
Ontology–based Representation of Simulation Models

Katarina Grolinger, Miriam A. M. Capretz

Department of Electrical and Computer Engineering,

Faculty of Engineering

The University of Western Ontario

London, ON, Canada N6A 5B9

{kgroling, mcapretz}@uwo.ca

José R. Marti, Krishan D. Srivastava

Department of Electrical and Computer Engineering,

Faculty of Applied Science

The University of British Columbia

Vancouver, BC, Canada V6T 1Z4

jrms@ece.ubc.ca, kd@interchange.ubc.ca

Abstract—Ontologies have been used in a variety of domains for

multiple purposes such as establishing common terminology,

organizing domain knowledge and describing domain in a

machine-readable form. Moreover, ontologies are the foundation

of the Semantic Web and often semantic integration is achieved

using ontology. Even though simulation demonstrates a number

of similar characteristics to Semantic Web or semantic

integration, including heterogeneity in the simulation domain,

representation and semantics, the application of ontology in the

simulation domain is still in its infancy. This paper proposes an

ontology-based representation of simulation models. The goal of

this research is to facilitate comparison among simulation

models, querying, making inferences and reuse of existing

simulation models. Specifically, such models represented in the

domain simulation engine environment serve as an information

source for their representation as instances of an ontology.

Therefore, the ontology-based representation is created from

existing simulation models in their proprietary file formats,

consequently eliminating the need to perform the simulation

modeling directly in the ontology. The proposed approach is

evaluated on a case study involving the I2Sim interdependency

simulator.

Keywords-Ontology; Simulation Model; Ontology-based Model;

Semantic Integration

I. INTRODUCTION

Ontologies are frequently associated with the Semantic
Web where computers are capable of analyzing the content,
meaning and semantics of the data and performing the
reasoning upon the content. Other ontology applications
include data integration, application integration and
interoperability, knowledge management, machine learning,
information extraction, information browsing and navigation.

Simulation domain exhibits a number of similar
characteristics to those fields including heterogeneity in the
simulation domain, vocabulary, representation and semantics.
However, the application of ontology to the field of simulation
is still in its infancy and primarily contained within the research
community.

The simulation heterogeneity is largely caused by its
application in a variety of different domains including critical
infrastructures, medicine, learning and chemical engineering.
Consequently, a number of software simulation packages or
simulation engines exist for the support of computer
simulations in those domains [1]. Commonly, simulation

packages are application-oriented, designed for the use in a
specific domain, hence they apply diverse modeling
approaches, different technologies, domain specific
terminologies and store simulation models and results in a
variety of formats. This diversity of application-oriented
simulation engines presents a challenge for comparing
simulation models and results, reusing and sharing existing
models, as well as querying and making inferences.

The objective of this work is to address the following
challenges of the application-oriented simulation approach:

 The extraction of specific information from model files or
from simulation results is not straightforward. Simulation
packages may provide basic information, nevertheless, the
extraction of more detailed or specific summary
information becomes demanding.

 The comparison between models of a single simulation
engine or different engines is difficult. Typically the
comparison relies on the simulation engine to provide the
means for comparing specific pairs of model files.

 The comparison between results of different simulation
runs of the same simulation engine or different engines is a
challenging endeavor. Simulation packages focus on
providing performance measures for a single simulation
run while the comparison between simulation runs often
requires external tools and a significant manual effort.

As a solution, this paper proposes the representation of
domain simulation models as instances of Simulators’
Ontologies. By using the same formalism to represent various
simulation models, we place them on the same platform, thus
enabling a simplified comparison. Moreover, ontology-based
representation allows for inquiries with ontology querying
languages and inferences with ontology reasoners. The
proposed approach uses existing models in the simulation
engine proprietary file formats as the foundation for the
creation of its ontology-based representation.

The remainder of the paper is organized as follows: Section
II reviews related works, the proposed system is portrayed in
Section III, while Section IV depicts a case study. Finally, the
conclusions and future work are presented in Section V.

