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Abstract—Ontologies have been used in a variety of domains for 

multiple purposes such as establishing common terminology, 

organizing domain knowledge and describing domain in a 

machine-readable form. Moreover, ontologies are the foundation 

of the Semantic Web and often semantic integration is achieved 

using ontology. Even though simulation demonstrates a number 

of similar characteristics to Semantic Web or semantic 

integration, including heterogeneity in the simulation domain, 

representation and semantics, the application of ontology in the 

simulation domain is still in its infancy. This paper proposes an 

ontology-based representation of simulation models. The goal of 

this research is to facilitate comparison among simulation 

models, querying, making inferences and reuse of existing 

simulation models. Specifically, such models represented in the 

domain simulation engine environment serve as an information 

source for their representation as instances of an ontology. 

Therefore, the ontology-based representation is created from 

existing simulation models in their proprietary file formats, 

consequently eliminating the need to perform the simulation 

modeling directly in the ontology. The proposed approach is 

evaluated on a case study involving the I2Sim interdependency 

simulator. 
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I.  INTRODUCTION 

Ontologies are frequently associated with the Semantic 
Web where computers are capable of analyzing the content, 
meaning and semantics of the data and performing the 
reasoning upon the content. Other ontology applications 
include data integration, application integration and 
interoperability, knowledge management, machine learning, 
information extraction, information browsing and navigation.  

Simulation domain exhibits a number of similar 
characteristics to those fields including heterogeneity in the 
simulation domain, vocabulary, representation and semantics. 
However, the application of ontology to the field of simulation 
is still in its infancy and primarily contained within the research 
community. 

The simulation heterogeneity is largely caused by its 
application in a variety of different domains including critical 
infrastructures, medicine, learning and chemical engineering. 
Consequently, a number of software simulation packages or 
simulation engines exist for the support of computer 
simulations in those domains [1]. Commonly, simulation 

packages are application-oriented, designed for the use in a 
specific domain, hence they apply diverse modeling 
approaches, different technologies, domain specific 
terminologies and store simulation models and results in a 
variety of formats. This diversity of application-oriented 
simulation engines presents a challenge for comparing 
simulation models and results, reusing and sharing existing 
models, as well as querying and making inferences. 

The objective of this work is to address the following 
challenges of the application-oriented simulation approach: 

 The extraction of specific information from model files or 
from simulation results is not straightforward. Simulation 
packages may provide basic information, nevertheless, the 
extraction of more detailed or specific summary 
information becomes demanding. 

 The comparison between models of a single simulation 
engine or different engines is difficult. Typically the 
comparison relies on the simulation engine to provide the 
means for comparing specific pairs of model files.  

 The comparison between results of different simulation 
runs of the same simulation engine or different engines is a 
challenging endeavor. Simulation packages focus on 
providing performance measures for a single simulation 
run while the comparison between simulation runs often 
requires external tools and a significant manual effort.  

As a solution, this paper proposes the representation of 
domain simulation models as instances of Simulators’ 
Ontologies. By using the same formalism to represent various 
simulation models, we place them on the same platform, thus 
enabling a simplified comparison. Moreover, ontology-based 
representation allows for inquiries with ontology querying 
languages and inferences with ontology reasoners. The 
proposed approach uses existing models in the simulation 
engine proprietary file formats as the foundation for the 
creation of its ontology-based representation.  

The remainder of the paper is organized as follows: Section 
II reviews related works, the proposed system is portrayed in 
Section III, while Section IV depicts a case study. Finally, the 
conclusions and future work are presented in Section V. 

II. RELATED WORKS  

Ontology can be described as an abstract, machine-readable 
model of a phenomenon that identifies the relevant concepts of 



that phenomenon as well as the relations among them. 
Furthermore, ontologies represent a way of establishing 
common terminology, organizing domain knowledge and 
representing this information in a machine-readable form. The 
potential use of ontologies in simulation and modeling is 
explored by Lacy and Gerber [2]. From the perspective of these 
authors, ontologies are beneficial in simulation and modeling 
through the formalization of semantics, the ability to query and 
inference, and the sharing and reuse of developed models.  

