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Abstract— In the Big Data community, MapReduce has been 

seen as one of the key enabling approaches for meeting 

continuously increasing demands on computing resources 

imposed by massive data sets. The reason for this is the high 

scalability of the MapReduce paradigm which allows for 

massively parallel and distributed execution over a large 

number of computing nodes. This paper identifies MapReduce 

issues and challenges in handling Big Data with the objective of 

providing an overview of the field, facilitating better planning 

and management of Big Data projects, and identifying 

opportunities for future research in this field. The identified 

challenges are grouped into four main categories corresponding 

to Big Data tasks types: data storage (relational databases and 

NoSQL stores), Big Data analytics (machine learning and 

interactive analytics), online processing, and security and 

privacy. Moreover, current efforts aimed at improving and 

extending MapReduce to address identified challenges are 

presented. Consequently, by identifying issues and challenges 

MapReduce faces when handling Big Data, this study 

encourages future Big Data research. 
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I.  INTRODUCTION 

Recent developments in the Web, social media, sensors 
and mobile devices have resulted in the explosion of data set 
sizes. For example, Facebook today has more than one 
billion users, with over 618 million active users generating 
more than 500 terabytes of new data each day [1]. 
Traditional data processing and storage approaches were 
designed in an era when available hardware, storage and 
processing requirements were very different than they are 
today. Thus, those approaches are facing many challenges in 
addressing Big Data demands. 

The term “Big Data” refers to large and complex data 
sets made up of a variety of structured and unstructured data 
which are too big, too fast, or too hard to be managed by 
traditional techniques. Big Data is characterized by the 4Vs 
[2]: volume, velocity, variety, and veracity. Volume refers to 
the quantity of data, variety refers to the diversity of data 
types, velocity refers both to how fast data are generated and 
how fast they must be processed, and veracity is the ability to 

trust the data to be accurate and reliable when making crucial 
decisions. 

Enterprises are aware that Big Data has the potential to 
impact core business processes, provide competitive 
advantage, and increase revenues [2]. Thus, organizations are 
exploring ways to make better use of Big Data by analyzing 
them to find meaningful insights which would lead to better 
business decisions and add value to their business. 

MapReduce is a highly scalable programming paradigm 
capable of processing massive volumes of data by means of 
parallel execution on a large number of commodity 
computing nodes. It was recently popularized by Google [3], 
but today the MapReduce paradigm has been implemented in 
many open source projects, the most prominent being the 
Apache Hadoop [4]. The popularity of MapReduce can be 
accredited to its high scalability, fault-tolerance, simplicity 
and independence from the programming language or the 
data storage system. 

In the Big Data community, MapReduce has been seen as 
one of the key enabling approaches for meeting the 
continuously increasing demands on computing resources 
imposed by massive data sets. At the same time, MapReduce 
faces a number of obstacles when dealing with Big Data 
including the lack of a high-level language such as SQL, 
challenges in implementing iterative algorithms, support for 
iterative ad-hoc data exploration, and stream processing. 

This paper aims to identify issues and challenges faced 
by MapReduce when confronted by Big Data with the 
objectives of: a) providing an overview and categorization 
of the MapReduce issues and challenges, b) facilitating 
better planning and management of Big Data projects and c) 
identifying opportunities for future research in this field. 

Other MapReduce-related surveys have been previously 
published, but this work has a different focus. Li et al. [5] 
presented a review of approaches focused on the support of 
distributed data management and processing using 
MapReduce. They discussed implementations of database 
operators in MapReduce and DBMS implementations using 
MapReduce, while this paper is concerned with identifying 
MapReduce challenges in Big Data.  

Doulkeridis and Nørvåg [6] surveyed the state of the art 
in improving the performance of MapReduce processing 
and reviewed generic MapReduce weaknesses and 
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challenges. Sakr et al. [7] also surveyed approaches to data 
processing based on the MapReduce paradigm. Additionally, 
they analyzed systems which provide declarative 
programming interfaces on top of MapReduce. While the 
works of Doulkeridis and Nørvåg [6], and Sakr et al. [7] 
focused on systems built on top of MapReduce, this paper 
aims to identify challenges that MapReduce faces handling 
Big Data. Moreover, this paper discusses security and 
privacy issues, while those others do not. 

