
K. Grolinger, M. Hayes, W. Higashino, A. L'Heureux, D. S. Allison, M. A. M. Capretz, Challenges for MapReduce in Big

Data, Proc. of the IEEE 10th 2014 World Congress on Services (SERVICES 2014), Alaska, USA, June 27-July 2, 1014

Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf

Challenges for MapReduce in Big Data

Katarina Grolinger1, Michael Hayes1, Wilson A. Higashino1,2, Alexandra L'Heureux1

David S. Allison1,3,4,5, Miriam A.M. Capretz1

1Department of Electrical and Computer Engineering

Western University, London, ON, Canada N6A 5B9

{kgroling, mhayes34, alheure2, whigashi, dallison,

mcapretz}@uwo.ca
2Instituto de Computação

Universidade Estadual de Campinas, Campinas, Brazil

3CNRS, LAAS, 7 avenue du colonel Roche, F-31400

Toulouse, France
4Univ de Toulouse, LAAS, F-31400 Toulouse, France

5Univ de Toulouse, UT1-Capitole, LAAS, F-31000

Toulouse, France

dallison@laas.fr

Abstract— In the Big Data community, MapReduce has been

seen as one of the key enabling approaches for meeting

continuously increasing demands on computing resources

imposed by massive data sets. The reason for this is the high

scalability of the MapReduce paradigm which allows for

massively parallel and distributed execution over a large

number of computing nodes. This paper identifies MapReduce

issues and challenges in handling Big Data with the objective of

providing an overview of the field, facilitating better planning

and management of Big Data projects, and identifying

opportunities for future research in this field. The identified

challenges are grouped into four main categories corresponding

to Big Data tasks types: data storage (relational databases and

NoSQL stores), Big Data analytics (machine learning and

interactive analytics), online processing, and security and

privacy. Moreover, current efforts aimed at improving and

extending MapReduce to address identified challenges are

presented. Consequently, by identifying issues and challenges

MapReduce faces when handling Big Data, this study

encourages future Big Data research.

Keywords- Big Data, Big Data Analytics, MapReduce,

NoSQL, Machine Learning, Interactive Analytics, Online

Processing, Privacy, Security

I. INTRODUCTION

Recent developments in the Web, social media, sensors
and mobile devices have resulted in the explosion of data set
sizes. For example, Facebook today has more than one
billion users, with over 618 million active users generating
more than 500 terabytes of new data each day [1].
Traditional data processing and storage approaches were
designed in an era when available hardware, storage and
processing requirements were very different than they are
today. Thus, those approaches are facing many challenges in
addressing Big Data demands.

The term “Big Data” refers to large and complex data
sets made up of a variety of structured and unstructured data
which are too big, too fast, or too hard to be managed by
traditional techniques. Big Data is characterized by the 4Vs
[2]: volume, velocity, variety, and veracity. Volume refers to
the quantity of data, variety refers to the diversity of data
types, velocity refers both to how fast data are generated and
how fast they must be processed, and veracity is the ability to

trust the data to be accurate and reliable when making crucial
decisions.

Enterprises are aware that Big Data has the potential to
impact core business processes, provide competitive
advantage, and increase revenues [2]. Thus, organizations are
exploring ways to make better use of Big Data by analyzing
them to find meaningful insights which would lead to better
business decisions and add value to their business.

MapReduce is a highly scalable programming paradigm
capable of processing massive volumes of data by means of
parallel execution on a large number of commodity
computing nodes. It was recently popularized by Google [3],
but today the MapReduce paradigm has been implemented in
many open source projects, the most prominent being the
Apache Hadoop [4]. The popularity of MapReduce can be
accredited to its high scalability, fault-tolerance, simplicity
and independence from the programming language or the
data storage system.

In the Big Data community, MapReduce has been seen as
one of the key enabling approaches for meeting the
continuously increasing demands on computing resources
imposed by massive data sets. At the same time, MapReduce
faces a number of obstacles when dealing with Big Data
including the lack of a high-level language such as SQL,
challenges in implementing iterative algorithms, support for
iterative ad-hoc data exploration, and stream processing.

This paper aims to identify issues and challenges faced
by MapReduce when confronted by Big Data with the
objectives of: a) providing an overview and categorization
of the MapReduce issues and challenges, b) facilitating
better planning and management of Big Data projects and c)
identifying opportunities for future research in this field.