Studies that are especially relevant to our research are 
related to the use of ontologies to represent real world 
scenarios for the simulation purposes such as Tofani et al. [3], 
Miller et al. [4] and Silver et al. [5].  

Tofani et al. [3] use the ontology framework to model the 
interdependencies among critical infrastructures (CI). Their 
proposed framework consists of three ontologies: WONT 
(World ONTology) contains concepts and relations that are 
common across CI domains; IONT (Infrastructure ONTology) 
extends WONT to represent the knowledge of specific CIs and 
FONT (Federation ONTology) enables modeling relations 
among different infrastructures. The CI network is modeled 
twice: as instances of the ontology and in the simulation 
language of the domain. The mapping between ontology 
representations and simulation models is established manually. 

Miller et al. [4] investigate the development requirements 
and benefits of ontologies in discrete event simulation (DES), 
and consequently, these authors present the Discrete-event 
Modeling Ontology (DeMO). The proposed DeMO consists of 
four main classes: DeModel, ModelComponent, 
ModelMechanism and ModelConcept. DeModel is composed 
of ModelComponents and activated by the ModelMechanism, 
while the ModelConcepts serve as a terminology upon which 
other classes are built. The main challenges in building DeMO, 
or a similar ontology for simulation and modeling, are twofold 
[6]; firstly, it needs to be domain-independent, as a DES can 
model any domain. Secondly, since simulation formalisms are 
founded in mathematics and statistics, the DES ontology 
should be based upon the ontologies of those domains. 

Silver et al. [5] represent simulation models as instances of 
the extended DeMO PIModel (Process Interaction Model). In 
the proposed approach, reality is first represented as instances 
of the DeMo PIModel ontology. Subsequently, these DeMo 
PIModel instances are transformed to XPIM (Extensible 
Process Interaction Markup) instances, which are then 
translated to a JSIM (Java-based SIMulation) model.  

Benjamin and Akella [7] use ontologies to facilitate 
semantic interoperability and information exchange between 
simulation applications. The ontology models for each 
simulation application domain are extracted from textual data 
sources, such as requirements and design documents. 
Subsequently, the established ontology mappings represent the 
translation rules for the ontology-driven translator, which 
facilitates information sharing between simulation applications. 

III. SIMULATION MODELS AS INSTANCES OF AN ONTOLOGY  

This section describes the fundamentals of the proposed 
system: system architecture, relations and model hierarchies 

definition, querying ontology-based models and the process of 
creating ontology-based simulation models. 

A. System Architecture  

The ontology-based representation of simulation models 
has a layered architecture, as described in Fig. 1. 

The top layer consists of the upper ontology, which 
contains generic concepts that are common for all simulation 
engines.  

The next architecture layer, the Simulators’ Ontologies 
layer, consists of ontologies that are specific to the actual 
simulators. Thus, the terminology matches that of the 
simulators, facilitating domain experts’ understanding of 
ontologies as well as enabling the creation of the ontological 
representations from the simulators’ models. 

The third layer, the ontology-based simulation model layer, 
contains ontology-based simulation models that are represented 
as instances of Simulators’ Ontologies. More specifically, each 
simulation model, usually contained in a simulation engine 
proprietary file format, is represented as an ontology-based 
model consisting of interconnected instances of the Simulator’s 
Ontology. Different simulation models contained in distinct 
proprietary files correspond to the various models in this layer. 

The bottom architecture layer, or rule layer, is optional and 
contains a rule engine. In particular, this layer is intended for 
situations when ontology-based specifications are not sufficient 
and additional expressiveness is required. Furthermore, this 
layer expresses design rules and guidelines to which the 
simulation model should conform. 

B. Defining Relations Between Simulation Model Entities 

In the ontology-based simulation model, entities are 
represented as instances of the Simulator’s Ontology, while the 
relations among them are established by means of object 
properties. The description of the object properties is found in 
the upper ontology and the Simulators’ Ontologies. 