The identified MapReduce challenges are grouped into 
four main categories corresponding to Big Data tasks types: 
data storage, analytics, online processing, security and 
privacy. An overview of the identified challenges is 
presented in Table I while details of each category are 
discussed in sections III to VI. Additionally, this paper 
presents current efforts aimed at improving and extending 
MapReduce to address the identified challenges. 

The rest of this paper is organized as follows: Section II 
introduces the MapReduce paradigm. Section III identifies 
storage-related challenges while Section IV discusses Big 
Data analytics issues. Online processing is addressed in 
Section V and privacy and security challenges in Section VI. 
Finally, Section VII concludes the paper. 

II. MAPREDUCE OVERVIEW 

MapReduce is a programming paradigm for processing 
large data sets in distributed environments [3]. In the 
MapReduce paradigm, the Map function performs filtering 
and sorting, while the Reduce function carries out grouping 
and aggregation operations. The ‘hello world’ of MapReduce 
is the word counting example: it counts the appearance of 
each word in a set of documents. The Map function splits the 
document into words and for each word in a document it 
produces a (key, value) pair.  

function map(name, document) 

  for each word in document 

    emit (word, 1) 

The Reduce function is responsible for aggregating 
information received from Map functions. For each key, 
word, the Reduce function works on the list of values, 

partialCounts. To calculate the occurrence of each word, 
the Reduce function groups by word and sums the values 
received in the partialCounts list. 

function reduce (word, List partialCounts) 

  sum = 0 

  for each pc in partialCounts 

    sum += pc 

  emit (word, sum) 

The final output is the list of words with the count of 
appearance of each word. 

Figure 1 illustrates the MapReduce flow. One node is 
elected to be the master responsible for assigning the work, 
while the rest are workers. The input data is divided into 
splits and the master assigns splits to Map workers. Each 
worker processes the corresponding input split, generates 
key/value pairs and writes them to intermediate files (on disk 
or in memory). The master notifies the Reduce workers 
about the location of the intermediate files and the Reduce 
workers read data, process it according to the Reduce 
function, and finally, write data to output files.  

 

Figure 1.  MapReduce flow 

The main contribution of the MapReduce paradigm is 
scalability as it allows for highly parallelized and distributed 
execution over a large number of nodes. In the MapReduce 
paradigm, the Map or Reduce task is divided into a high 
number of jobs which are assigned to nodes in the network. 
Reliability is achieved by reassigning any failed node’s job 
to another node. A well known open source MapReduce 
implementation is Hadoop which implements MapReduce on 
top of the Hadoop Distributed File System (HDFS). 

III. DATA STORAGE 

Relational database management systems (RDBMSs) are 
traditional storage systems designed for structured data and 
accessed by means of SQL. RDBMSs are facing challenges 
in handling Big Data and providing horizontal scalability, 
availability and performance required by Big Data 
applications. In contrast to relational databases, MapReduce 
provides computational scalability, but it relies on data 
storage in a distributed file system such as Google File 
System (GFS) or Hadoop Distributed File System (HDFS). 

TABLE I.  AN OVERVIEW OF MAPREDUCE CHALLENGES 

 Main challenges Main solution approaches 

Data 
Storage 

Schema-free, index-
free 

In-database MapReduce  

NoSQL stores – MapReduce with various 
indexing approaches 

Lack of standardized 
SQL-like language 

Apache Hive – SQL on top of Hadoop 

NoSQL stores: proprietary SQL-like 
languages (Cassandra, MongoDB) or Hive 
(HBase) 

Analytics Scaling complex 
linear algebra 

Use computationally less expensive, though 
less accurate, algebra  

Interactive analysis Map interactive query processing 
techniques for handling small data, to 
MapReduce 

Iterative algorithms Extensions of MapReduce implementation 
such as Twister and HaLoop 

Statistical challenges 
for learning 

Data pre-processing using MapReduce   

Online 
processing 

Performance / 
Latency issues 

Direct communication between phases and 
jobs 

Programming model Alternative models, such as MapUpdate 
and Twitter’s Storm 

Privacy 
and 
security 

Auditing Trusted third party monitoring, security 
analytics 

Access control Optimized access control approach with 
semantic understanding 

Privacy Privacy policy enforcement with security to 
prevent information leakage 

 



