gates. In general,
the number of the XOR gates for computing s, i.e., sxor is

sxor =

ω−2∑
i=1

(ti − 1), (18)

and the time delay of the longest path between the
inputs and outputs (stime) is stime = dlog2(ω − 1)eTX ,
where TX denotes the delay of the 2-input XOR gate. As
a result, the total XOR gates for this example becomes
sxor = 13 and the delay becomes stime = 2TX .

The register 〈W 〉 is initialized with the contents of
s, i.e., 〈wm−2, · · · , w0〉 = [sm−1, · · · , s1]; hence, the
operation wT ← sT , in Step 3 of Algorithm 1 is con-
sidered in this architecture. The output bits obtained
from the circuit S, are concatenated with the element a0,
and the result is loaded to 〈X〉, i.e., 〈xm−1, · · · , x0〉 =
[a0, sm−1, · · · , s1]. This indicates that the operation
xT ← a0

∣∣∣∣sT , in Step 3 of Algorithm 1, is also presented
in our architecture.

As also shown in the initialization step of Algorithm
1, the register 〈Z〉 is initialized with the coordinates
of the multiplier B and its contents remain unchanged
during each clock cycle until the end of multiplication
process. Also, the coordinates from 1 to t1 of the mul-
tiplicand A are initially fed into the register 〈Y 〉, i.e.,
〈yt1−1, · · · , y1, y0〉 = [at1 , · · · , a2, a1].

It is worth noting that in this architecture, the row j,
0 < j ≤ m − 1 & j 6= ti, of the matrix M in (14) is
obtained as

M(j, :) =

{
M(j − 1, :)[y0, → 1], for 0 <j≤ t1 − 1,
M(j − 1, :)[wt1 , → 1], for t1<j≤m− 1,

where y0 and wt1 are the coordinates of 〈Y 〉 and 〈W 〉
registers, respectively.

In TABLE 2, we show how the control signals Ctrl1
and Ctrl2 in Fig. 1(a) coordinate the contents of 〈W 〉, 〈X〉,
and 〈Y 〉 registers. As shown in this table, if j ≤ t1−1, the
contents of 〈W 〉 remain unchanged, i.e., 〈W 〉 = S(0, :),
whereas, the contents of 〈Y 〉 are right cyclic shifted and
hence, it maps the implementation of Step 4.5 of Algo-
rithm 1. The contents of 〈X〉 during j, for 0 ≤ j ≤ t1− 1
are updated as follows. If j 6= ti−1, then, 〈X〉 is updated
by the right shift (RS) of its coordinates with 〈y0〉 fed at

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

6

Log m - bit binary

counter
2

y t -11

zm-2zm-1

xm-1 xm-2

 w0w1wt -11
wt 1

 wm-2

Clk

x0x1

ci

z 0z 1

 y0 y1

m

A

S
1 m

1

1t

B
Preload

(b)(a)

IPm
m

Preload

Preload

m

1 m

1 m

Preload

 t

CSC
Ctrl 2

Ctrl 1

Log m - bit binary

counter
2

8
-b

it b
in

a
ry

 C
o

u
n

te
r’s

 R
e
g

is
te

rs

Ctrl 2

Ctrl 1

r0

r1

r2

r3

r4

r5

r6

r7CSCCircuit

a1

a t1

a0

a1

am-1

b0

bm-1

s 1

s m-1

s 1

s m-1
a0

Fig. 1: The proposed serial-out bit-level (SOBL) Mastrovito multiplier architecture for the ω-nomial. (a) The high-
level architecture. (b) The implementation of the control signal circuit (CSC) that generates the signals Ctrl1 and
Ctrl2 from the 8-bit binary counter’s registers for the GF (2163) field constructed by P (x) = x163 + x7 + x6 + x3 + 1.

TABLE 2: The operations of the control signals Ctrl1, and Ctrl2 in Fig. 1(a).

j† Ctrl1 Ctrl2 〈W 〉 〈X〉 〈Y 〉
0 ≤j< t1−1 & j 6= ti−1†† 0 0 clock is disabled 〈X〉=〈y0, xm−1, · · · , x1〉 〈Y 〉=〈y0, yt1−1, · · · , y1〉

j = ti − 1†† 0 1 clock is disabled 〈X〉=〈y0, xm−1 + wm−2, · · · , x1 + w0〉 〈Y 〉=〈y0, yt1−1, · · · , y1〉
t1 − 1 <j≤ m− 1 1 0 〈W 〉=〈w0, wm−2, · · · , w1〉 〈X〉=〈wt1 , xm−1, · · · , x1〉 clock is disabled

P (x) = x163 + x7 + x6 + x3 + 1

j = 0, 1, 3, 4 0 0 clock is disabled 〈X〉=〈y0, x162, · · · , x1〉 〈Y 〉=〈y0, y6, · · · , y1〉
j = 2, 5, 6 0 1 clock is disabled 〈X〉=〈y0, x162 + w161, · · · , x1 + w0〉 〈Y 〉=〈y0, y6, · · · , y1〉

j = 7, 8, · · · , 162 1 0 〈W 〉=〈w0, w161, · · · , w1〉 〈X〉=〈w7, x162, · · · , x1〉 clock is disabled
† j represents the hardware clock counter. †† For 1 ≤ i ≤ ω − 2.

the MSB. This maps the implementation of Step 4.2.1 of
Algorithm 1. If j = ti−1 (ti is obtained in (3)), then, 〈X〉
is updated by XORing the coordinates of 〈W 〉 with the
RS of its coordinates, and 〈y0〉 being fed into the MSB
of 〈X〉. This maps the implementation of Step 4.3.1 of
Algorithm 1. If j > t1 − 1, observing this conditional
case, one can see that the above mentioned condition,
i.e., j = ti−1, will never occur again, hence, the contents
of 〈W 〉, i.e., S(0, :) are no longer needed. This gives us
the freedom of using and changing the contents of 〈W 〉.
Hence, the contents of 〈W 〉 are right cyclic shifted, i.e.,
〈wm−2, · · · , w0〉 = 〈w0, wm−2, · · · , w1〉. The register 〈X〉
is then updated by the RS of its coordinates with 〈wt1〉
being fed into the MSB of 〈X〉. Fig. 1(b) illustrates the
control signal circuit (CSC) that generates the signals
Ctrl1 and Ctrl2 from the 8-bit binary counter’s registers
for the GF (2163) field constructed by P (x) = x163 +
x7 + x6 + x3 + 1. From this figure, one can see that an
additional cost of 6 OR gates, 5 AND gates, and 3 NOT
gates (14 gates in total with an area complexity of 0.00925
KGate), is needed over the gate costs of a traditional 8-bit
counter.