Fig. 2 presents a fragment of the upper ontology in 
RDF/XML syntax. In this ontology the cell indicates an entity 
that performs a function transforming inputs into outputs, 
channel is a mean of transporting entities between cells and/or 
controls, while controls are entities responsible for distributing 
the flow among channels. The two object properties, hasInput 
and its inverse hasEndNode, are included in the ontology 
fragment shown in Fig. 2. The domain of the hasEndNode  

 

Figure 1.  Architecture layers 



 
Figure 2.  Upper Ontology fragment 

property is the channel while the range includes the cell and the 
control. Since the direction of object properties runs from the 
domain to the range, the inverse property enables the 
expression of relations in both directions. For instance, the 
hasEndNode property will express relations of the form, 
‘channel 10 hasEndNode cell 24’, while its inverse, hasInput, 
will express the same relation as ‘cell 24 hasInput channel 10’. 
The direction that is used will be influenced by the manner in 
which the relation is expressed in the simulator’s model file. 

C. Defining Simulation Model Hierarchies  

Frequently, to facilitate modeling of complex systems, 
simulation packages provide the ability to divide models into 
hierarchies of sub-models [8] as illustrated in Fig. 3. To 
represent the model hierarchies in ontology, the proposed 
approach uses the parentSystem object property. For each child 
model, the parentSystem property links the model to its direct 
parent. The set of assigned parentSystem properties establishes 
the model hierarchy. A fragment of a hierarchy depicted in Fig. 
3 is represented as: modelE.parentSystem(modelB), 
modelB.parentSystem(modelA). Since the sub-model entities do 
not belong to any of the Simulator’s ontologies classes, we 
establish a new class parentSystem to contain entities that serve 
as containers for the other entities.  

The elements from the parent and the child models are 
interconnected since they form a single simulation model. The 
relation between elements from different hierarchy levels is 
established in the same way as the relation between entities of a 
single non-hierarchical model as described in Section III.B. 

We considered creating a separate ontology for each sub-
model which would import ontologies of all its child models. 
This would establish the ontology hierarchy matching with its 
equivalent simulation model hierarchy. Simulation sub-models 
can be as simple as two linked entities that would not warrant 
the formation of a separate ontology. Nevertheless, simulation 
models could contain a large number of sub-models resulting in 
a large number of ontologies for a single simulation model and 
thus causing maintenance challenges. Therefore, at this stage of 
our research, we use one ontology to represent one simulation 
model with all its sub-models.  

 
Figure 3.  Simulation model hierarchy 

D. Querying Ontology-based simulation models  

Simulation models represented as instances of Simulator’s 
ontologies can be queried using different querying languages. 
We explore two different querying language styles: the RDF 
querying language, SPARQL [9], and the ontology querying 
language, SQWRL [10]. 

Since SPARQL is the W3C recommendation for querying 
RDFs [9] and OWL can be serialized as an RDF, SPARQL can 
be used to query ontology-based simulation models. However, 
as SPARQL is not an ontology querying language, it ignores 
inferences imposing limitations on querying, as will be shown 
in the case study. This drawback can be overcome by using a 
genuine ontology querying language such as SQWRL 
(Semantic Query-Enhanced Web Rule Language), which is a 
SWRL-based (Semantic Web Rule Language) language for 
querying ontologies. Accordingly, in the presented scenario, 
we use both the SPARQL and SQWRL approaches, identifying 
their advantages and disadvantages in regards to querying 
ontology-based simulation models. 

E. Creating Ontology-based Simulation Models 

In the proposed approach, the simulation models 
represented in the domain simulation engine environment serve 
as an information source for the representation of models as 
instances of an ontology. While the approaches proposed by 
Tofani et al. [3] and Silver et al. [5] also describe simulation 
models as instances of ontologies, these approaches perform 
modeling directly in the ontology, which is then mapped or 
transformed to a different representation. In contrast, our 
approach uses existing domain simulation models as an origin 
for the creation of its own ontology-based representation. The 
advantages of this approach include: 

 The use of existing, domain-specific models. 

 The ability of domain experts to create new models in the 
simulation engine to which he/she is accustomed rather 
than creating models directly as an ontology. 

 The use of proven domain simulators for simulation 
execution.  

 There is no need for manual mapping between simulators 
and ontology models. 