II. RELATED WORKS

Ontology can be described as an abstract, machine-readable
model of a phenomenon that identifies the relevant concepts of

that phenomenon as well as the relations among them.
Furthermore, ontologies represent a way of establishing
common terminology, organizing domain knowledge and
representing this information in a machine-readable form. The
potential use of ontologies in simulation and modeling is
explored by Lacy and Gerber [2]. From the perspective of these
authors, ontologies are beneficial in simulation and modeling
through the formalization of semantics, the ability to query and
inference, and the sharing and reuse of developed models.

Studies that are especially relevant to our research are
related to the use of ontologies to represent real world
scenarios for the simulation purposes such as Tofani et al. [3],
Miller et al. [4] and Silver et al. [5].

Tofani et al. [3] use the ontology framework to model the
interdependencies among critical infrastructures (CI). Their
proposed framework consists of three ontologies: WONT
(World ONTology) contains concepts and relations that are
common across CI domains; IONT (Infrastructure ONTology)
extends WONT to represent the knowledge of specific CIs and
FONT (Federation ONTology) enables modeling relations
among different infrastructures. The CI network is modeled
twice: as instances of the ontology and in the simulation
language of the domain. The mapping between ontology
representations and simulation models is established manually.

Miller et al. [4] investigate the development requirements
and benefits of ontologies in discrete event simulation (DES),
and consequently, these authors present the Discrete-event
Modeling Ontology (DeMO). The proposed DeMO consists of
four main classes: DeModel, ModelComponent,
ModelMechanism and ModelConcept. DeModel is composed
of ModelComponents and activated by the ModelMechanism,
while the ModelConcepts serve as a terminology upon which
other classes are built. The main challenges in building DeMO,
or a similar ontology for simulation and modeling, are twofold
[6]; firstly, it needs to be domain-independent, as a DES can
model any domain. Secondly, since simulation formalisms are
founded in mathematics and statistics, the DES ontology
should be based upon the ontologies of those domains.

Silver et al. [5] represent simulation models as instances of
the extended DeMO PIModel (Process Interaction Model). In
the proposed approach, reality is first represented as instances
of the DeMo PIModel ontology. Subsequently, these DeMo
PIModel instances are transformed to XPIM (Extensible
Process Interaction Markup) instances, which are then
translated to a JSIM (Java-based SIMulation) model.

Benjamin and Akella [7] use ontologies to facilitate
semantic interoperability and information exchange between
simulation applications. The ontology models for each
simulation application domain are extracted from textual data
sources, such as requirements and design documents.
Subsequently, the established ontology mappings represent the
translation rules for the ontology-driven translator, which
facilitates information sharing between simulation applications.

III. SIMULATION MODELS AS INSTANCES OF AN ONTOLOGY

This section describes the fundamentals of the proposed
system: system architecture, relations and model hierarchies

definition, querying ontology-based models and the process of
creating ontology-based simulation models.

A. System Architecture

The ontology-based representation of simulation models
has a layered architecture, as described in Fig. 1.

The top layer consists of the upper ontology, which
contains generic concepts that are common for all simulation
engines.

The next architecture layer, the Simulators’ Ontologies
layer, consists of ontologies that are specific to the actual
simulators. Thus, the terminology matches that of the
simulators, facilitating domain experts’ understanding of
ontologies as well as enabling the creation of the ontological
representations from the simulators’ models.

The third layer, the ontology-based simulation model layer,
contains ontology-based simulation models that are represented
as instances of Simulators’ Ontologies. More specifically, each
simulation model, usually contained in a simulation engine
proprietary file format, is represented as an ontology-based
model consisting of interconnected instances of the Simulator’s
Ontology. Different simulation models contained in distinct
proprietary files correspond to the various models in this layer.

The bottom architecture layer, or rule layer, is optional and
contains a rule engine. In particular, this layer is intended for
situations when ontology-based specifications are not sufficient
and additional expressiveness is required. Furthermore, this
layer expresses design rules and guidelines to which the
simulation model should conform.