The module IPm that is shown in Fig. 1(a), maps
the implementation of the operation cj = xT • z in
Step 4.1. This module, computes the output bit result
cj = M(j, :) · b. It does so by performing the inner

11 t 1
2

 !
t

1 m

1 m

1
a 1

2

!
"#
a

1
1
 !a

2
a 2

2

!
"
#

a
2

1
 !

a

1
2

 !
t
a

1
22
 !

"

##
t

a
1 m

a

1 m
a

1 m
a

11 t
a

1
ta

1 m

2
s

1
1
 t

s

1
2

 !
t
s

1s

1
t
s

1 m
s

S Circuit

M
u

ltip
lic

a
n

d
 A

WX

Preloaded to both

registers and

Fig. 2: The implementation of the circuit S in Fig. 1(a)
that generates S(0, :).

product (IP) of its two input vectors; it first generates
the product in parallel using m AND gates and then, by
adding (modulo 2) the generated partial products using
a binary XOR tree. The architecture of the IPm block
implements

ci =

m−1∑
i=0

xizi = [x0, · · · , xm−1]× [z0, · · · , zm−1]T ,

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

7

x1 x0x
 -11

x

1
xm-2xm-1

y
1

y
0

x
 +11

x
 - t1 1

y
 -1- t

1 1
y
 - t1 1

x +1- t1 1
x
 -21

y
 -31

x -11

 ci

zm-2zm-1

z1 z0

xt -11
x t 1

xt +1
1

xt -21

0

1
11
 ! t

1
t

IPm

m
A

S
1 m

1

1 m

B
m Preload

Preload

Preload

11 !

1 m
a

1a

1
1
 !

a

1
1
 t

a

11 t

1tm

1 ma

1
ta

1
s

1 ms

1

SCircuit

(a)

(b)

m

1

1

1

1

1

y
 - 2

1

Log m - bit binary

counter
2

CSC
Ctrl

Log m - bit binary

counter
2

8
-b

it b
in

a
ry

 C
o

u
n

te
r’s

 R
e
g

is
te

rs

Ctrl

r0

r1

r2

r3

r4

r5

r6

r7

CSCCircuit

(c)

b0

bm-1

a1

a t1

a1

a t1

0

0

a1

am-1

a0

s 1

s m-1
a0

Fig. 3: The proposed Mastrovito serial-out bit-level (SOBL) multiplier architecture for the irreducible trinomial.
(a) The high-level architecture. (b) The implementation of the circuit S. (c) The implementation of the control
signal circuit (CSC) that generates the signal Ctrl from the 8-bit binary counter’s registers for the GF (2233) field
constructed by P (x) = x233 + x74 + 1.

which requires m−1 XOR gates to accumulate the partial
products. The depth of the binary XOR tree is given as
dlog2me and, hence, the total delay of the IPm module
([IPm]time) is

[IPm]time = TA + dlog2meTX . (19)

Proposition 1 For the finite field GF (2163) generated by the
irreducible pentanomial P (x) = x163 + x7 + x6 + x3 + 1, the
proposed SOBL PB multiplier architecture (Fig. 1(a)) requires
503 1-bit registers, 333 2-input AND gates, 6 2-input OR
gates, 4 NOT gates, and 336 2-input XOR gates.

Proof: The number of 1-bit registers includes the ones
in the 〈X〉 register, i.e., m, the register 〈Z〉, i.e., m, the
register 〈W 〉, i.e., m− 1, the register 〈Y 〉, i.e., t1 and the
register 〈R〉 in the binary counter, i.e., dlog2me. Thus, the
multiplier requires 3m+ t1 + 7 = 503 1-bit registers. The
IPm block requires m AND gates, a single AND gate
for clock enabling the 〈W 〉 register, m + 1 AND gates
for the connection between 〈W 〉 and 〈X〉 registers and
5 AND gates for the CSC are also required. Therefore,
the multiplier requires 2m+ 7 = 333 2-input AND gates.
The CSC circuit requires 6 OR gates and 3 NOT gates, a
single NOT gate for complementing the signal Ctrl is
also required. Therefore, the multiplier requires 6 OR
gates and 4 NOT gates. The number of the XOR gates
is obtained by adding those for the IPm, the updating
signal for the register 〈X〉, as well as the S circuit, which
are m−1, m, and (18), respectively. As a result, the num-
ber of the XOR gates required in the SOBL multiplier
architecture generated by P (x) = x163 + x7 + x6 + x3 + 1
is 2m−2+

∑ω−2
i=1 (ti−1) = 336 and the proof is complete.

4.2 Multiplier Architecture for Trinomials

The proposed SOBL multiplier architecture that is il-
lustrated in Fig. 1(a), can be further optimized for the
irreducible trinomial, which is a special case of (3),
i.e., P (x) , xm + xt1 + 1. The sets T and N for the
irreducible trinomial, have {0, t1} and {0, ∆1 = m− t1}
sets, respectively. This optimization can be achieved as
shown in Fig. 3(a).

The architecture in this figure, is composed of circuits
S and CSC, a binary counter, an IPm block, and three
registers 〈X〉, 〈Y 〉, and 〈Z〉. The register 〈Y 〉 in this
figure, is reduced to ∆1−1 bits. Initially, the coordinates
from 1 to t1 of the multiplicand A are fed into 〈Y 〉 in
the locations from 0 to t1 − 1, i.e., 〈yt1−1, · · · , y0〉 =
[at1 , · · · , a1]. The contents of 〈Y 〉 are postponed by
m − 2t1 − 1, zeros (cleared) at its left-most m − 2t1 − 1
bits, i.e., 〈y∆1−2, · · · , yt1〉 = [0, 0, · · · , 0︸ ︷︷ ︸

m−2t1−1

].

The register 〈Z〉, and the module IPm remain un-
changed as in the proposed ω-nomial SOBL architecture,
which is presented in Subsection 4.1 (Fig. 1(a)). The S
circuit is implemented as shown in Fig. 3(b). As seen in
this figure, it is composed of t1 − 1 parallel XORs. The
output bits obtained from the circuit S, are concatenated
with the element a0. This concatenation result is loaded
to 〈X〉, i.e., 〈xm−1, · · · , x0〉 = [a0, sm−1, · · · , s1]. During
both clock periods 0 ≤ j ≤ t1−2 and t1 ≤ j ≤ m−1, the
contents of both registers 〈X〉 and 〈Y 〉 are right shifted.
The right-most bit (LSB) of 〈X〉 is fed into the MSB of the
register 〈Y 〉, i.e., 〈y∆1−2〉 ← 〈x0〉, and similarly, the LSB
of 〈Y 〉 is fed into the MSB of 〈X〉, i.e., 〈xm−1〉 ← 〈y0〉.