Fig. 4 portrays our approach for the creation of an 
ontology-based simulation model representation. Specifically, 
the Transformation Engine inputs consist of the Simulator’s 
Ontology and the simulator’s model in the domain simulation 
engine representation. The Simulator’s Ontology is simulator- 
specific, while the simulator’s models are model-specific, as 
each model is stored in a separate file. 

The Simulator’s Ontology is read by the Ontology Reader, 
which is independent of the simulation engine. While 
ontologies are stimulator-specific, they are always represented 
using the same ontology language, thus allowing for a 
simulator-independent reader. In particular, the Ontology 
Reader is responsible for acquiring information about 
simulator’s classes and their properties. Classes are relevant 
concepts from a specific domain, such as channel and cell; they 
can be perceived as sets of individuals, which include actual 
objects from the domain, such as a set of all individual 



 
Figure 4.  Ontology-based model creation from simulator’s model 

channels in a distribution network. Although the Simulators’ 
Ontology does not contain individuals, they will be extracted 
by the Transformation Engine. Moreover, the Ontology Reader 
is responsible for reading properties, including data properties 
and object properties. Data properties connect individuals with 
literals; an example of a data property is the capacity of a 
specific storage cell. Conversely, object properties connect 
pairs of individuals such as the hasInput property, which links 
the cell with the channel in the statement, ‘Cell x hasInput 
Channel y’.  

The second transformation source, the simulator’s model, is 
read by the Simulation Model Reader. Since the format of the 
simulator’s model depends on the specific simulator, a separate 
Simulation Model Reader has to be created for each simulator 
whose model requires transformation to an ontology-based 
representation. However, once a Simulation Model Reader is 
created for a specific simulator, the reader can be used to 
transform any model represented in that format. The 
architecture of the Simulation Model Reader depends on the 
model being read. For instance, the reader can utilize the 
simulator’s API interface, directly read the model file or use 
external model readers. 

The Integrator uses the data received from the Ontology 
Reader and the Simulation Model Reader for creating the 
ontology-based model representation. Specifically, the 
Integrator receives information about the simulator’s classes 
from the Ontology Reader. For each class, the Integrator 
obtains knowledge about its individuals from the Simulation 
Model Reader. When an Integrator identifies individuals, it 
also obtains values for their data properties. After acquiring 
information about all individuals of all classes and their data 
properties, the Integrator proceeds to determine the object 
properties. Since object properties connect individuals of the 
same or different classes, all individuals must be determined 
before the object properties are defined. 

Subsequently, the Integrator sends information about 
classes, individuals, data properties and object properties to the 
Ontology Writer, which writes an ontology-based simulation 
model representation. Rather than recreating classes, the output 
ontology imports the Simulators’ Ontology to acquire domain-
relevant concepts and properties. Then, individuals and 
property values are created from the information received via 
the Integrator, and the output is recorded in an ontology 

language such as OWL. Thus, the Ontology Writer is 
simulator-independent, as its purpose is to write ontologies 
from the Integrator’s information. 

Consequently, the Simulation Model reader is the only 
Transformation Engine component that is simulator-dependent. 
However, this reader can be replaced with a different 
simulator’s reader in order to represent that specific simulator’s 
model in an ontology-based representation. 

IV. CASE STUDY 

This work is part of the CANARIE-sponsored Disaster 
Response Network Enabled Platform (DR-NEP) project [11]. 
The project aims to improve the capability to prepare for and 
respond to large disasters. In particular, disaster modeling and 
simulation play a major role in the project, with a special focus 
on critical infrastructure (CI) interdependency simulation. 
Therefore, the proposed ontology-based representation of 
simulation models is evaluated using I2Sim [12] infrastructure 
interdependencies simulator.  

The proposed approach is generic, as it is independent of 
any simulation engine; however, its implementation requires 
the creation of engine-specific Simulator Ontologies and the 
Simulation Model Reader. Therefore, the I2Sim ontology is 
created; the ontology design and the mapping to the upper 
ontology are presented in [13]. Since I2Sim is based on 
MATLAB’s Simulink engine, the Transformation Engine 
inputs include the I2Sim ontology and the I2SIm model, which 
is stored in the Simulink style .mdl file. The Transformation 
Engine was implemented using the following technologies: 

 The Ontology Reader and the Ontology Writer are 
implemented using Protégé OWL API [14] and Java 1.6. 