B. Defining Relations Between Simulation Model Entities

In the ontology-based simulation model, entities are
represented as instances of the Simulator’s Ontology, while the
relations among them are established by means of object
properties. The description of the object properties is found in
the upper ontology and the Simulators’ Ontologies.

Fig. 2 presents a fragment of the upper ontology in
RDF/XML syntax. In this ontology the cell indicates an entity
that performs a function transforming inputs into outputs,
channel is a mean of transporting entities between cells and/or
controls, while controls are entities responsible for distributing
the flow among channels. The two object properties, hasInput
and its inverse hasEndNode, are included in the ontology
fragment shown in Fig. 2. The domain of the hasEndNode

Figure 1. Architecture layers

Figure 2. Upper Ontology fragment

property is the channel while the range includes the cell and the
control. Since the direction of object properties runs from the
domain to the range, the inverse property enables the
expression of relations in both directions. For instance, the
hasEndNode property will express relations of the form,
‘channel 10 hasEndNode cell 24’, while its inverse, hasInput,
will express the same relation as ‘cell 24 hasInput channel 10’.
The direction that is used will be influenced by the manner in
which the relation is expressed in the simulator’s model file.

C. Defining Simulation Model Hierarchies

Frequently, to facilitate modeling of complex systems,
simulation packages provide the ability to divide models into
hierarchies of sub-models [8] as illustrated in Fig. 3. To
represent the model hierarchies in ontology, the proposed
approach uses the parentSystem object property. For each child
model, the parentSystem property links the model to its direct
parent. The set of assigned parentSystem properties establishes
the model hierarchy. A fragment of a hierarchy depicted in Fig.
3 is represented as: modelE.parentSystem(modelB),
modelB.parentSystem(modelA). Since the sub-model entities do
not belong to any of the Simulator’s ontologies classes, we
establish a new class parentSystem to contain entities that serve
as containers for the other entities.

The elements from the parent and the child models are
interconnected since they form a single simulation model. The
relation between elements from different hierarchy levels is
established in the same way as the relation between entities of a
single non-hierarchical model as described in Section III.B.

We considered creating a separate ontology for each sub-
model which would import ontologies of all its child models.
This would establish the ontology hierarchy matching with its
equivalent simulation model hierarchy. Simulation sub-models
can be as simple as two linked entities that would not warrant
the formation of a separate ontology. Nevertheless, simulation
models could contain a large number of sub-models resulting in
a large number of ontologies for a single simulation model and
thus causing maintenance challenges. Therefore, at this stage of
our research, we use one ontology to represent one simulation
model with all its sub-models.

Figure 3. Simulation model hierarchy

D. Querying Ontology-based simulation models

Simulation models represented as instances of Simulator’s
ontologies can be queried using different querying languages.
We explore two different querying language styles: the RDF
querying language, SPARQL [9], and the ontology querying
language, SQWRL [10].

Since SPARQL is the W3C recommendation for querying
RDFs [9] and OWL can be serialized as an RDF, SPARQL can
be used to query ontology-based simulation models. However,
as SPARQL is not an ontology querying language, it ignores
inferences imposing limitations on querying, as will be shown
in the case study. This drawback can be overcome by using a
genuine ontology querying language such as SQWRL
(Semantic Query-Enhanced Web Rule Language), which is a
SWRL-based (Semantic Web Rule Language) language for
querying ontologies. Accordingly, in the presented scenario,
we use both the SPARQL and SQWRL approaches, identifying
their advantages and disadvantages in regards to querying
ontology-based simulation models.

E. Creating Ontology-based Simulation Models

In the proposed approach, the simulation models
represented in the domain simulation engine environment serve
as an information source for the representation of models as
instances of an ontology. While the approaches proposed by
Tofani et al. [3] and Silver et al. [5] also describe simulation
models as instances of ontologies, these approaches perform
modeling directly in the ontology, which is then mapped or
transformed to a different representation. In contrast, our
approach uses existing domain simulation models as an origin
for the creation of its own ontology-based representation. The
advantages of this approach include:

 The use of existing, domain-specific models.