NoSQL and NewSQL data stores have emerged as 
alternatives to Big Data storage. NoSQL refers to “Not Only 
SQL”, highlighting that SQL is not a crucial objective of 
those systems. Their main defining characteristics include 
schema flexibility and effective scaling over a large number 
of commodity machines. NoSQL horizontal scalability 
includes data storage scaling as well as scaling of read/write 
operations. Grolinger et al. [8] analyze features driving the 
NoSQL systems ability to scale such as partitioning, 
replication, consistency, and concurrency control. NoSQL 
systems typically adopt the MapReduce paradigm and push 
processing to the nodes where data is located to efficiently 
scale read operations. Consequently, data analysis is 
performed via MapReduce jobs. 

MapReduce itself is schema-free and index-free; this 
provides great flexibility and enables MapReduce to work 
with semi-structured and unstructured data. Moreover, 
MapReduce can run as soon as data is loaded. However, the 
lack of indexes on standard MapReduce may result in poor 
performance in comparison to relational databases. This may 
be outweighed by MapReduce scalability and parallelization. 

Database vendors, such as Oracle, provide in-database 
MapReduce [9], taking advantage of database parallelization. 
Another example of providing analytics capabilities in-
database is the MAD Skills project [10] which implements 
MapReduce within the database using an SQL runtime 
execution engine. Map and Reduce functions are written in 
Python, Perl, or R, and passed to the database for execution. 

NoSQL systems from column-family and document 
categories adopt the MapReduce paradigm while providing 
support for various indexing methods. In this approach 
MapReduce jobs can access data using the index, therefore 
query performance is significantly improved. For example 
Cassandra supports primary and secondary indexes [11]. In 
CouchDB [12] the primary way of querying and reporting is 
through views which use the MapReduce paradigm with 
JavaScript as a query language. A view consists of a Map 
function and an optional Reduce function. Data emitted by 
Map function is used to construct an index and consequently, 
queries against that view run quickly. 

Another challenge related to MapReduce and data 
storage is the lack of a standardized SQL-like language. 
Therefore one direction of research is concerned with 
providing SQL on top of MapReduce. An example of this 
category is Apache Hive [13] which provides an SQL-like 
language on top of Hadoop. Another Apache effort, Mahout 
[14], aims to build scalable machine learning libraries on top 
of MapReduce. Although those efforts provide powerful data 
processing capabilities, they lack data management features 
such as advanced indexing and a sophisticated optimizer. 

NoSQL solutions choose different approaches for 
providing querying abilities [8]: Cassandra and MongoDB 
provide proprietary SQL-like querying while HBase uses 
Hive. 

It is important to point out the efforts on integration 
between traditional databases, MapReduce, and Hadoop. For 
example, the Oracle SQL connector for HDFS [15] provides 
ability to query data in Hadoop within the database using 
SQL. The Oracle Data Integrator for Hadoop generates Hive-

like queries which are transformed into native MapReduce 
and executed on Hadoop clusters. 

Even though the presented efforts advanced the state of 
the art for Data Storage and MapReduce, a number of 
challenges remain, such as: 

 the lack of a standardized SQL-like query language, 

 limited optimization of MapReduce jobs, 

 integration among MapReduce, distributed file system, 
RDBMSs and NoSQL stores.   

IV. BIG DATA ANALYTICS 

A. Machine Learning 

The prevalence and pervasiveness of Big Data offers the 
promise of building more intelligent decision making 
systems. This is because the typical premise for many 
decision making algorithms is that more data can better teach 
the algorithms to produce more accurate outputs. The key to 
extracting useful information from Big Data lies within the 
use of Machine Learning (ML) approaches. However, the 
use of massive datasets themselves for the purpose of 
analysis and training poses some problems and challenges to 
the very execution of ML algorithms. The arithmetic and 
computational complexity brought on by the volume 
component of Big Data renders traditional ML algorithms 
almost unusable in conventional development environments. 
This is due to the fact that ML algorithms were designed to 
be used on much smaller dataset with the assumption that the 
entire data could be held in memory [16]. With the arrival of 
Big Data, this assumption is no longer valid and 
consequently greatly impedes the performance of those 
algorithms. In order to remediate to this problem, distributed 
processing algorithms such as MapReduce were brought 
forward. 