At the clock cycle t1 − 1, both registers 〈X〉 and 〈Y 〉
are updated with the proper contents as described in the

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

8

following:

〈xt1−2, · · · , x0〉← 〈xt1−1 + y∆1−2, · · · , x1 + y∆1−t1〉 ,
〈xm−1, · · · , xt1−1〉← 〈y0, y∆2 , · · · , y∆1−t1 ,

x∆1−t1 + x∆1 , · · · , x0 + xt1〉,
〈y∆1−1, · · · , y0〉← 〈x∆1−1, · · · , x1〉 .

Fig. 3(c) illustrates the control signal circuit (CSC) that
generates the signal Ctrl from the 8-bit binary counter’s
registers for the GF (2233) field constructed by P (x) =
x233 + x74 + 1. From this figure, one can see that an
additional cost of 4 OR gates, 3 AND gates, and 1 NOT
gate (8 gates in total with an area complexity of 0.00525
KGate), is needed over the gate costs of a traditional 8-bit
binary counter.

Proposition 2 For the finite field GF (2233) generated by the
irreducible trinomial x233 + x74 + 1, the proposed SOBL PB
multiplier architecture (Fig. 3(a)) requires 632 1-bit registers,
699 2-input AND gates, 4 2-input OR gates, 2 NOT gates,
and 696 2-input XOR gates.

Proof: The number of 1-bit registers includes the
ones in the 〈X〉 register, i.e., m, the register 〈Z〉, i.e.,
m, the register 〈Y 〉, i.e., ∆1 − 1 = m − t1 − 1 and the
register 〈R〉 in the binary counter, i.e., dlog2me. Thus,
the multiplier requires 3m− t1 + 7 = 632 1-bit registers.
The IPm block requires m AND gates, 2m − 3 AND
gates for the connection between 〈X〉 and 〈Y 〉 registers
and 3 AND gates for the CSC circuit are also required.
Therefore, the multiplier requires 3m = 699 2-input AND
gates. The CSC circuit requires 4 OR gates and a single
NOT gate, a single NOT gate for complementing the
signal Ctrl is also required. Therefore, the multiplier
requires 4 OR gates and 2 NOT gates. The number
of the XOR gates is obtained by adding those for the
IPm, the updating signals for 〈X〉 and 〈Y 〉, as well as
the S circuit, which are m − 1, m − 1, ∆1, and t1 − 1,
respectively. As a result, the number of the XOR gates
required in the SOBL multiplier architecture generated
by the irreducible trinomial x233 +x74 +1 is 3m−3 = 696
and the proof is complete.

The critical path delay, which is the longest path from
the registers to the output ci, is one of the main factors
that determines the time complexity. It determines the
maximum operating frequency. By properly implement-
ing the proposed SOBL architectures, i.e., Fig. 1(a) and
Fig. 3(a), one can see that the critical path delay of
both architectures is equal to the total delay of the IPm

module, which is shown in (19).

5 ARCHITECTURES FOR DOUBLE MULTIPLI-
CATION

In this section, we first extend the traditional parallel-out
bit-level (POBL) multiplier schemes presented in [16] to
propose new POBL double multiplication architectures.
We then, propose new hybrid-double multiplication ar-
chitectures using PB over GF (2m). Note that all the

presented architectures can be easily modified to extend
their structure into the digit-level. However, for the sake
of simplicity, in this work we did not investigate on the
techniques for the digit-level structures.

5.1 New Architectures for LSB-first/MSB-first POBL
Double Multiplications
Beth and Gollman in [16] proposed two types of bit-
level multiplier schemes, namely LSB-first and MSB-first,
multipliers. Let A and B be two arbitrary elements of
GF (2m) and C be their multiplication, i.e., C = AB.
Then, the LSB-first POBL multiplier is obtained as fol-
lows [16]

C=bm−1

(
(Aαm−1) mod P (α)

)
+· · ·+b0

(
A mod P (α)

)
,

and the MSB-first POBL multiplier is obtained as follows

C=

(
· · ·
(

(bm−1A)α mod P (α) + bm−2A

)
α mod P (α)+

· · ·+b1A

)
α mod P (α) + b0A.

Let D and E ∈ GF (2m) such that E = CD mod P (α).
A combination of two consecutive single multiplications
C = AB, and E = CD produces the following double
multiplication involving three operands:

E = ABD. (20)

A double multiplier that computes (20) can be
achieved by extending the schemes of the traditional
POBL to the schemes presented in Figs. 4(a) and
4(b). In these figures, the register 〈Y 〉 is initialized as
follows, for the LSB-first double multiplier, i.e., Fig.
4(a), 〈y2m−1, · · · , ym〉 = D, and 〈ym−1, · · · , y0〉 = A,
and for the MSB-first double multiplier, i.e., Fig. 4(b),
〈y2m−1, · · · , ym〉 = A, and 〈ym−1, · · · , y0〉 = D. In both
architectures, the register 〈X〉 is initialized with B and
the register 〈Z〉 is initially cleared. Also, the α module
multiplies the input by α and reduces the results by
P (x). This is done at cost of ω − 2 2-input XOR gates.
The dotted block, i.e.,

⊙
, in both figures, denotes bit-

wise AND operation between the LSB (or MSB) bit of
〈Y 〉 and the contents of 〈X〉 and is performed using m
2-input AND gates. The adder block, i.e.,

⊕
, denotes

bit-wise XOR gates and is implemented using m 2-input
XOR gates. After m clock cycles, the contents of 〈Z〉
that become the coordinates of the product C = AB,
are loaded to 〈X〉. Eventually, at clock 2m, the contents
of 〈Z〉 become the coordinates of the product E = CD.

The MSB-first double multiplier scheme shown in
Fig. 4(a) as compared to the LSB-first double multiplier
scheme shown in Fig. 4(b), has longer critical path delay.
Since in the MSB-first double multiplier scheme, the α
module must also be considered in the delay path. How-
ever, the hardware overhead gates due to the parallel
I/O data transfer to 〈X〉 register in the LSB-first double
multiplier requires a 3-to-1 multiplexer of size m bits. As

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

9

LSB-first POBL

m

m

.

.

.

0
z

2 m
z

1 m
z

.

.

.

m

m

1

0
x

2 m
x

1 mx

X

Z

E=ABD

m

m

M
U

X

Preload

D

m

m

m

M
U

X

m

0

SOBL

c

c
1

c

m-1

...

m

m

Preload

A

Preload

B
SOBL

LSB-first

POBL
D

E=ABD

st

pt

B

SOBL

LSB-first

POBL

E=ABD

st

pt

(e)(d)(c)

A

m m

m

D
m

=
(+)st pt

2
ht= max (,) =st ptht st

m

0 ic ic

mm

Preload

BA

m m

mmm

.

.

.

0z

2 mz
1 m

z

.

.

.

m

m

1

0x

2 mx
1 mx

X

Z

E=ABD

m

m

. . . 0y2 m
y

1 m
y

11

Y

m
y

22 my12 my

M
U

X

(a)

mm

.