 The ability of domain experts to create new models in the
simulation engine to which he/she is accustomed rather
than creating models directly as an ontology.

 The use of proven domain simulators for simulation
execution.

 There is no need for manual mapping between simulators
and ontology models.

Fig. 4 portrays our approach for the creation of an
ontology-based simulation model representation. Specifically,
the Transformation Engine inputs consist of the Simulator’s
Ontology and the simulator’s model in the domain simulation
engine representation. The Simulator’s Ontology is simulator-
specific, while the simulator’s models are model-specific, as
each model is stored in a separate file.

The Simulator’s Ontology is read by the Ontology Reader,
which is independent of the simulation engine. While
ontologies are stimulator-specific, they are always represented
using the same ontology language, thus allowing for a
simulator-independent reader. In particular, the Ontology
Reader is responsible for acquiring information about
simulator’s classes and their properties. Classes are relevant
concepts from a specific domain, such as channel and cell; they
can be perceived as sets of individuals, which include actual
objects from the domain, such as a set of all individual

Figure 4. Ontology-based model creation from simulator’s model

channels in a distribution network. Although the Simulators’
Ontology does not contain individuals, they will be extracted
by the Transformation Engine. Moreover, the Ontology Reader
is responsible for reading properties, including data properties
and object properties. Data properties connect individuals with
literals; an example of a data property is the capacity of a
specific storage cell. Conversely, object properties connect
pairs of individuals such as the hasInput property, which links
the cell with the channel in the statement, ‘Cell x hasInput
Channel y’.

The second transformation source, the simulator’s model, is
read by the Simulation Model Reader. Since the format of the
simulator’s model depends on the specific simulator, a separate
Simulation Model Reader has to be created for each simulator
whose model requires transformation to an ontology-based
representation. However, once a Simulation Model Reader is
created for a specific simulator, the reader can be used to
transform any model represented in that format. The
architecture of the Simulation Model Reader depends on the
model being read. For instance, the reader can utilize the
simulator’s API interface, directly read the model file or use
external model readers.

The Integrator uses the data received from the Ontology
Reader and the Simulation Model Reader for creating the
ontology-based model representation. Specifically, the
Integrator receives information about the simulator’s classes
from the Ontology Reader. For each class, the Integrator
obtains knowledge about its individuals from the Simulation
Model Reader. When an Integrator identifies individuals, it
also obtains values for their data properties. After acquiring
information about all individuals of all classes and their data
properties, the Integrator proceeds to determine the object
properties. Since object properties connect individuals of the
same or different classes, all individuals must be determined
before the object properties are defined.

Subsequently, the Integrator sends information about
classes, individuals, data properties and object properties to the
Ontology Writer, which writes an ontology-based simulation
model representation. Rather than recreating classes, the output
ontology imports the Simulators’ Ontology to acquire domain-
relevant concepts and properties. Then, individuals and
property values are created from the information received via
the Integrator, and the output is recorded in an ontology

language such as OWL. Thus, the Ontology Writer is
simulator-independent, as its purpose is to write ontologies
from the Integrator’s information.

Consequently, the Simulation Model reader is the only
Transformation Engine component that is simulator-dependent.
However, this reader can be replaced with a different
simulator’s reader in order to represent that specific simulator’s
model in an ontology-based representation.

IV. CASE STUDY

This work is part of the CANARIE-sponsored Disaster
Response Network Enabled Platform (DR-NEP) project [11].
The project aims to improve the capability to prepare for and
respond to large disasters. In particular, disaster modeling and
simulation play a major role in the project, with a special focus
on critical infrastructure (CI) interdependency simulation.
Therefore, the proposed ontology-based representation of
simulation models is evaluated using I2Sim [12] infrastructure
interdependencies simulator.