Although some ML algorithms are inherently parallel 

and can therefore be adapted to the MapReduce paradigm 

[17], for others the transition is much more complex. The 

foundation of many ML algorithms relies on strategies 

directly dependent on in-memory data and therefore once 

that assumption is severed, entire families of algorithms are 

rendered inadequate. The parallel and distributive nature of 

the MapReduce paradigm is a source of such a disconnect. 

This is what Parker [17] describes as the curse of 

modularity. The following families of algorithms are 

amongst those affected [18]: 

 Iterative Graph algorithms: Multiple iterations are 

required in order to reach convergence, each of which 

corresponds to a job in MapReduce[18] and jobs are 

expensive in terms of startup time. Furthermore, skews 

in the data create stragglers in the Reduce phase, which 

causes backup execution to be launched, increasing the 

computational load [3]. 

 Gradient Descent algorithms: The sequential nature of 
these algorithms requires a very large amount of jobs to 
be chained. It also requires that parameters be updated 
after each iteration, which will add communication 
overhead to the process. Both of these steps are 
therefore expensive in terms of time. 



 Expectation Maximization algorithms: Similarly this 
family of algorithm also depends on iterations that are 
implemented as jobs, causing the same performance 
latencies as above. 

In order to address the shortcomings of MapReduce, 
alternatives have been developed to function either 
independently or in addition to existing MapReduce 
implementations [18]: 

 Pregel [19] and Giraph [20], are alternative models 
based on the Bulk Synchronous parallel paradigm. They 
enable all states to be retained in memory, facilitating 
the iterative process. 

 Spark [21] is another alternative based on resilient 
distributed datasets abstractions, which uses memory to 
update shared states and facilitate implementations such 
as gradient descent. 

 HaLoop [22] and Twister [23] are both extensions 
designed for Hadoop [4] in order for this MapReduce 
implementation to better support iterative algorithms. 

Each of these tools possesses its strengths and area of 
focus but the difficult integration and potential 
incompatibilities between the tools and frameworks reveal 
new research opportunities that would fulfill the need for a 
uniform ML solution.  

When considering the volume component of Big Data, 
additional statistical and computational challenges are 
revealed. Regardless of the paradigm used to develop the 
algorithms, an important determinant of the success of 
supervised ML approaches is the pre-processing of the data. 
This step is often critical in order to obtaining reliable and 
meaningful results. Data cleaning, normalization, feature 
extraction and selection [24] are all essential in order to 
obtain an appropriate training set. This poses a massive 
challenge in the light of Big Data as the preprocessing of 
massive amounts of tuples is often not possible. 

The variety component of Big Data, also introduces 
heterogeneity and high dimensionality, which in turn 
introduces the following challenges [25]: 

 Noise accumulation may be so great that it may over 
power the significant data. 

 Spurious or false correlation may present between 
different data points although no real relationship exist. 

 Incidental endogeneity, meaning that regressors are 
related to the regression error, which could lead to 
inconsistencies and false discoveries [26]. 

In particular, the concept of noise has provided a 
paradigm shift in the underlying algebra used for ML 
algorithms. Dalessandro [27] illustrates the usefulness of 
accepting noise as a given, and then using more efficient, but 
less accurate, learning models. Dalessandro shows that using 
computationally less expensive algorithms, which are also 
less accurate during intermediate steps, will define a model 
which performs equally well in predicting new outputs when 
trained on Big Data. These algorithms may take more 
iterations than their computationally more expensive 
counterparts; however, the iterations are much faster. Due to 
this, the less expensive algorithms tend to converge much 

faster, while giving the same accuracy. An example of such 
an algorithm is stochastic gradient descent [27]. 

In addition to the challenges mentioned above, 

having a variety of dissimilar data sources, each storing 

dissimilar data types, can also affect the performance of the 

ML algorithms.  Data preprocessing could alleviate some of 

those challenges and is particularly important in the 

MapReduce paradigm where outliers can greatly influence 

the performance of algorithms [28]. In order to remediate to 

these problems, solutions have been developed to 

implement data preprocessing algorithms using MapReduce 

[29]. However, it is still necessary to find ways to integrate 

the analysis and preprocessing phase, which create new 

research prospects. 
The velocity component of Big Data introduces the idea 

of concept drift within the learning model. In MapReduce, 
this idea is aggravated by the necessity to pre-process data, 
which introduces additional delays. The fast arrival of data 
along with potentially long computing time may cause a 
concept drift, which Yang and Fong define as “known 
problem in data analytics, in which the statistical properties 
of the attributes and their target classes shift over time, 
making the trained model less accurate”[30]. Thus accurate 
concept drift detection constitutes an important research 
area to insure accuracy of ML approaches with Big Data. 