.

.

0z

2 m
z

1 m
z

.

.

.

m

m

1

0x

2 m
x

1 mx

X

Z

E=ABD

m

Preload

. . . 0y2 my1 my

1

1

Y

my22 my12 my

Preload

A
Preload

D

B

m

M
U

X

m

. . .

m

(b)

. . .

m

M
U

Xm

0

m

m

Preload

A
Preload

D
m m

Preload

B
m

m

m

M
U

Xm

0

Preload

Preload

Update when clk = m
Update when clk = m

Fig. 4: The proposed double-multiplication architectures. (a) The proposed LSB-first POBL double multiplication
architecture that extends the POBL schemes presented in [16]. (b) The proposed MSB-first POBL double
multiplication architecture that extends the POBL schemes presented in [16]. (c) The hybrid-double multiplication
structure is developed by connecting the output of the SOBL multiplier into the input of the POBL multiplier. (d)
The critical-path delay of the hybrid-double multiplication (th). (e) Reducing the delay by inserting registers at the
IPm block inside the SOBL multiplier.

a result, the LSB-first double multiplier has higher area
complexity.

5.2 Hybrid-Double Multiplication

Recently, hybrid-double multiplier was proposed in
GF (2m) using normal basis representation [17], [18]. This
hybrid-double multiplier is achieved by combining and
interleaving a SOBL Gaussian normal basis multiplier
that is implemented based on [27], and a POBL normal
bases multiplier that is based on [16]. Note that a tra-
ditional POBL multiplier such as Beth and Gollmann
approach [16] by itself cannot create a hybrid-double
multiplier component; however, combining a SOBL mul-
tiplier with a traditional POBL one would allow to
develop a hybrid-double multiplier.

A multiplier operates using the PB representation,
in compared to the normal bases, has lower hardware
requirements and easy-to-derive structure based on the
defining irreducible polynomial for the field P (x) [30].
In the following we employ the proposed two SOBL
schemes, and the SOBL scheme proposed in [19], to
present, for the first time, hybrid-double multiplication
architectures using PB over GF (2m).

The SOBL polynomial basis multiplication scheme
proposed in [19] generates every bit of the multiplication
in each clock cycle. Thus, it can be combined with the

traditional POBL multiplier (such as Beth and Gollmann
approach in [16]) to produce the hybrid-double multipli-
cation scheme. The structure of the hybrid-double multi-
plication is illustrated in Fig. 4(c). In this figure, the SOBL
multiplier generates every bit of the multiplication, i.e.,
the output bit result of the product C = AB, in each
clock cycle, whereas the POBL multiplier computes all
output coordinates in parallel after m clock cycles. As
one can see from Fig. 4(c), all bits of the operands A,
B, and D are initially available, while the coordinates
of the partial product C should be available in serial
fashion starting from the LSB, i.e., c0.

The structure of the hybrid-double multiplication as
illustrated in Fig. 4(c), allows performing two multipli-
cations simultaneously, where the results are available
in parallel after m + 1 clock cycles assuming that one
clock cycle is required to load the output of the SOBL
multiplier (stored in the register) to the input of the
LSB-first SOBL multiplier. The critical path delay of
the hybrid-double multiplication (th) is equal to the
maximum of delays between the LSB-first POBL (ts) and
the SOBL (tp) multipliers, i.e., th = max{ts, tp}. Based on
the information provided in TABLE. 3, i.e., ts > tp, one
can see that th = ts. Thus, to speed up the multiplication,
one can balance the latency of the two multipliers at
the cost of a few additional registers. Let us divide the
IPm block by inserting registers at stage ε, then, the total

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

10

TABLE 3: Comparison of the Proposed SOBL Multipliers (Fig. 1(a) and Fig. 3(a)) in Terms of Times Complexities
for the Irreducible ω-nomial and the Irreducible Trinomial.

Type of Multiplier Output Latency [cycle] Critical
Scheme Structure Bit-Latency Total-Latency Path Delay †

P (x) = xm +
∑ω−1

i=1 xti , m
2
> t1 > t2 > · · · > tω−2 > tω−1 = 0

LSB-first [16] Parallel m m TA + TX
MSB-first [16] Parallel m m TA + TX
SOBL [28] †† Serial m 2m TA + dlog2(m− 1)eTX
SOBL [19] ††† Serial 1 m TA + max (T1, T2)

Proposed SOBL Fig. 1(a) Serial 1 m TA + dlog2 meTX
P (x) = x163 + x7 + x6 + x3 + 1

LSB-first [16] Parallel 163 163 TA + TX
MSB-first [16] Parallel 163 163 TA + TX
SOBL [28] Serial 163 326 TA + 8 TX
SOBL [19] Serial 1 163 TA + 11 TX
Proposed SOBL Fig. 1(a) Serial 1 163 TA + 8 TX

P (x) = xm + xt1 + 1, and 1 ≤ t1 < m
2

LSB-first [16] Parallel m m TA + TX
MSB-first [16] Parallel m m TA + TX
SOBL [28] Serial m 2m TA + dlog2(m− 1)eTX
SOBL [19] Serial 1 m TA + (2 + dlog2me)TX
Proposed SOBL Fig. 3(a) Serial 1 m TA + dlog2 meTX

P (x) = x233 + x74 + 1

LSB-first [16] Parallel 233 233 TA + TX
MSB-first [16] Parallel 233 233 TA + TX
SOBL [28] Serial 233 466 TA + 8 TX
SOBL [19] Serial 1 233 TA + 10 TX
Proposed SOBL Fig. 3(a) Serial 1 233 TA + 8 TX
† The critical path delay of the multiplier schemes is obtained in terms of the delay of two-input

XOR gate (TX) and the delay of two-input AND gate (TA).
†† The complexity results of [28] are obtained from [29].
††† T1 = (1 + dlog2 (ω − 1)e+ dlog2(m)e)TX , T2 = (1 + dlog2 (m− 1)e+ dlog2(ω − 2)e)TX .

number of required registers υ is υ =
⌈
m
2ε

⌉
register bits.

It is noted that, if the position of ε were to be properly
chosen, then, the total propagation delay of the hybrid-
double multiplication architecture, as depicted in Fig.
4(e), would be reduced to about

⌈
ts+tp

2

⌉
.

6 COMPARISON

Let us define bit-latency and total-latency as the number
of clock cycles needed for the first bit of the output to be
available, and for the entire multiplication, respectively.
Thus, one can see that the bit-latency of the proposed
SOBL multipliers is one, and that the total-latency re-
quires m clock cycles.