The proposed approach is generic, as it is independent of
any simulation engine; however, its implementation requires
the creation of engine-specific Simulator Ontologies and the
Simulation Model Reader. Therefore, the I2Sim ontology is
created; the ontology design and the mapping to the upper
ontology are presented in [13]. Since I2Sim is based on
MATLAB’s Simulink engine, the Transformation Engine
inputs include the I2Sim ontology and the I2SIm model, which
is stored in the Simulink style .mdl file. The Transformation
Engine was implemented using the following technologies:

 The Ontology Reader and the Ontology Writer are
implemented using Protégé OWL API [14] and Java 1.6.

 OWL is used for the representation of the ontology-based
simulation models.

 The Integrator is implemented using Java 1.6.

 The I2Sim Simulation Model Reader uses the Simulink
Java library from Technische Universität München [15].

A. Ontology-based Representation of Simulation Models

To explore ontology-based simulation models we used the
I2Sim model developed as part of the DR-NEP project for the
investigation of infrastructure interdependencies.

MATLAB’s Simulink engine [8], upon which I2Sim is
built, is an environment for multi-domain simulation and for
dynamic and embedded systems. Simulink provides block
libraries which can be customized to conform to a specific
simulation domain. Complex models are managed by dividing
models into hierarchies of sub-models. Accordingly, I2Sim
builds upon Simulink by customizing Simulink blocks and
providing entities specific for infrastructure interdependency
simulation.

The I2Sim model that we used in this case study consists of
several hierarchy levels. However, before transforming it to the
ontology-based model we were not aware of the number of
layers, the number of blocks or types of blocks used.

First, the I2Sim ontology was created [13] containing only
I2Sim blocks as illustrated in Fig. 5(a). Subsequently, the

I2Sim simulation model was transformed to an ontology-based
representation, which is depicted from the perspective of the
Protégé ontology editor in Fig. 5(b). Specifically, the left part
of the screen shows I2Sim classes, such as i2sim_source, and
production_cell. As the channel class is selected, the middle
part of the screen displays all of the individual channels from
the I2Sim model. On the right side are displayed the object and
data properties for the selected channel, from_fe-
ed_water_pump_1_to_steam_house_3. As the channels are not
named in I2Sim, we have chosen to use from_source-
Node_port_to_targetNode_port as a channel naming pattern.
The object properties hasStartNode and hasEndNode indicate
that the selected channel starts from the feed_water_pump and
ends at the steam_house. In the I2Sim ontology, hasStartNode
and hasEndNode are asserted properties, as the I2Sim model
specifies the channel start and end. The inverse properties,
hasInput and hasOutput, are inferred, allowing for ontology
querying in both directions.

Another significant I2Sim modeling concept for
establishing network topology is the port concept. I2Sim
entities such as the production cells can have several input and
output ports. Each channel connects to a specific input and
output port as identified by the port number. Therefore, in the
ontology-based representation each channel has hasInPort and
hasOutPort data properties, as illustrated in Fig. 5(b). The
channel selected in the figure connects to the first
feed_water_pump port and the third steam_house port.

Observing the classes from I2Sim ontology, Fig. 5(a), and
from the ontology-based simulation model, Fig. 5(b), it can be
noticed that the ontology-based model contains additional
entries such as minmax, product and fcn. Initially, we expected
the I2Sim model to have only I2Sim blocks. However, when
the model was transformed to its ontology-based
representation, many entities belonged to the other class.

Subsequently, we analyzed those entities and identified that
they are Simulink blocks. Since I2Sim is founded on Simulink
by customizing and extending Simulink blocks, it allows for
the use of Simulink blocks in conjunction with the I2Sim

blocks. Accordingly, our case study of the I2Sim model
actually contained I2Sim and Simulink blocks. Therefore, we
created the non_i2sim class and in the transformation process
we allowed for the creation of non_i2sim sub-classes
representing Simulink blocks categories used in the observed
I2Sim model.