An important subset of ML algorithms is predictive 
modeling. That is, given a set of known inputs and outputs, 
can we predict an unknown output with some probability? 
Being able to construct an accurate prediction model is 
hugely important in many disparate domains such as credit 
card fraud detection, user recommendation systems, 
malicious URL identification, and many others. For 
example, to predict movies that clients will enjoy, companies 
such as Yahoo and Netflix collect a large variety of 
information on their clients to build accurate recommender 
systems. 

From the authors observation, parallelism techniques for 
predictive modeling fall into three categories of 
implementation: 
1. Run the predictive algorithm on subsets of the data, and 

return all the results. 
2. Generate intermediate results from subsets of the data, 

and resolve the intermediate results into a final result. 
3. Parallelize the underlying linear algebra. 

The two most promising forms of implementation for Big 
Data are categories 2 and 3. Category 2 is essentially the 
definition of a MapReduce job; where the algorithm attempts 
to generate intermediate results using Map operations, and 
combines these outputs using Reduce operations. Category 3 
can also be seen as a MapReduce job, if the underlying linear 
algebra separable into Map and Reduce operations. Finally, 
Category 1 is essentially not a valid solution for Big Data as 
the results are only indicative of small subsets of the data and 
not the prediction over the entire dataset. 

MapReduce with predictive modeling has a major 
constraint which limits its usefulness when predicting highly 
correlated data. MapReduce works well in contexts where 
observations can be processed individually. In this case the 



data can be split up, calculated, and then aggregated together. 
However, if there are correlated observations that need to be 
processed together, MapReduce offers little benefit over non-
distributed architectures. This is because it will be quite 
common that the observations that are correlated are found 
within disparate clusters, leading to large performance 
overheads for data communication between clusters. Use 
cases such as this are commonly found in predicting stock 
market fluctuations. To allow MapReduce to be used in these 
types of predictive modeling problems, there are a few 
potential solutions based on solutions from predictive 
modeling on traditional data sizes: data reduction, data 
aggregation, and sampling   [31]. 

B. Interactive Analytics 

Interactive analytics can be defined as a set of approaches 
to allow data scientists to explore data in an interactive way, 
supporting exploration at the rate of human thought [32]. 
Interactive analytics on Big Data provides some exciting 
research areas and unique problems. Most notably, and 
similar to other data analytic approaches, is the question how 
can we build scalable systems that query and visualize data 
at interactive rates? The important difference to other data 
analytic paradigms is the notion of interactive rates. By 
definition, interactive analysis requires the user to 
continually tweak or modify their approach to generate 
interesting analytics [33]. 

MapReduce for interactive analytics poses a drastic shift 
from the classic MapReduce use case of processing batch 
computations. Interactive analytics involves performing 
several small, short, and interactive jobs. As interactive 
analytics begins to move from RDBMSs to Big Data storage 
systems some prior assumptions regarding MapReduce are 
broken, such as uniform data access and prevalence of large 
batch jobs. This type of analysis requires a new class of 
MapReduce workloads to deal with the interactive, almost 
real-time data models. Chen et al. [34] discuss these 
considerations in their survey of industry solutions where the 
authors find that extending MapReduce with querying 
frameworks such as Pig and Hive are prevalent. Chen et al. 
note that interactive analysis for Big Data can be seen as an 
extension of the already well-researched area of interactive 
query processing. Making this assumption, there exist 
potential solutions to optimize interactive analytics with 
MapReduce by mirroring the already existing work in 
interactive query processing. One open area of future work is 
finding the best method to bring these solutions to the 
MapReduce programming paradigm. 