TABLE 3 and TABLE 4 show the comparison of the
proposed SOBL multiplier with other efficient POBL and
SOBL multipliers in terms of area and time complexities
for the irreducible ω-nomials and the trinomials. It can
be seen from both tables that the complexity of the SOBL
multiplier schemes are higher than that using POBL
multiplier schemes. However, in many applications such
as the hybrid-double multiplication architecture a SOBL
multiplier would be desirable because of its ability to
sequentially generate an output bit of the final mul-
tiplication result in each clock cycle with the latency
of one cycle. TABLE 3 also shows that in terms of
delay complexities, the proposed two SOBL multiplier
schemes, i.e., Fig. 1(a) and Fig. 3(a), outperform the

previous published SOBL ones. As an example, for the
binary extension fields GF (2163) and GF (2233) that are
recommended by NIST [31] and SECG [32], the critical
path delay of the SOBL multiplier that is proposed in [19]
over those two finite fields are TA+11TX , and TA+10TX ,
respectively. whereas in proposed two SOBL multiplier
schemes, the critical path delays over both finite fields
are TA + 8TX .

In addition to the core multiplier component, the bit-
level multiplier processor has to embed some other func-
tionality to operate properly. For instance, a controller
component that allows controlling the I/O communica-
tion signals, and generates the control signals is required.
Also, to minimize the total latency, the data I/O has to
be transferred in parallel (at cost of 1 clock cycle). The
parallel I/O overhead (time and extra hardware) cannot
be considered negligible. Figs. 5(a) and 5(b), illustrate
the hardware overhead gates due to the parallel I/O
data transfer. The circuit that is depicted in Fig. 5(a)
enables a bit register to be initially cleared (when load
signal = 1) or updated with the update signal (when load
signal = 0). The circuit in Fig. 5(b) enables a bit register
to switch between two inputs based on the load signal.
Note that no extra gate is required when a bit register
hold the same data as at the initialization (as required
in the 〈Z〉 register in both Fig. 1(a), and Fig. 3(a)). The
corresponding loading overhead gates in the proposed

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

11

TABLE 4: Comparison of the Proposed SOBL Multipliers (Fig. 1(a) and Fig. 3(a)) in Terms of Space Complexities
for the Irreducible ω-nomial and the Irreducible Trinomial.

Type of Multiplier Area Cost
Scheme Total AND Gates Total XOR Gates Total 1-bit Reg. Additional Costs

P (x) = xm +
∑ω−1

i=1 xti , m
2
> t1 > t2 > · · · > tω−2 > tω−1 = 0

LSB-first [16] m m+ ω − 2 3m −
MSB-first [16] m m+ ω − 2 3m −
SOBL [28] † 3m− 1 3m− 2 4m+ 1 −
SOBL [19] †† 2m− 1 2m+ ω + γ − 4 3m+ t1 − 1 −
Proposed SOBL Fig. 1(a) 2m+ 2 2m+ γ − 2 3m+ t1 − 1 dlog2me−binary counter and CSC circuit †††

P (x) = x163 + x7 + x6 + x3 + 1
LSB-first [16] 163 166 489 −
MSB-first [16] 163 166 489 −
SOBL [28] 488 487 653 −
SOBL [19] 325 340 495 −
Proposed SOBL Fig. 1(a) 333 336 503 6 OR gates and 4 NOT gates

P (x) = xm + xt1 + 1, and 1 ≤ t1 < m
2

LSB-first [16] m m+ 1 3m −
MSB-first [16] m m+ 1 3m −
SOBL [28] 3m− 1 3m− 2 4m+ 1 −
SOBL [19] 2m− 1 2m+ t1 − 2 3m+ t1 − 1 −
Proposed SOBL Fig. 3(a) 3m− 3 3m− 3 3m− t1 − 1 dlog2me−binary counter and CSC circuit †††

P (x) = x233 + x74 + 1
LSB-first [16] 233 234 699 −
MSB-first [16] 233 234 699 −
SOBL [28] 698 697 933 −
SOBL [19] 465 538 772 −
Proposed SOBL Fig. 3(a) 699 696 632 4 OR gates and 2 NOT gates
† The complexity results of [28] are obtained from [29].
†† γ =

∑ω−2
i=1 (ti − 1).

††† The complexity of the binary counter can be ignored by using the counter of the main control unit.

multiplier schemes are provided in TABLE 5. In this
table, we compare the proposed multiplier schemes with
the related bit-level multipliers when having the same
parallel I/O communication format.

7 ASIC IMPLEMENTATION

In this section, We implement the presented schemes
in the previous sections and the counterpart ones (10
schemes in total) to evaluate their area, time, and power
requirements. For each scheme, we have two implemen-
tations, one with basic controller, and one with consid-
ering the full controllers that initialize and terminate
the computation as part of the multiplier scheme (a
complete serial-multiplier circuit). The proposed multi-
plier schemes are modeled in VHDL and synthesized
for the binary extension fields GF (2163) and GF (2233)
that are recommended by NIST and SECG. The 65-nm
Complementary Metal-Oxide-Semiconductor (CMOS) li-
brary has been chosen for the synthesis on the ASIC
technology. All architectures have been synthesized us-
ing Synopsys R© Design Vision R© which is a GUI for
Synopsys R© Design Compiler R© tools [33]. The correct-
ness of the architectures is verified by Xilinx R© ISETM

Simulator (ISim).
The same default configurations have been used for

each synthesis approach, i.e., the same supply voltage,
test-bench, etc. The map effort for optimizations is set to
medium (i.e., default). The power consumption readings

Reg.

Load

Update

Reg.

Load

InitializeUpdate

(a) (b)

Fig. 5: Hardware overhead gates due to the parallel I/O
data transfer. (a) The circuit that enables a register to be
cleared or updated. (b) The circuit that enables a register
to be switched between two inputs (MUX).

have been conducted under 666 MHz frequency for all
designs. The fast bit-level multipliers described in [16]
and [19] are also modeled in VHDL and synthesized in
the same framework as the proposed multipliers to facil-
itate quantitative performance comparison. We note that
the power compiler in Synopsys R© Design Compiler R©

tools uses the power characterization specified in the
target library and switching activity to estimate power
dissipation [33]. For each multiplier scheme, the area
complexities are normalized to the complexity of a two-
input NAND gate. It is noted that the area of a NAND
gate in the utilized CMOS library for the drive strength
of two is 2.08 µm2. The total area is the sum of the
combinational area (CA) and the non-combinational area
(Non-CA). The timing (ns) for the critical-path delays

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

12

TABLE 5: Comparison of the Proposed Multiplier Schemes (Fig. 1(a) and Fig. 3(a)) with the Related Bit-Level
Multiplier Schemes when having the same Parallel I/O Data Transfer Format.