The ontology-based representation of the I2Sim model
hierarchy is portrayed in Fig. 6. On the left part of the screen
the parentsystem class is selected, while the segment to the
right shows all entities that act as a container for the other
elements. The selected entity water_pump_1 is a child of the
water_pump_control as indicated with the parentSystem object
property. To simplify the illustration of hierarchies we have
chosen to include the hierarchy chain in the entity name
separating the hierarchy levels with a dash as in steam-house-
water_pump_control-water_pump_1. The maximum number of
hierarchy levels in the observed I2Sim model was three.

B. Querying ontology-based representation

A simulator’s model that is represented as ontology
instances can be queried using querying languages such as
SPARQL or SQWRL. The use of these languages enables the
extraction of specific information from the model. Since the
number of entities in a system is one of the complexity
indicators, after representing I2Sim models as instances of an
ontology, we first wanted to obtain the number of instances in
the ontology-based representation. However, the standard
SPARQL included with Protégé does not support aggregate
functions such as count and avg. Nevertheless, different
implementations that support aggregates exist, such as ARQ
[16]. Instead, we used SQWRL to identify the number of I2Sim
and Simulink entities. I2Sim components are instances of the
component class and its subclasses, while Simulink entities are
instances of non-i2sim class and its subclasses:

simupper:component(?c)→sqwrl:count(?c)

non_i2sim(?c)→sqwrl:count(?c)

Those two queries identified that the observed I2Sim model
consists of 449 I2Sim components and 230 Simulink

 a) I2Sim Ontology b) Ontology-based representation of the I2Sim model

Figure 5. Ontologies from the Protégé editor

Figure 6. The hierarchy levels of the I2Sim model

components. Subsequently, since I2Sim model extensively uses
hierarchical modeling, we identified each sub-system together
with the number of elements in each sub-system using the
following query:

owl:Thing(?c) ∧
i2sim:parentSystem(?c,?subsystem) ∧
sqwrl:makeSet(?s, ?c) ∧
sqwrl:groupBy(?s, ?subsystem) ∧
sqwrl:size(?count, ?s) →

sqwrl:select(?subsystem, ?count) ∧
sqwrl:orderByDescending(?count)

The first few rows from this query results with our
ontology-based representation of the I2Sim model are
displayed in Fig. 7. Since the sorting is performed on the
number of entities, the first few rows indicate sub-models with
the highest number of components.

To illustrate the difference of querying ontology-based
simulation models using SPARQL and SQWRL we used a
simple example of finding channels in the steam_house-
boiler_1 sub-model. In SPARQL this query is written as:

SELECT *

WHERE { ?c rdf:type :i2sim.channel.

?c i2sim:parentSystem :steam_house-boiler_1}

While in SQWRL the same query is expressed as:

simupper:channel(?c) ∧
i2sim:parentSystem(?c, steam_house-boiler_1) →

sqwrl:select(?c)

The SPARQL query did not find any entities, while the
SQWRL found the steam_house-boiler_1-water_tank_tube.
This entity belongs to the delay_channel class. However,
although the delay_channel is defined as subClassOf channel,
SPARQL could not infer that delay_channel is also a channel,
and thus, SPARQL did not identity this entity. Since SQWRL
is an ontology querying language, it inferred that
delay_channel is also a channel and therefore properly
identified the entity.

V. CONCLUSIONS

Application-oriented simulation packages vary greatly in
modeling approaches, technologies and vocabularies. However,
this heterogeneity imposes several challenges, including the
difficulty of comparison among simulation models of one or
more simulation engines and the inability to query simulation
models. This work proposes to solve those issues using
ontology-based representations of simulation models where
domain simulation models are represented as instances of
Simulators’ Ontologies. Existing domain simulation models in
proprietary file formats are a foundation for this ontology-
based representation.

The main benefits of using ontology-based representation

Figure 7. SQWRL query output from Protégé

for simulation models include: models from different
simulation platforms are represented in a common manner, the
models can be queried using ontology querying languages and
inferences can be performed using ontology reasoners.