Other MapReduce-related surveys have been previously
published, but this work has a different focus. Li et al. [5]
presented a review of approaches focused on the support of
distributed data management and processing using
MapReduce. They discussed implementations of database
operators in MapReduce and DBMS implementations using
MapReduce, while this paper is concerned with identifying
MapReduce challenges in Big Data.

Doulkeridis and Nørvåg [6] surveyed the state of the art
in improving the performance of MapReduce processing
and reviewed generic MapReduce weaknesses and

http://www.ieee.org/documents/ieeecopyrightform.pdf

challenges. Sakr et al. [7] also surveyed approaches to data
processing based on the MapReduce paradigm. Additionally,
they analyzed systems which provide declarative
programming interfaces on top of MapReduce. While the
works of Doulkeridis and Nørvåg [6], and Sakr et al. [7]
focused on systems built on top of MapReduce, this paper
aims to identify challenges that MapReduce faces handling
Big Data. Moreover, this paper discusses security and
privacy issues, while those others do not.

The identified MapReduce challenges are grouped into
four main categories corresponding to Big Data tasks types:
data storage, analytics, online processing, security and
privacy. An overview of the identified challenges is
presented in Table I while details of each category are
discussed in sections III to VI. Additionally, this paper
presents current efforts aimed at improving and extending
MapReduce to address the identified challenges.

The rest of this paper is organized as follows: Section II
introduces the MapReduce paradigm. Section III identifies
storage-related challenges while Section IV discusses Big
Data analytics issues. Online processing is addressed in
Section V and privacy and security challenges in Section VI.
Finally, Section VII concludes the paper.

II. MAPREDUCE OVERVIEW

MapReduce is a programming paradigm for processing
large data sets in distributed environments [3]. In the
MapReduce paradigm, the Map function performs filtering
and sorting, while the Reduce function carries out grouping
and aggregation operations. The ‘hello world’ of MapReduce
is the word counting example: it counts the appearance of
each word in a set of documents. The Map function splits the
document into words and for each word in a document it
produces a (key, value) pair.

function map(name, document)

 for each word in document

 emit (word, 1)

The Reduce function is responsible for aggregating
information received from Map functions. For each key,
word, the Reduce function works on the list of values,

partialCounts. To calculate the occurrence of each word,
the Reduce function groups by word and sums the values
received in the partialCounts list.

function reduce (word, List partialCounts)

 sum = 0

 for each pc in partialCounts

 sum += pc

 emit (word, sum)

The final output is the list of words with the count of
appearance of each word.

Figure 1 illustrates the MapReduce flow. One node is
elected to be the master responsible for assigning the work,
while the rest are workers. The input data is divided into
splits and the master assigns splits to Map workers. Each
worker processes the corresponding input split, generates
key/value pairs and writes them to intermediate files (on disk
or in memory). The master notifies the Reduce workers
about the location of the intermediate files and the Reduce
workers read data, process it according to the Reduce
function, and finally, write data to output files.

Figure 1. MapReduce flow

The main contribution of the MapReduce paradigm is
scalability as it allows for highly parallelized and distributed
execution over a large number of nodes. In the MapReduce
paradigm, the Map or Reduce task is divided into a high
number of jobs which are assigned to nodes in the network.
Reliability is achieved by reassigning any failed node’s job
to another node. A well known open source MapReduce
implementation is Hadoop which implements MapReduce on
top of the Hadoop Distributed File System (HDFS).

III. DATA STORAGE

Relational database management systems (RDBMSs) are
traditional storage systems designed for structured data and
accessed by means of SQL. RDBMSs are facing challenges
in handling Big Data and providing horizontal scalability,
availability and performance required by Big Data
applications. In contrast to relational databases, MapReduce
provides computational scalability, but it relies on data
storage in a distributed file system such as Google File
System (GFS) or Hadoop Distributed File System (HDFS).