Type of Multiplier Total Reg. Never Changed Initially Cleared Loaded and Updated Total Parallel I/O Hardware Overhead
Scheme [bit] Reg. † [bit] Reg. ††[bit] Reg. ††† [bit] Total AND Gates Total OR Gates

LSB-first [16] 3m − m 2m 5m 2m
MSB-first [16] 3m m m m 3m m

SOBL [19] 3m+ t1 − 1 m m+ t1 − 1 m 3m+ t1 − 1 m
Proposed SOBL Fig. 1(a) 3m+ t1 − 1 m − 2m+ t1 − 1 4m+ 2t1 − 2 2m+ t1 − 1
Proposed SOBL Fig. 3(a) 3m− t1 − 1 m m− 2t1 − 1 m+ t1 3m− 1 m+ t1

P (x) = x163 + x7 + x6 + x3 + 1
LSB-first [16] 489 − 163 326 815 326
MSB-first [16] 489 163 163 163 489 163

SOBL [19] 495 163 169 163 495 163
Proposed SOBL Fig. 1(a) 495 163 − 332 664 332

P (x) = x233 + x74 + 1
LSB-first [16] 699 − 233 466 1165 466
MSB-first [16] 699 233 233 233 699 233

SOBL [19] 772 233 306 233 772 233
Proposed SOBL Fig. 1(a) 772 233 − 539 1078 539
Proposed SOBL Fig. 3(a) 624 233 84 307 698 307
† Bit registers with free I/O data transfer. †† Bit registers with a single AND gate for the I/O data transfer.
††† Bit registers with a multiplexer for the I/O data transfer.

(CPD) and the dynamic power (mW) are also obtained
for all the designs. The reported ASIC results of the
implementations of the multipliers over GF (2163) and
GF (2233) are listed in TABLE 6. In this table, the to-
tal time required for each multiplier is computed by
multiplying the number of clock cycles, i.e., m, by the
critical-path delay. It can be seen from the table that
for the POBL schemes, the computation time required
to obtain the first output bit and the total time required
for the multiplication are equal, whereas, in the SOBL
schemes, the computation time required to obtain the
first output bit is equal to the critical-path delay. Also
the controller has longer critical-path delay than the
delay of the actual POBL schemes (the core multiplier
component). From the table, one can see that the area
complexity of the proposed ω-nomial SOBL scheme that
is depicted in Fig. 1(a), i.e., the one that uses Ctrl1 and
Ctrl2 signals, is increased around 8-11% as compared to
the one proposed in [19], while the critical-path delay
is decreased by 14% w.r.t the one in [19]. Also from
this table, one can see that the proposed trinomial SOBL
scheme that is depicted in Fig. 2(a) has lower time and
area complexity as compared to the one in [19]. Further,
when considering the controllers as part of the multiplier
in the finite field over GF (2233), the SOBL multipliers are
the most dynamic power efficient schemes.

Also, the proposed double multiplication architectures
are implemented and the area, time, and power con-
sumption are reported for both GF (2163) and GF (2233)
in TABLE 7. In this table, the total time of the multi-
plication is computed as follows. For the POBL double-
multiplication architectures, we multiply the total num-
ber of clock cycles, i.e., 2m, by the critical-path delay.
For the hybrid-double multiplication architectures, we
multiply the total number of clock cycles, i.e., m + 1,
by the critical-path delay. Also, for the POBL double-
multiplication architectures, the throughput (TPT) of the

multiplication is obtained by multiplying the number
of bits per cycle, i.e. m

2m , by the speed, whereas, the
TPT in the hybrid-double multiplication architectures, is
obtained by multiplying the number of bits per cycle,
i.e. m

m+1 , by the speed. It is shown in TABLE 7, that by
employing the proposed SOBL schemes in the hybrid-
double multiplication architectures, the total time com-
plexity reduces, and the throughput improves, w.r.t. the
other double multiplication architectures.

8 CONCLUSIONS

We have presented new hardware schemes for the serial-
out bit-level (SOBL) multiplier in PB representation over
GF (2m) for both the ω-nomial and the irreducible trino-
mial. Compared to previously published results in terms
of time complexities, the work presented here outper-
form the existing SOBL multiplier schemes. We have
also extended the traditional POBL multiplier schemes
to new POBL double multiplication architectures, which
perform two multiplications after 2m clock cycles. Then,
we proposed three hybrid-double multiplication archi-
tectures in PB over GF (2m). These hybrid multiplier
structures perform two multiplications with latency
comparable to the latency of a single multiplication, i.e.,
after m + 1 clock cycles. We have obtained the space
and time complexities of the presented multipliers and
have compared them with their counterparts. For the
practical purposes, all the 10 schemes presented in this
work have been implemented in ASIC technology over
both GF (2163) and GF (2233), and the area, timing, power
consumption, and energy results have been presented.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their constructive comments. The work of A.
Reyhani-Masoleh was supported by the Natural Sciences

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

13

TABLE 6: Comparison of Bit-Level polynomial basis multipliers on an ASIC implementation (post synthesis) over
both GF (2163) and GF (2233) using 65-nm CMOS standard technology.

Type of Type of Area [KGate] † CPD Speed Bit- Total- Dynamic
Multiplier Scheme CA Non-CA Total [ns] [MHz] Time [ns] Time [ns] Power [mW] ††

P (x) = x163 + x7 + x6 + x3 + 1 (Without the main controller)
LSB-first [16] POBL 1.49 1.84 3.33 0.3 3333 48.9 48.9 6.653
MSB-first [16] POBL 1.16 1.84 3 0.32 3125 52.16 52.16 5.76

SOBL [19] SOBL 1.63 1.9 3.53 0.86 1162 0.86 140.18 4.996
Proposed Fig. 1(a) SOBL 1.99 1.96 3.95 0.75 1333 0.75 122.25 6.338

P (x) = x163 + x7 + x6 + x3 + 1 (With the main controller)
LSB-first [16] POBL 1.58 1.89 3.47 0.41 2439 66.83 66.83 6.748
MSB-first [16] POBL 1.23 1.89 3.12 0.43 2325 70.09 70.09 5.816

SOBL [19] SOBL 1.67 1.96 3.63 0.86 1162 0.86 140.18 5.168
Proposed Fig. 1(a) SOBL 1.99 1.96 3.95 0.75 1333 0.75 122.25 6.338

P (x) = x233 + x74 + 1 (Without the main controller)
LSB-first [16] POBL 2.11 2.62 4.73 0.31 3225 72.23 72.23 9.498
MSB-first [16] POBL 1.65 2.62 4.27 0.32 3125 74.56 74.56 8.108

SOBL [19] SOBL 2.55 2.95 5.5 0.83 1204 0.83 193.39 7.848
Proposed Fig. 1(a) SOBL 2.77 3.01 5.78 0.74 1351 0.74 172.42 9.07
Proposed Fig. 3(a) SOBL 2.43 2.39 4.82 0.73 1369 0.73 170.09 8.158

P (x) = x233 + x74 + 1 (With the main controller)
LSB-first [16] POBL 2.22 2.67 4.89 0.4 2500 93.2 93.2 9.625
MSB-first [16] POBL 1.79 2.67 4.46 0.41 2439 95.53 95.53 8.297

SOBL [19] SOBL 2.59 3.01 5.6 0.83 1204 0.83 193.39 8.037
Proposed Fig. 1(a) SOBL 2.77 3.01 5.78 0.74 1351 0.74 172.42 9.07
Proposed Fig. 3(a) SOBL 2.43 2.39 4.82 0.73 1369 0.73 170.09 8.158
† KGate is the area equivalence in terms of number of NAND gates ×103 (estimated area of one NAND gate is 2.08 µm2).
†† The power consumption readings were conducted under 666 MHz frequency for all the designs.