While we have focused on representing the simulation
model as contained in a model file, this model is only a static
part of the simulation. Accordingly, we plan to explore the
possibility of using ontologies for representing the dynamic
part of the running simulation. Furthermore, we will investigate
the use of proposed ontology-based simulation models to
facilitate information sharing among simulators of different
domains.

ACKNOWLEDGMENT

Support for this work has been provided by Canada's
Advanced Research and Innovation Network (CANARIE) and
the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

REFERENCES

[1] E. Abu-Taieh and A. El Sheikh. , "Commercial Simulation Packages: A
Comparative Study", International Journal of Simulation, vol. 8, no. 2,
pp. 66-76, 2007.

[2] L. Lacy and W. Gerber, "Potential Modeling and Simulation
Applications of the Web Ontology Language - OWL", Proc. Winter
Simulation Conference, vol. 1, pp. 265-270, 2004.

[3] A. Tofani, E. Castorinia, P. Palazzaria, A. Usovb, C. Beyelb, E. Romeb
and P. Servilloc, "Using Ontologies for the Federated Simulation of
Critical Infrastructures", Proc. International Conference on
Computational Science, vol. 1, no. 1, pp. 2301-2309, 2010.

[4] J.A. Miller, G.T. Baramidze, A.P. Sheth and P.A. Fishwick,
"Investigating Ontologies for Simulation Modeling", Proc. 37th Annual
Simulation Symposium, pp. 55-63, 2004.

[5] G.A. Silver, L.W. Lacy and J.A. Miller, "Ontology Based
Representations of Simulation Models Following the Process Interaction
World View", Proc. Winter Simulation Conference, pp. 1168-1176,
2006.

[6] J.A. Miller and G. Baramidze, "Simulation and the Semantic Web",
Proc. Winter Simulation Conference, pp. 2371-2377, 2005.

[7] P. Benjamin and K. Akella. , "Towards Ontology-Driven
Interoperability for Simulation-Based Applications", Proc. Winter
Simulation Conference, pp. 1375-1386, 2009.

[8] "Simulink - Simulation and Model-Based Design",
http://www.mathworks.com/products/simulink/, 2011.

[9] E. Prud'hommeaux and A. Seaborne. , "SPARQL Query Language for
RDF", http://www.w3.org/TR/rdf-sparql-query/, 2008.

[10] M.J. O'Connor and A. Das. , "SQWRL: A Query Language for OWL",
OWL Experiences and Directions, 6th International Workshop, 2009.

[11] "DR-NEP (Disaster Response Network Enabled Platform) project",
http://drnep.ece.ubc.ca/index.html, 2011.

[12] H.A. Rahman, M. Armstrong, D. Mao and J.R. Marti, "I2Sim: A Matrix-
Partition Based Framework for Critical Infrastructure Interdependencies
Simulation", Proc. Electric Power Conference, pp. 1-8, 2008.

[13] K. Grolinger, M.A.M. Capretz, A. Shypanski and G.S. Gill, "Federated
Critical Infrastructure Simulators: Towards Ontologies for Support of
Collaboration", Proc. IEEE Canadian Conference on Electrical and
Computer Engineering, Workshop on Connecting Engineering
Applications and Disaster Management, 2011.

[14] "Protégé OWL API", http://protege.stanford.edu/plugins/owl/api/, 2011.

[15] "Simulink Library, Technische Universität München",
http://conqat.in.tum.de/index.php/Simulink_Library, 2011.

[16] "ARQ - A SPARQL Processor for Jena",
http://incubator.apache.org/jena/documentation/query/.

http://www.mathworks.com/products/simulink/
http://www.w3.org/TR/rdf-sparql-query/
http://drnep.ece.ubc.ca/index.html
http://protege.stanford.edu/plugins/owl/api/
http://conqat.in.tum.de/index.php/Simulink_Library
http://incubator.apache.org/jena/documentation/query/