TABLE I. AN OVERVIEW OF MAPREDUCE CHALLENGES

 Main challenges Main solution approaches

Data
Storage

Schema-free, index-
free

In-database MapReduce

NoSQL stores – MapReduce with various
indexing approaches

Lack of standardized
SQL-like language

Apache Hive – SQL on top of Hadoop

NoSQL stores: proprietary SQL-like
languages (Cassandra, MongoDB) or Hive
(HBase)

Analytics Scaling complex
linear algebra

Use computationally less expensive, though
less accurate, algebra

Interactive analysis Map interactive query processing
techniques for handling small data, to
MapReduce

Iterative algorithms Extensions of MapReduce implementation
such as Twister and HaLoop

Statistical challenges
for learning

Data pre-processing using MapReduce

Online
processing

Performance /
Latency issues

Direct communication between phases and
jobs

Programming model Alternative models, such as MapUpdate
and Twitter’s Storm

Privacy
and
security

Auditing Trusted third party monitoring, security
analytics

Access control Optimized access control approach with
semantic understanding

Privacy Privacy policy enforcement with security to
prevent information leakage

NoSQL and NewSQL data stores have emerged as
alternatives to Big Data storage. NoSQL refers to “Not Only
SQL”, highlighting that SQL is not a crucial objective of
those systems. Their main defining characteristics include
schema flexibility and effective scaling over a large number
of commodity machines. NoSQL horizontal scalability
includes data storage scaling as well as scaling of read/write
operations. Grolinger et al. [8] analyze features driving the
NoSQL systems ability to scale such as partitioning,
replication, consistency, and concurrency control. NoSQL
systems typically adopt the MapReduce paradigm and push
processing to the nodes where data is located to efficiently
scale read operations. Consequently, data analysis is
performed via MapReduce jobs.

MapReduce itself is schema-free and index-free; this
provides great flexibility and enables MapReduce to work
with semi-structured and unstructured data. Moreover,
MapReduce can run as soon as data is loaded. However, the
lack of indexes on standard MapReduce may result in poor
performance in comparison to relational databases. This may
be outweighed by MapReduce scalability and parallelization.

Database vendors, such as Oracle, provide in-database
MapReduce [9], taking advantage of database parallelization.
Another example of providing analytics capabilities in-
database is the MAD Skills project [10] which implements
MapReduce within the database using an SQL runtime
execution engine. Map and Reduce functions are written in
Python, Perl, or R, and passed to the database for execution.

NoSQL systems from column-family and document
categories adopt the MapReduce paradigm while providing
support for various indexing methods. In this approach
MapReduce jobs can access data using the index, therefore
query performance is significantly improved. For example
Cassandra supports primary and secondary indexes [11]. In
CouchDB [12] the primary way of querying and reporting is
through views which use the MapReduce paradigm with
JavaScript as a query language. A view consists of a Map
function and an optional Reduce function. Data emitted by
Map function is used to construct an index and consequently,
queries against that view run quickly.

Another challenge related to MapReduce and data
storage is the lack of a standardized SQL-like language.
Therefore one direction of research is concerned with
providing SQL on top of MapReduce. An example of this
category is Apache Hive [13] which provides an SQL-like
language on top of Hadoop. Another Apache effort, Mahout
[14], aims to build scalable machine learning libraries on top
of MapReduce. Although those efforts provide powerful data
processing capabilities, they lack data management features
such as advanced indexing and a sophisticated optimizer.

NoSQL solutions choose different approaches for
providing querying abilities [8]: Cassandra and MongoDB
provide proprietary SQL-like querying while HBase uses
Hive.

It is important to point out the efforts on integration
between traditional databases, MapReduce, and Hadoop. For
example, the Oracle SQL connector for HDFS [15] provides
ability to query data in Hadoop within the database using
SQL. The Oracle Data Integrator for Hadoop generates Hive-

like queries which are transformed into native MapReduce
and executed on Hadoop clusters.

Even though the presented efforts advanced the state of
the art for Data Storage and MapReduce, a number of
challenges remain, such as:

 the lack of a standardized SQL-like query language,

 limited optimization of MapReduce jobs,

 integration among MapReduce, distributed file system,
RDBMSs and NoSQL stores.

IV. BIG DATA ANALYTICS

A. Machine Learning

The prevalence and pervasiveness of Big Data offers the
promise of building more intelligent decision making
systems. This is because the typical premise for many
decision making algorithms is that more data can better teach
the algorithms to produce more accurate outputs. The key to
extracting useful information from Big Data lies within the
use of Machine Learning (ML) approaches. However, the
use of massive datasets themselves for the purpose of
analysis and training poses some problems and challenges to
the very execution of ML algorithms. The arithmetic and
computational complexity brought on by the volume
component of Big Data renders traditional ML algorithms
almost unusable in conventional development environments.
This is due to the fact that ML algorithms were designed to
be used on much smaller dataset with the assumption that the
entire data could be held in memory [16]. With the arrival of
Big Data, this assumption is no longer valid and
consequently greatly impedes the performance of those
algorithms. In order to remediate to this problem, distributed
processing algorithms such as MapReduce were brought
forward.