 OWL is used for the representation of the ontology-based 
simulation models. 

 The Integrator is implemented using Java 1.6. 

 The I2Sim Simulation Model Reader uses the Simulink 
Java library from Technische Universität München [15]. 

A. Ontology-based Representation of Simulation Models 

To explore ontology-based simulation models we used the 
I2Sim model developed as part of the DR-NEP project for the 
investigation of infrastructure interdependencies.  

MATLAB’s Simulink engine [8], upon which I2Sim is 
built, is an environment for multi-domain simulation and for 
dynamic and embedded systems. Simulink provides block 
libraries which can be customized to conform to a specific 
simulation domain. Complex models are managed by dividing 
models into hierarchies of sub-models. Accordingly, I2Sim 
builds upon Simulink by customizing Simulink blocks and 
providing entities specific for infrastructure interdependency 
simulation.  

The I2Sim model that we used in this case study consists of 
several hierarchy levels. However, before transforming it to the 
ontology-based model we were not aware of the number of 
layers, the number of blocks or types of blocks used. 

First, the I2Sim ontology was created [13] containing only 
I2Sim blocks as illustrated in Fig. 5(a). Subsequently, the 



I2Sim simulation model was transformed to an ontology-based 
representation, which is depicted from the perspective of the 
Protégé ontology editor in Fig. 5(b). Specifically, the left part 
of the screen shows I2Sim classes, such as i2sim_source, and 
production_cell. As the channel class is selected, the middle 
part of the screen displays all of the individual channels from 
the I2Sim model. On the right side are displayed the object and 
data properties for the selected channel, from_fe-
ed_water_pump_1_to_steam_house_3. As the channels are not 
named in I2Sim, we have chosen to use from_source-
Node_port_to_targetNode_port as a channel naming pattern. 
The object properties hasStartNode and hasEndNode indicate 
that the selected channel starts from the feed_water_pump and 
ends at the steam_house. In the I2Sim ontology, hasStartNode 
and hasEndNode are asserted properties, as the I2Sim model 
specifies the channel start and end. The inverse properties, 
hasInput and hasOutput, are inferred, allowing for ontology 
querying in both directions. 

Another significant I2Sim modeling concept for 
establishing network topology is the port concept. I2Sim 
entities such as the production cells can have several input and 
output ports. Each channel connects to a specific input and 
output port as identified by the port number. Therefore, in the 
ontology-based representation each channel has hasInPort and 
hasOutPort data properties, as illustrated in Fig. 5(b). The 
channel selected in the figure connects to the first 
feed_water_pump port and the third steam_house port. 

Observing the classes from I2Sim ontology, Fig. 5(a), and 
from the ontology-based simulation model, Fig. 5(b), it can be 
noticed that the ontology-based model contains additional 
entries such as minmax, product and fcn. Initially, we expected 
the I2Sim model to have only I2Sim blocks. However, when 
the model was transformed to its ontology-based 
representation, many entities belonged to the other class.  

Subsequently, we analyzed those entities and identified that 
they are Simulink blocks. Since I2Sim is founded on Simulink 
by customizing and extending Simulink blocks, it allows for 
the use of Simulink blocks in conjunction with the I2Sim 

blocks. Accordingly, our case study of the I2Sim model 
actually contained I2Sim and Simulink blocks. Therefore, we 
created the non_i2sim class and in the transformation process 
we allowed for the creation of non_i2sim sub-classes 
representing Simulink blocks categories used in the observed 
I2Sim model. 

The ontology-based representation of the I2Sim model 
hierarchy is portrayed in Fig. 6. On the left part of the screen 
the parentsystem class is selected, while the segment to the 
right shows all entities that act as a container for the other 
elements. The selected entity water_pump_1 is a child of the 
water_pump_control as indicated with the parentSystem object 
property. To simplify the illustration of hierarchies we have 
chosen to include the hierarchy chain in the entity name 
separating the hierarchy levels with a dash as in steam-house-
water_pump_control-water_pump_1. The maximum number of 
hierarchy levels in the observed I2Sim model was three. 