TABLE 7: ASIC synthesis results for the proposed double multiplication architectures (Fig. 4(a), Fig. 4(b), Fig.4(d),
and Fig.4(e)) for the polynomial basis over both GF (2163) and GF (2233) using 65-nm CMOS standard technology.

Type of Type of Area [KGate] † CPD Speed Total Time TPT †† TPT/Area Dynamic Energy ††††

Architecture Multiplier used CA Non-CA Total [ns] [MHz] [ns] [Mbps] [Kbps/Gate] Power ††† [mW] [m.J/Gbit]

P (x) = x163 + x7 + x6 + x3 + 1 (Without the main controller)
LSB-first double Fig. 4(a) POBL [16] 2.00 2.45 4.45 0.41 2439 133.7 1219 274 7.76 6.36
MSB-first double Fig. 4(b) POBL [16] 1.88 2.45 4.33 0.32 3125 104.3 1562 361 7.68 4.91
Hybrid-double Fig. 4(d) SOBL [19] 2.75 3.08 5.83 0.87 1149 142.7 1142 196 9.408 8.23
Hybrid-double Fig. 4(e) SOBL Fig. 1(a) 3.01 3.17 6.18 0.62 1613 101.7 1603 260 11.01 6.87

P (x) = x163 + x7 + x6 + x3 + 1 (With the main controller)
LSB-first double Fig. 4(a) POBL [16] 2.05 2.51 4.56 0.48 2083 156.5 1041 229 8.907 8.55
MSB-first double Fig. 4(b) POBL [16] 1.97 2.51 4.48 0.45 2174 150.0 1087 243 8.22 7.56
Hybrid-double Fig. 4(d) SOBL [19] 2.79 3.13 5.92 0.87 1149 142.7 1142 193 9.506 8.32
Hybrid-double Fig. 4(e) SOBL Fig. 1(a) 3.01 3.17 6.18 0.62 1613 101.7 1603 260 11.01 6.87

P (x) = x233 + x74 + 1 (Basic Controller)
LSB-first double Fig. 4(a) POBL [16] 2.84 3.5 6.34 0.42 2380 195.72 1190 188 11.15 9.37
MSB-first double Fig. 4(b) POBL [16] 2.66 3.5 6.16 0.33 3030 153.78 1515 246 10.99 7.25
Hybrid-double Fig. 4(d) SOBL [19] 4.14 4.64 8.78 0.8 1250 187.2 1245 142 14.11 11.34
Hybrid-double Fig. 4(e) SOBL Fig. 1(a) 4.36 4.75 9.11 0.61 1640 142.74 1632 179 15.64 9.58
Hybrid-double Fig. 4(e) SOBL Fig. 3(a) 4.02 4.20 8.22 0.57 1754 133.38 1747 213 14.15 8.1

P (x) = x233 + x74 + 1 (With the main controller)
LSB-first double Fig. 4(a) POBL [16] 2.89 3.56 6.45 0.52 1923 242.32 961 149 12.76 13.27
MSB-first double Fig. 4(b) POBL [16] 2.73 3.56 6.29 0.45 2222 209.7 1111 177 11.70 10.53
Hybrid-double Fig. 4(d) SOBL [19] 4.19 4.69 8.88 0.79 1265 184.86 1260 142 14.26 11.31
Hybrid-double Fig. 4(e) SOBL Fig. 1(a) 4.36 4.75 9.11 0.61 1640 142.74 1632 179 15.64 9.58
Hybrid-double Fig. 4(e) SOBL Fig. 3(a) 4.02 4.20 8.22 0.57 1754 133.38 1747 213 14.15 8.1
† KGate is the area equivalence in terms of number of NAND gates ×103 (estimated area of one NAND gate is 2.08 µm2).
†† TPT is the throughput and is equal to the number of bits per cycle times the speed.
††† The power consumption readings were conducted under 666 MHz frequency for all the designs.
†††† Obtained by dynamic power

throughput .

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2456023, IEEE Transactions on Computers

14

and Engineering Research Council (NSERC) of Canada.
The authors would like to thank Canadian Microelec-
tronics Corporation (CMC) Microsystems for providing
the required infrastructure and CAD tools that have been
used in this work.

REFERENCES
[1] R. Lidl, and H. Niederreiter, Introduction to Finite Fields and Their

Applications. 2nd Ed., Cambridge Univ. Press, Cambridge, UK,
Aug. 1994.

[2] R. E. Blahut, Theory and Practice of Error Control Codes. Addison-
Wesley, Reading, MA, May 1983.

[3] A. J Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone,
and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic
Publishers, Boston, MA, 1993.

[4] R. E. Blahut, Fast Algorithms for Digital Signal Processing. 1st Ed.,
Addison-Wesley, Reading, MA, Sept. 1985.

[5] V. S. Miller, “Use of Elliptic Curves in Cryptography,” In Proc.
of Advances in Cryptology-CRYPTO’85, LNCS, 1986, vol. 218, pp.
417-426.

[6] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Com-
putation, vol. 48, no. 177, pp. 203-209, Jan. 1987.

[7] T. Elgamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” IEEE Trans. Inf. Theory, vol. 31,
no. 4, pp. 469-472, Jul. 1985.

[8] W. Diffie, and M. Hellman, “New Directions in Cryptography,”
IEEE Trans. Inf. Theory, vol. 22, no. 6, pp. 644-654, Nov. 1976.

[9] M. A. Hasan, A. H. Namin, and C. Negre, “Toeplitz Matrix
Approach for Binary Field Multiplication Using Quadrinomials,”
IEEE Trans. VLSI Systems, vol. 20, no. 3, pp. 449-458, Mar. 2012.

[10] H. Wu, “Bit-Parallel Polynomial Basis Multiplier for New Classes
of Finite Fields,” IEEE Trans. Computers, vol. 57, no. 8, pp. 1023-
1031, Aug. 2008.