Although some ML algorithms are inherently parallel

and can therefore be adapted to the MapReduce paradigm

[17], for others the transition is much more complex. The

foundation of many ML algorithms relies on strategies

directly dependent on in-memory data and therefore once

that assumption is severed, entire families of algorithms are

rendered inadequate. The parallel and distributive nature of

the MapReduce paradigm is a source of such a disconnect.

This is what Parker [17] describes as the curse of

modularity. The following families of algorithms are

amongst those affected [18]:

 Iterative Graph algorithms: Multiple iterations are

required in order to reach convergence, each of which

corresponds to a job in MapReduce[18] and jobs are

expensive in terms of startup time. Furthermore, skews

in the data create stragglers in the Reduce phase, which

causes backup execution to be launched, increasing the

computational load [3].

 Gradient Descent algorithms: The sequential nature of
these algorithms requires a very large amount of jobs to
be chained. It also requires that parameters be updated
after each iteration, which will add communication
overhead to the process. Both of these steps are
therefore expensive in terms of time.

 Expectation Maximization algorithms: Similarly this
family of algorithm also depends on iterations that are
implemented as jobs, causing the same performance
latencies as above.

In order to address the shortcomings of MapReduce,
alternatives have been developed to function either
independently or in addition to existing MapReduce
implementations [18]:

 Pregel [19] and Giraph [20], are alternative models
based on the Bulk Synchronous parallel paradigm. They
enable all states to be retained in memory, facilitating
the iterative process.

 Spark [21] is another alternative based on resilient
distributed datasets abstractions, which uses memory to
update shared states and facilitate implementations such
as gradient descent.

 HaLoop [22] and Twister [23] are both extensions
designed for Hadoop [4] in order for this MapReduce
implementation to better support iterative algorithms.

Each of these tools possesses its strengths and area of
focus but the difficult integration and potential
incompatibilities between the tools and frameworks reveal
new research opportunities that would fulfill the need for a
uniform ML solution.

When considering the volume component of Big Data,
additional statistical and computational challenges are
revealed. Regardless of the paradigm used to develop the
algorithms, an important determinant of the success of
supervised ML approaches is the pre-processing of the data.
This step is often critical in order to obtaining reliable and
meaningful results. Data cleaning, normalization, feature
extraction and selection [24] are all essential in order to
obtain an appropriate training set. This poses a massive
challenge in the light of Big Data as the preprocessing of
massive amounts of tuples is often not possible.

The variety component of Big Data, also introduces
heterogeneity and high dimensionality, which in turn
introduces the following challenges [25]:

 Noise accumulation may be so great that it may over
power the significant data.

 Spurious or false correlation may present between
different data points although no real relationship exist.

 Incidental endogeneity, meaning that regressors are
related to the regression error, which could lead to
inconsistencies and false discoveries [26].

In particular, the concept of noise has provided a
paradigm shift in the underlying algebra used for ML
algorithms. Dalessandro [27] illustrates the usefulness of
accepting noise as a given, and then using more efficient, but
less accurate, learning models. Dalessandro shows that using
computationally less expensive algorithms, which are also
less accurate during intermediate steps, will define a model
which performs equally well in predicting new outputs when
trained on Big Data. These algorithms may take more
iterations than their computationally more expensive
counterparts; however, the iterations are much faster. Due to
this, the less expensive algorithms tend to converge much

faster, while giving the same accuracy. An example of such
an algorithm is stochastic gradient descent [27].

In addition to the challenges mentioned above,

having a variety of dissimilar data sources, each storing

dissimilar data types, can also affect the performance of the

ML algorithms. Data preprocessing could alleviate some of

those challenges and is particularly important in the

MapReduce paradigm where outliers can greatly influence

the performance of algorithms [28]. In order to remediate to

these problems, solutions have been developed to

implement data preprocessing algorithms using MapReduce

[29]. However, it is still necessary to find ways to integrate

the analysis and preprocessing phase, which create new

research prospects.
The velocity component of Big Data introduces the idea

of concept drift within the learning model. In MapReduce,
this idea is aggravated by the necessity to pre-process data,
which introduces additional delays. The fast arrival of data
along with potentially long computing time may cause a
concept drift, which Yang and Fong define as “known
problem in data analytics, in which the statistical properties
of the attributes and their target classes shift over time,
making the trained model less accurate”[30]. Thus accurate
concept drift detection constitutes an important research
area to insure accuracy of ML approaches with Big Data.