MapReduce is one parallelism model for interactive 
analytics. Another approach tuned for interactivity is 
Google's Dremel system [35], which acts in complement to 
MapReduce. Dremel builds on a novel column-family 
storage format, as well as algorithms that constructs the 
columns and reassemble the original data. Some highlights 
of the Dremel system are: 

 Real-time interactivity for scan-based queries. 

 Near linear scalability in the number of clusters. 

 Early termination, similar to progressive analytics, to 
provide speed tradeoffs for accuracy. 

Other interactive analytics research have been based on 
the column-family NoSQL data storage approach [36, 37]. 
The main benefit of column-based approaches versus row-
based, traditional, approaches is that only a fraction of the 
data needs to be accessed when processing typical queries 
[8]. However, most of these approaches are specialized for 
certain types of datasets and certain queries and thus provide 
an open research area for a generalized solution. 

C. Data Visualization 

A large category of interactive analytics is data 
visualization. There are two primary problems associated 
with Big Data visualization. First, many instances of Big 
Data involve datasets with large amount of features, wide 
datasets, and building a highly multi-dimensional 
visualization is a difficult task. Second, as data grows larger 
vertically, tall datasets, uninformative visualizations are 
generally produced. For these tall datasets, the resolution of 
the data must be limited, i.e. through a process to aggregate 
outputs to ensure that highly dense data can still be 
deciphered [32]. For highly wide datasets, a preprocessing 
step to reduce the dimensionality is needed. Unfortunately 
this tends to be useful on tens to hundreds of dimensions, for 
even higher dimensions a mixed-initiative method, including 
human intervention, to determine subsets of related 
dimensions is required [32]. This approach generally requires 
human input to determine an initial subset of "interesting" 
features, which is also a difficult task and open research area. 

MapReduce for data visualization currently performs 
well in two cases: memory-insensitive visualization 
algorithms, and inherently parallel visualization algorithms. 
Vo et al. [38] have provided a study on moving existing 
visualization algorithms to the MapReduce paradigm. One 
major contribution is empirically proving that MapReduce 
provides a good solution to large-scale exploratory 
visualization. The authors present that this is because 
scalability is achieved through data reduction tasks which 
can be highly parallel; these types of tasks are common in 
data visualization algorithms. Further, visualization 
algorithms that tend to increase the total amount of data for 
intermediate steps will perform poorly when mapping to the 
MapReduce paradigm. Another drawback to MapReduce 
with visualization is that a typical MapReduce job uses one 
pass over the data. Therefore, algorithms that require 
multiple iterations, such as mesh simplification, will suffer 
from a large overhead in trying to naively map the algorithm 
to the MapReduce paradigm. This is similar to the problems 
created for iterative machine learning algorithms discussed 
in Section IV-A. Therefore, there is the potential for research 
aimed at providing optimized multiple iteration solutions for 
MapReduce. 

V. ONLINE PROCESSING 

The Velocity dimension, as one of the Vs used to define 
Big Data, brings many new challenges to traditional data 
processing approaches and especially to MapReduce. 
Handling Big Data velocity often requires applications with 
online processing capabilities, which can be broadly defined 
as real-time or quasi real-time processing of fast and 



continuously generated data (also known as data streams). 
From the business perspective, the goal is normally to obtain 
insights from these data streams, and to enable prompt 
reaction to them. This instantaneous reaction can bring 
business value and competitive advantage to organizations, 
and therefore has been generating research and commercial 
interest. Areas such as financial fraud detection and 
algorithmic trading have been highly interested in this type 
of solutions. 

The MapReduce paradigm is not an appropriate solution 
for this kind of low-latency processing because: 

 MapReduce computations are batch processes that start 
and finish, while computations over streams are 
continuous tasks that only finish upon user request. 

 The inputs of MapReduce computations are snapshots of 
data stored on files, and the content of these files do not 
change during processing. Conversely, data streams are 
continuously generated and unbounded inputs [39]. 

 In order to provide fault tolerance, most of MapReduce 
implementations, such as Google’s [3] and Hadoop [4], 
write the results of the Map phase to local files before 
sending them to the reducers. In addition, these 
implementations store the output files in distributed and 
high-overhead file systems (Google File System [40] or 
HDFS [4], respectively). This extensive file 
manipulation adds significant latency to the processing 
pipelines. 