[11] A. Hariri, and A. Reyhani-Masoleh, “Bit-Serial and Bit-Parallel
Montgomery Multiplication and Squaring over GF (2m),” IEEE
Trans. Computers, vol. 58, no. 10, pp. 1332-1345, Oct. 2009.

[12] I.S. Hsu, T. K. Truong, L. J. Deutsch, and I. S Reed, “A Comparison
of VLSI Architecture of Finite Field Multipliers Using Dual,
Normal, or Stnadard Basis,” IEEE Trans. Computers, vol. 37, no.
6, pp. 735-739, Jun. 1988.

[13] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. New York: Springer-Verlag, 2004.

[14] E. D. Mastrovito, “VLSI Designs for Multiplication over Finite
Field GF (2m),” Proc. Sixth Symp. Applied Algebra, Algebraic Al-
gorithms, and Error Correcting Codes (AAECC-6), pp. 297-309, Jul.
1988.

[15] E. D. Mastrovito, “VLSI Architectures for Computation in Galois
Fields,” PhD thesis, Linköping Univ., Linköping, Sweden 1991.

[16] T. Beth, and D. Gollmann, “Algorithm Engineering for Public Key
Algorithms,” IEEE J. Selected Areas in Communications, vol. 7, no.
4, pp. 458-466, May 1989.

[17] R. Azarderakhsh, and A. Reyhani-Masoleh, “Low-Complexity
Multiplier Architectures for Single and Hybrid-Double Multipli-
cations in Gaussian Normal Bases,” IEEE Trans. Computers, vol.
62, no. 4, pp. 744-757, Jan. 2012.

[18] R. Azarderakhsh, K. Järvinen, and V. Dimitrov, “Fast Inversion in
GF (2m) with Normal Basis Using Hybrid-Double Multipliers,”
IEEE Trans. Computers, in process.

[19] A. Reyhani-Masoleh, “A New Bit-Serial Architecture for Field
Multiplication Using Polynomial Bases,” In Proc. of CHES 2008,
Aug. 2008, LNCS 5154, pp. 300-314.

[20] H. Wu, “Bit-Parallel Finite Field Multiplier and Squarer Using
Polynomial Basis,” IEEE Trans. Computers, vol. 51, no. 7, pp. 750-
758, Jul. 2002.

[21] F. Rodriguez-Henriguez, and Ç. K. Koç, “Parallel Multipliers
Based on Special Irreducible Pentanomials,” IEEE Trans. Comput-
ers, vol. 52, no. 12, pp. 1535-1542, Dec. 2003.

[22] B. Sunar, and Ç. K. Koç, “Mastrovito Multiplier for All Trinomi-
als,” IEEE Trans. Computers, vol. 48, no. 5, pp. 522-527, May 1999.

[23] A. Halbuoğullari, and Ç. K. Koç, “Mastrovito Multiplier for
General Irreducible Polynomial,” IEEE Trans. Computers, vol. 49,
no. 5, pp. 503-518, May 2000.

[24] T. Zhang, and K. K. Parhi, “Systematic Design of Original and
Modified Mastrovito Multipliers for General Irreducible Polyno-
mials,” IEEE Trans. Computers, vol. 50, no. 7, pp. 734-748, Jul. 2001.

[25] S. S. Erdem, T. Yanik, and Ç. K Koç, “Polynomial Basis multipli-
cation over GF (2m),” Acta Applicandae Mathematicae, vol. 93, no.
1, pp. 33-55, Sep. 2006.

[26] A. Reyhani-Masoleh, and M. A. Hasan, “Low Complexity Bit
Parallel Architectures for Polynomial Basis Multiplication over
GF (2m),” IEEE Trans. Computers, vol. 53, no. 8, pp. 945-959, Aug.
2004.

[27] A. Reyhani-Masoleh, “Efficient Algorithms and Architectures for
Field Multiplication Using Gaussian Normal Bases,” IEEE Trans.
Computers, vol. 55, no. 1, pp. 34-47, Jan. 2006.

[28] M. A. Hasan, and V. K. Bhargava, “Division and Bit-Serial Mul-
tiplication over GF (qm),” In IEE Proc. -E, May 1992, vol. 139, no.
3, pp. 230-236.

[29] L. Song, and K. K. Parhi, “Efficient Finite Field Serial/Parallel
Multiplication,” In Proc. of Int. Conf. Application Specific Syst.,
Architectures and Processors (ASAP), Chicago, IL, Aug. 1996, pp.
72-82.

[30] R. Katti, and J. Brennan “Low Complexity Multiplication in a
Finite Field Using Ring Representation,” IEEE Trans. Computers,
vol. 52, no. 4, pp. 418-427, Apr. 2003.

[31] Digital Signature Standard (DSS), Fed. Information Processing
Standard, Nat’l Inst. of Standards and Technology Std. FIPS PUB
186-3, June 2009.

[32] Recommended Elliptic Curve Domain Parameters, Standards for Effi-
cient Cryptography, Certicom Research Std. SEC 2, Sept. 2000.

[33] Synopsys, Inc. [Online]. Available: http://www.synopsys.com

Eberahim A. Hasan Abdulrahman received
the BSc degree in computer science and en-
gineering from Qatar University, Doha, Qatar,
in 2002, with the first rank, the MSc degree in
information technology (networking) from James
Cook University, Townsville, QLD, Australia, in
2005, and the PhD degree in electrical and com-
puter engineering from Western University, Lon-
don, ON, Canada, in 2013. In February 2002,
he joined the Department of Computer Engi-
neering, University of Bahrain as a Graduate

Teaching and Research Assistant, where he was awarded a master
and a Ph.D. scholarship. He is currently an assistant professor at the
University of Bahrain.

Arash Reyhani-Masoleh Arash Reyhani-
Masoleh received the BSc degree in electrical
and electronic engineering from Iran University
of Science and Technology in 1989, the MSc
degree in electrical and electronic engineering
from the University of Tehran in 1991, both with
the first rank, and the PhD degree in electrical
and computer engineering from the University
of Waterloo in 2001. From 1991 to 1997, he was
with the Department of Electrical Engineering,
Iran University of Science and Technology.

From June 2001 to September 2004, he was with the Center for
Applied Cryptographic Research, University of Waterloo, where he was
awarded a Natural Sciences and Engineering Research Council of
Canada (NSERC) Postdoctoral Fellowship in 2002. In October 2004,
he joined the Department of Electrical and Computer Engineering,
Western University, London, Canada, where he is currently a tenured
associate professor. His current research interests include fault-tolerant
computing, algorithms and VLSI architectures for computations in finite
fields, cryptography, and error-control coding. He has been a two-time
recipient of NSERC Discovery Accelerator Supplement (DAS) award
in 2010 and 2015. Currently, he serves as an associate editor for
Integration, the VLSI Journal (Elsevier). He is a member of the IEEE
and the IEEE Computer Society.