An important subset of ML algorithms is predictive
modeling. That is, given a set of known inputs and outputs,
can we predict an unknown output with some probability?
Being able to construct an accurate prediction model is
hugely important in many disparate domains such as credit
card fraud detection, user recommendation systems,
malicious URL identification, and many others. For
example, to predict movies that clients will enjoy, companies
such as Yahoo and Netflix collect a large variety of
information on their clients to build accurate recommender
systems.

From the authors observation, parallelism techniques for
predictive modeling fall into three categories of
implementation:
1. Run the predictive algorithm on subsets of the data, and

return all the results.
2. Generate intermediate results from subsets of the data,

and resolve the intermediate results into a final result.
3. Parallelize the underlying linear algebra.

The two most promising forms of implementation for Big
Data are categories 2 and 3. Category 2 is essentially the
definition of a MapReduce job; where the algorithm attempts
to generate intermediate results using Map operations, and
combines these outputs using Reduce operations. Category 3
can also be seen as a MapReduce job, if the underlying linear
algebra separable into Map and Reduce operations. Finally,
Category 1 is essentially not a valid solution for Big Data as
the results are only indicative of small subsets of the data and
not the prediction over the entire dataset.

MapReduce with predictive modeling has a major
constraint which limits its usefulness when predicting highly
correlated data. MapReduce works well in contexts where
observations can be processed individually. In this case the

data can be split up, calculated, and then aggregated together.
However, if there are correlated observations that need to be
processed together, MapReduce offers little benefit over non-
distributed architectures. This is because it will be quite
common that the observations that are correlated are found
within disparate clusters, leading to large performance
overheads for data communication between clusters. Use
cases such as this are commonly found in predicting stock
market fluctuations. To allow MapReduce to be used in these
types of predictive modeling problems, there are a few
potential solutions based on solutions from predictive
modeling on traditional data sizes: data reduction, data
aggregation, and sampling [31].

B. Interactive Analytics

Interactive analytics can be defined as a set of approaches
to allow data scientists to explore data in an interactive way,
supporting exploration at the rate of human thought [32].
Interactive analytics on Big Data provides some exciting
research areas and unique problems. Most notably, and
similar to other data analytic approaches, is the question how
can we build scalable systems that query and visualize data
at interactive rates? The important difference to other data
analytic paradigms is the notion of interactive rates. By
definition, interactive analysis requires the user to
continually tweak or modify their approach to generate
interesting analytics [33].

MapReduce for interactive analytics poses a drastic shift
from the classic MapReduce use case of processing batch
computations. Interactive analytics involves performing
several small, short, and interactive jobs. As interactive
analytics begins to move from RDBMSs to Big Data storage
systems some prior assumptions regarding MapReduce are
broken, such as uniform data access and prevalence of large
batch jobs. This type of analysis requires a new class of
MapReduce workloads to deal with the interactive, almost
real-time data models. Chen et al. [34] discuss these
considerations in their survey of industry solutions where the
authors find that extending MapReduce with querying
frameworks such as Pig and Hive are prevalent. Chen et al.
note that interactive analysis for Big Data can be seen as an
extension of the already well-researched area of interactive
query processing. Making this assumption, there exist
potential solutions to optimize interactive analytics with
MapReduce by mirroring the already existing work in
interactive query processing. One open area of future work is
finding the best method to bring these solutions to the
MapReduce programming paradigm.

MapReduce is one parallelism model for interactive
analytics. Another approach tuned for interactivity is
Google's Dremel system [35], which acts in complement to
MapReduce. Dremel builds on a novel column-family
storage format, as well as algorithms that constructs the
columns and reassemble the original data. Some highlights
of the Dremel system are:

 Real-time interactivity for scan-based queries.

 Near linear scalability in the number of clusters.

 Early termination, similar to progressive analytics, to
provide speed tradeoffs for accuracy.

Other interactive analytics research have been based on
the column-family NoSQL data storage approach [36, 37].
The main benefit of column-based approaches versus row-
based, traditional, approaches is that only a fraction of the
data needs to be accessed when processing typical queries
[8]. However, most of these approaches are specialized for
certain types of datasets and certain queries and thus provide
an open research area for a generalized solution.