 Not every computation can be efficiently expressed 
using the MapReduce programming paradigm, and the 
model does not natively support the composition of jobs. 

Despite these limitations, the prevalence and success of 
MapReduce has motivated many researchers to work on 
systems that leverage some of its advantages, and at the same 
time try to overcome its limitations when applied to low-
latency processing. 

One of the first projects in this direction was developed 
by Condie et al. [41]. In this work, the authors proposed an 
online MapReduce implementation with the goal of 
supporting online aggregation and continuous queries. In 
order to reduce the processing latency, the Map and Reduce 
phases are pipelined by having the Map tasks sending 
intermediate results to the Reduce tasks. The authors also 
introduced the idea of executing reducers on snapshots of the 
data received from the mappers. This mechanism enables the 
generation of partial / approximate results, which is 
particularly useful for interactive analytics scenarios as 
described in Section IV-C. All these changes were 
implemented on Hadoop, and demonstrated in a monitoring 
system prototype. 

Nevertheless, it is important to note that Condie et al.'s 
[41] work still has limitations that may hinder its use in 
online processing scenarios. For instance, if the reducers are 
not simultaneously scheduled with the mappers, the mappers 
cannot push the intermediate results to them. In addition, the 
platform does not support elasticity (dynamic scale in and 
out of provisioned resources), which is a very important 
requirement for scenarios where the data input rate is subject 
to high fluctuations and burst behavior. 

To overcome the inherent limitations of the traditional 
MapReduce platforms, other authors have been leveraging 
the familiar MapReduce programming paradigm but 
additionally providing a different runtime environment. For 
instance, Logothetis and Yocum [42] proposed a continuous 
MapReduce in the context of a data processing platform that 
runs over a wide-area network. In this work, the execution of 
the Map and Reduce functions is managed by a data stream-
processing platform. In order to improve the processing 
latency, the mappers are continuously fed with batches of 
tuples (instead of input files), and they push their results to 
reducers as soon as they are available. This approach is 
similar to the one adopted by the StreamMapReduce [43] 
project, which uses these ideas to implement a fully-fledged 
event stream processing (ESP) implementation. 

Alternatively, the difficulty of expressing online 
computations using MapReduce has also been motivating the 
creation of other programming models inspired by it. For 
instance, the Muppet project [39] conceived a new 
programming paradigm called MapUpdate. The paradigm 
mimics MapReduce by specifying computations through the 
definition of two functions (Map and Update). The main 
difference, however, is the fact that the update phase has 
access to slates, data structures that contain persistent state 
related to each update key. In theory, these slates can enable 
easier implementations of iterative algorithms.  

Other frameworks, such as Twitter’s Storm [44] and 
Yahoo’s S4 [45] propose a more radical departure from 
MapReduce programming paradigm, but maintain runtime 
platforms inspired by the MapReduce implementations. For 
instance, in Twitter’s Storm [44], a computation is defined 
by a topology, which specifies the sequence of processing 
elements (bolts) containing user-defined logic, the number of 
threads (tasks) for each bolt, and how to partition the input 
streams among the many bolt tasks. Similarly, in Yahoo’s S4 
[45] case, a computation is expressed by a graph of 
processing elements (PE), which are equivalent to Storm’s 
bolts. In both projects the runtime platform manages many 
low-level aspects of distributed computing, such as 
parallelization, messages delivery, and fault tolerance. 

Finally, it is also worth mentioning the Spark Stream 
project [46] as another MapReduce alternative. The goal of 
this project is to provide a data stream processing framework 
based on the Spark platform [21]. Similar to Logothetis and 
Yocum [42], events are grouped into small batches and all 
processing is performed on these batches, which contrast 
with the event-by-event processing in Storm and S4.  

Despite all the advancements described in this section, 
there still are many challenges related to online processing of 
Big Data, such as: 

 Most platforms are designed to run on clusters of servers 
only, and cannot leverage the elasticity and automatic 
provisioning capabilities of modern cloud environments.  

 Some use cases require a response time that is very 
difficult to achieve in networked environments. 

 There is no high-level standardized language that can be 
used to express online computations. 



 Current platforms require a considerable effort to deploy 
and manage, and cannot be easily integrated with other 
data processing platform. 