B. Querying ontology-based representation 

A simulator’s model that is represented as ontology 
instances can be queried using querying languages such as 
SPARQL or SQWRL. The use of these languages enables the 
extraction of specific information from the model. Since the 
number of entities in a system is one of the complexity 
indicators, after representing I2Sim models as instances of an 
ontology, we first wanted to obtain the number of instances in 
the ontology-based representation. However, the standard 
SPARQL included with Protégé does not support aggregate 
functions such as count and avg. Nevertheless, different 
implementations that support aggregates exist, such as ARQ 
[16]. Instead, we used SQWRL to identify the number of I2Sim 
and Simulink entities. I2Sim components are instances of the 
component class and its subclasses, while Simulink entities are 
instances of non-i2sim class and its subclasses: 

simupper:component(?c)→sqwrl:count(?c) 

non_i2sim(?c)→sqwrl:count(?c) 

Those two queries identified that the observed I2Sim model 
consists of 449 I2Sim components and 230 Simulink  

 
 
 
 
 
 
 
 
 
 
 
 
       a) I2Sim Ontology                b) Ontology-based representation of the I2Sim model 

Figure 5.  Ontologies from the Protégé editor 

 
Figure 6.  The hierarchy levels of the I2Sim model

  



components. Subsequently, since I2Sim model extensively uses 
hierarchical modeling, we identified each sub-system together 
with the number of elements in each sub-system using the 
following query: 

owl:Thing(?c) ∧  
i2sim:parentSystem(?c,?subsystem) ∧  
sqwrl:makeSet(?s, ?c) ∧  
sqwrl:groupBy(?s, ?subsystem) ∧ 
sqwrl:size(?count, ?s) →  

sqwrl:select(?subsystem, ?count) ∧  
sqwrl:orderByDescending(?count) 

The first few rows from this query results with our 
ontology-based representation of the I2Sim model are 
displayed in Fig. 7. Since the sorting is performed on the 
number of entities, the first few rows indicate sub-models with 
the highest number of components.  

To illustrate the difference of querying ontology-based 
simulation models using SPARQL and SQWRL we used a 
simple example of finding channels in the steam_house-
boiler_1 sub-model. In SPARQL this query is written as: 

SELECT * 

WHERE { ?c rdf:type :i2sim.channel. 

?c i2sim:parentSystem :steam_house-boiler_1} 

While in SQWRL the same query is expressed as: 

simupper:channel(?c) ∧  
i2sim:parentSystem(?c, steam_house-boiler_1) →  

sqwrl:select(?c) 

The SPARQL query did not find any entities, while the 
SQWRL found the steam_house-boiler_1-water_tank_tube. 
This entity belongs to the delay_channel class. However, 
although the delay_channel is defined as subClassOf channel, 
SPARQL could not infer that delay_channel is also a channel, 
and thus, SPARQL did not identity this entity. Since SQWRL 
is an ontology querying language, it inferred that 
delay_channel is also a channel and therefore properly 
identified the entity. 

V. CONCLUSIONS 

Application-oriented simulation packages vary greatly in 
modeling approaches, technologies and vocabularies. However, 
this heterogeneity imposes several challenges, including the 
difficulty of comparison among simulation models of one or 
more simulation engines and the inability to query simulation 
models. This work proposes to solve those issues using 
ontology-based representations of simulation models where 
domain simulation models are represented as instances of 
Simulators’ Ontologies. Existing domain simulation models in 
proprietary file formats are a foundation for this ontology- 
based representation. 

The main benefits of using ontology-based representation  

 
Figure 7.  SQWRL query output from Protégé 

for simulation models include: models from different 
simulation platforms are represented in a common manner, the 
models can be queried using ontology querying languages and 
inferences can be performed using ontology reasoners.  

While we have focused on representing the simulation 
model as contained in a model file, this model is only a static 
part of the simulation. Accordingly, we plan to explore the 
possibility of using ontologies for representing the dynamic 
part of the running simulation. Furthermore, we will investigate 
the use of proposed ontology-based simulation models to 
facilitate information sharing among simulators of different 
domains.  
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