C. Data Visualization

A large category of interactive analytics is data
visualization. There are two primary problems associated
with Big Data visualization. First, many instances of Big
Data involve datasets with large amount of features, wide
datasets, and building a highly multi-dimensional
visualization is a difficult task. Second, as data grows larger
vertically, tall datasets, uninformative visualizations are
generally produced. For these tall datasets, the resolution of
the data must be limited, i.e. through a process to aggregate
outputs to ensure that highly dense data can still be
deciphered [32]. For highly wide datasets, a preprocessing
step to reduce the dimensionality is needed. Unfortunately
this tends to be useful on tens to hundreds of dimensions, for
even higher dimensions a mixed-initiative method, including
human intervention, to determine subsets of related
dimensions is required [32]. This approach generally requires
human input to determine an initial subset of "interesting"
features, which is also a difficult task and open research area.

MapReduce for data visualization currently performs
well in two cases: memory-insensitive visualization
algorithms, and inherently parallel visualization algorithms.
Vo et al. [38] have provided a study on moving existing
visualization algorithms to the MapReduce paradigm. One
major contribution is empirically proving that MapReduce
provides a good solution to large-scale exploratory
visualization. The authors present that this is because
scalability is achieved through data reduction tasks which
can be highly parallel; these types of tasks are common in
data visualization algorithms. Further, visualization
algorithms that tend to increase the total amount of data for
intermediate steps will perform poorly when mapping to the
MapReduce paradigm. Another drawback to MapReduce
with visualization is that a typical MapReduce job uses one
pass over the data. Therefore, algorithms that require
multiple iterations, such as mesh simplification, will suffer
from a large overhead in trying to naively map the algorithm
to the MapReduce paradigm. This is similar to the problems
created for iterative machine learning algorithms discussed
in Section IV-A. Therefore, there is the potential for research
aimed at providing optimized multiple iteration solutions for
MapReduce.

V. ONLINE PROCESSING

The Velocity dimension, as one of the Vs used to define
Big Data, brings many new challenges to traditional data
processing approaches and especially to MapReduce.
Handling Big Data velocity often requires applications with
online processing capabilities, which can be broadly defined
as real-time or quasi real-time processing of fast and

continuously generated data (also known as data streams).
From the business perspective, the goal is normally to obtain
insights from these data streams, and to enable prompt
reaction to them. This instantaneous reaction can bring
business value and competitive advantage to organizations,
and therefore has been generating research and commercial
interest. Areas such as financial fraud detection and
algorithmic trading have been highly interested in this type
of solutions.

The MapReduce paradigm is not an appropriate solution
for this kind of low-latency processing because:

 MapReduce computations are batch processes that start
and finish, while computations over streams are
continuous tasks that only finish upon user request.

 The inputs of MapReduce computations are snapshots of
data stored on files, and the content of these files do not
change during processing. Conversely, data streams are
continuously generated and unbounded inputs [39].

 In order to provide fault tolerance, most of MapReduce
implementations, such as Google’s [3] and Hadoop [4],
write the results of the Map phase to local files before
sending them to the reducers. In addition, these
implementations store the output files in distributed and
high-overhead file systems (Google File System [40] or
HDFS [4], respectively). This extensive file
manipulation adds significant latency to the processing
pipelines.

 Not every computation can be efficiently expressed
using the MapReduce programming paradigm, and the
model does not natively support the composition of jobs.

Despite these limitations, the prevalence and success of
MapReduce has motivated many researchers to work on
systems that leverage some of its advantages, and at the same
time try to overcome its limitations when applied to low-
latency processing.

One of the first projects in this direction was developed
by Condie et al. [41]. In this work, the authors proposed an
online MapReduce implementation with the goal of
supporting online aggregation and continuous queries. In
order to reduce the processing latency, the Map and Reduce
phases are pipelined by having the Map tasks sending
intermediate results to the Reduce tasks. The authors also
introduced the idea of executing reducers on snapshots of the
data received from the mappers. This mechanism enables the
generation of partial / approximate results, which is
particularly useful for interactive analytics scenarios as
described in Section IV-C. All these changes were
implemented on Hadoop, and demonstrated in a monitoring
system prototype.

Nevertheless, it is important to note that Condie et al.'s
[41] work still has limitations that may hinder its use in
online processing scenarios. For instance, if the reducers are
not simultaneously scheduled with the mappers, the mappers
cannot push the intermediate results to them. In addition, the
platform does not support elasticity (dynamic scale in and
out of provisioned resources), which is a very important
requirement for scenarios where the data input rate is subject
to high fluctuations and burst behavior.