VI. SECURITY AND PRIVACY 

In this section security and privacy concerns for 
MapReduce and Big Data are discussed. Also, current efforts 
to address these problems for MapReduce are presented. 

Accountability and auditing are security issues that 
present a problem for both MapReduce and Big Data. 
Accountability is the ability to know when someone 
performs an action and to hold them responsible for that 
action and is often tracked through auditing. In MapReduce 
accountability is only provided when the mappers and 
reducers are held responsible for the tasks they have 
completed [47]. One solution to this issue that has been 
proposed is the creation of an Accountable MapReduce [47]. 
This solution utilizes a set of auditors to inconspicuously 
perform accountability tests on the mappers and reducers in 
real-time [47]. Through the monitoring of the results of these 
tests, malicious mappers or reducers can be detected and 
accountability can be provided. 

An additional security challenge presented to 
MapReduce and Big Data is that of providing access control, 
which can be shown through three of Big Data's defining V 
properties: volume, variety and velocity [48]. When dealing 
with a large volume of information, work performed on that 
information is likely to require access to multiple storage 
locations and devices. Therefore, multiple access 
requirements will be required for any one task. When dealing 
with data that has a large variety, semantic understanding of 
the data should play a role in the access control decision 
process [48]. Finally, the velocity requirement of 
MapReduce and Big Data requires that whatever access 
control approach is used must be optimized to determine 
access control rights in a reasonable amount of time. 

Privacy is a major topic of concern whenever large 
amounts of information are used. Processes such as data 
mining and predictive analytics can discover or deduce 
information linkages. Information linkages are advantageous 
to organizations, allowing them to better understand, target 
and provide for their clients or users. However, on an 
individual basis this discovery of information can cause the 
identities of data providers to be exposed. 

Privacy protection requires an individual to maintain a 
level of control over their personal information. This control 
can be provided through transparency and allowing input 
from the data provider. User input allows an individual to 
state their private information usage wishes. Transparency is 
provided to an individual by the knowledge of how private 
information is collected, what private information is 
collected, how the private information is being used, and 
who has access to it. This can be very difficult when dealing 
with a large number of mappers and reducers that 
MapReduce often requires. It is possible that the ability to 
provide transparency and control is stated in legislation that 
must be followed or penalties can be incurred. The following 
are examples of issues that could lead to penalties using the 
example of the Personal Information Protection and 

Electronic Documents Act (PIPEDA) in Canada [49], and 
the Data Protection Directive of the European Union [50]: 

 Both require in their respective jurisdictions that 
individuals who have data collected on them are able to 
understand how it is being used, by whom, and for what 
purposes. Abiding by such legislation is difficult for any 
large data environment. 

 Both state that in some circumstances consent must be 
given before information can be used. Due to the size of 
the data and the complexity of the analytics performed 
during a MapReduce, informing an individual about 
what is happening to their information is a challenge. 

 Both state that consent can be withdrawn and if so the 
information should be deleted by the data repository. 
However, in Big Data once information has been put 
into the system it is difficult if not impossible to remove. 

Some work has been done in order to provide privacy 
protection for MapReduce. Airavat [51] is a system that has 
been designed to enable the execution of trusted and 
untrusted MapReduce computations on sensitive data, while 
also providing enforcement of privacy policies belonging to 
the data providers [51]. Airavat splits the MapReduce 
process into two parts, the untrusted mapped code, and the 
trusted reducer code. Drawbacks of the Airavat solution 
include the mandatory use of an Airavat provided Reducer, 
which reduces its ability to operate in any domain. While this 
initial approach has shown some promise, there is still room 
for improvement. 

VII. CONCLUSIONS 

Traditional data processing and storage approaches are 
facing many challenges in meeting the continuously 
increasing computing demands of Big Data. This work 
focused on MapReduce, one of the key enabling approaches 
for meeting Big Data demands by means of highly parallel 
processing on a large number of commodity nodes. 

Issues and challenges MapReduce faces when dealing 
with Big Data are identified and categorized according to 
four main Big Data task types: data storage, analytics, online 
processing, and security and privacy. Moreover, efforts 
aimed at improving and extending MapReduce to address 
identified challenges are presented. By identifying 
MapReduce challenges in Big Data, this paper provides an 
overview of the field, facilitates better planning of Big Data 
projects and identifies opportunities for future research. 
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