To overcome the inherent limitations of the traditional
MapReduce platforms, other authors have been leveraging
the familiar MapReduce programming paradigm but
additionally providing a different runtime environment. For
instance, Logothetis and Yocum [42] proposed a continuous
MapReduce in the context of a data processing platform that
runs over a wide-area network. In this work, the execution of
the Map and Reduce functions is managed by a data stream-
processing platform. In order to improve the processing
latency, the mappers are continuously fed with batches of
tuples (instead of input files), and they push their results to
reducers as soon as they are available. This approach is
similar to the one adopted by the StreamMapReduce [43]
project, which uses these ideas to implement a fully-fledged
event stream processing (ESP) implementation.

Alternatively, the difficulty of expressing online
computations using MapReduce has also been motivating the
creation of other programming models inspired by it. For
instance, the Muppet project [39] conceived a new
programming paradigm called MapUpdate. The paradigm
mimics MapReduce by specifying computations through the
definition of two functions (Map and Update). The main
difference, however, is the fact that the update phase has
access to slates, data structures that contain persistent state
related to each update key. In theory, these slates can enable
easier implementations of iterative algorithms.

Other frameworks, such as Twitter’s Storm [44] and
Yahoo’s S4 [45] propose a more radical departure from
MapReduce programming paradigm, but maintain runtime
platforms inspired by the MapReduce implementations. For
instance, in Twitter’s Storm [44], a computation is defined
by a topology, which specifies the sequence of processing
elements (bolts) containing user-defined logic, the number of
threads (tasks) for each bolt, and how to partition the input
streams among the many bolt tasks. Similarly, in Yahoo’s S4
[45] case, a computation is expressed by a graph of
processing elements (PE), which are equivalent to Storm’s
bolts. In both projects the runtime platform manages many
low-level aspects of distributed computing, such as
parallelization, messages delivery, and fault tolerance.

Finally, it is also worth mentioning the Spark Stream
project [46] as another MapReduce alternative. The goal of
this project is to provide a data stream processing framework
based on the Spark platform [21]. Similar to Logothetis and
Yocum [42], events are grouped into small batches and all
processing is performed on these batches, which contrast
with the event-by-event processing in Storm and S4.

Despite all the advancements described in this section,
there still are many challenges related to online processing of
Big Data, such as:

 Most platforms are designed to run on clusters of servers
only, and cannot leverage the elasticity and automatic
provisioning capabilities of modern cloud environments.

 Some use cases require a response time that is very
difficult to achieve in networked environments.

 There is no high-level standardized language that can be
used to express online computations.

 Current platforms require a considerable effort to deploy
and manage, and cannot be easily integrated with other
data processing platform.

VI. SECURITY AND PRIVACY

In this section security and privacy concerns for
MapReduce and Big Data are discussed. Also, current efforts
to address these problems for MapReduce are presented.

Accountability and auditing are security issues that
present a problem for both MapReduce and Big Data.
Accountability is the ability to know when someone
performs an action and to hold them responsible for that
action and is often tracked through auditing. In MapReduce
accountability is only provided when the mappers and
reducers are held responsible for the tasks they have
completed [47]. One solution to this issue that has been
proposed is the creation of an Accountable MapReduce [47].
This solution utilizes a set of auditors to inconspicuously
perform accountability tests on the mappers and reducers in
real-time [47]. Through the monitoring of the results of these
tests, malicious mappers or reducers can be detected and
accountability can be provided.

An additional security challenge presented to
MapReduce and Big Data is that of providing access control,
which can be shown through three of Big Data's defining V
properties: volume, variety and velocity [48]. When dealing
with a large volume of information, work performed on that
information is likely to require access to multiple storage
locations and devices. Therefore, multiple access
requirements will be required for any one task. When dealing
with data that has a large variety, semantic understanding of
the data should play a role in the access control decision
process [48]. Finally, the velocity requirement of
MapReduce and Big Data requires that whatever access
control approach is used must be optimized to determine
access control rights in a reasonable amount of time.

Privacy is a major topic of concern whenever large
amounts of information are used. Processes such as data
mining and predictive analytics can discover or deduce
information linkages. Information linkages are advantageous
to organizations, allowing them to better understand, target
and provide for their clients or users. However, on an
individual basis this discovery of information can cause the
identities of data providers to be exposed.

Privacy protection requires an individual to maintain a
level of control over their personal information. This control
can be provided through transparency and allowing input
from the data provider. User input allows an individual to
state their private information usage wishes. Transparency is
provided to an individual by the knowledge of how private
information is collected, what private information is
collected, how the private information is being used, and
who has access to it. This can be very difficult when dealing
with a large number of mappers and reducers that
MapReduce often requires. It is possible that the ability to
provide transparency and control is stated in legislation that
must be followed or penalties can be incurred. The following
are examples of issues that could lead to penalties using the
example of the Personal Information Protection and

Electronic Documents Act (PIPEDA) in Canada [49], and
the Data Protection Directive of the European Union [50]:

 Both require in their respective jurisdictions that
individuals who have data collected on them are able to
understand how it is being used, by whom, and for what
purposes. Abiding by such legislation is difficult for any
large data environment.

 Both state that in some circumstances consent must be
given before information can be used. Due to the size of
the data and the complexity of the analytics performed
during a MapReduce, informing an individual about
what is happening to their information is a challenge.

 Both state that consent can be withdrawn and if so the
information should be deleted by the data repository.
However, in Big Data once information has been put
into the system it is difficult if not impossible to remove.

Some work has been done in order to provide privacy
protection for MapReduce. Airavat [51] is a system that has
been designed to enable the execution of trusted and
untrusted MapReduce computations on sensitive data, while
also providing enforcement of privacy policies belonging to
the data providers [51]. Airavat splits the MapReduce
process into two parts, the untrusted mapped code, and the
trusted reducer code. Drawbacks of the Airavat solution
include the mandatory use of an Airavat provided Reducer,
which reduces its ability to operate in any domain. While this
initial approach has shown some promise, there is still room
for improvement.

VII. CONCLUSIONS

Traditional data processing and storage approaches are
facing many challenges in meeting the continuously
increasing computing demands of Big Data. This work
focused on MapReduce, one of the key enabling approaches
for meeting Big Data demands by means of highly parallel
processing on a large number of commodity nodes.

Issues and challenges MapReduce faces when dealing
with Big Data are identified and categorized according to
four main Big Data task types: data storage, analytics, online
processing, and security and privacy. Moreover, efforts
aimed at improving and extending MapReduce to address
identified challenges are presented. By identifying
MapReduce challenges in Big Data, this paper provides an
overview of the field, facilitates better planning of Big Data
projects and identifies opportunities for future research.

REFERENCES

[1] P. Zadrozny and R. Kodali, Big Data Analytics using Splunk,
Berkeley, CA, USA: Apress, 2013.

[2] F. Ohlhorst, Big Data Analytics: Turning Big Data into Big Money,
Hoboken, N.J, USA: Wiley, 2013.

[3] J. Dean and S. Ghemawat, "MapReduce: Simplified data processing
on large clusters," Commun ACM, 51(1), pp. 107-113, 2008.

[4] Apache Hadoop, http://hadoop.apache.org.

[5] F. Li, B. C. Ooi, M. T. Özsu and S. Wu, "Distributed data
management using MapReduce," ACM Computing Surveys, 46(3),
pp. 1-42, 2014.

[6] C. Doulkeridis and K. Nørvåg, "A survey of large-scale analytical
query processing in MapReduce," The VLDB Journal, pp. 1-26, 2013.

http://hadoop.apache.org/

[7] S. Sakr, A. Liu and A. Fayoumi, "The family of mapreduce and large-
scale data processing systems," ACM Computing Surveys, 46(1), pp.
1-44, 2013.

[8] K. Grolinger, W. A. Higashino, A. Tiwari and M. A. Capretz, "Data
management in cloud environments: NoSQL and NewSQL data
stores," Journal of Cloud Computing: Advances, Systems and
Application, 2, 2013.

[9] X. Su and G. Swart, "Oracle in-database hadoop: When MapReduce
meets RDBMS," Proc. of the 2012 ACM SIGMOD International
Conference on Management of Data, 2012.

[10] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein and C. Welton,
"MAD skills: New analysis practices for Big Data," VLDB
Endowment, 2(2), pp. 1481-1492, 2009.

[11] Apache Cassandra, http://www.datastax.com/docs.

[12] J. C. Anderson, J. Lehnardt and N. Slater, CouchDB: The Definitive
Guide, Sebastopol, CA, USA: O'Reilly Media, 2010.

[13] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, P. Wyckoff and R. Murthy, "Hive: A warehousing solution over
a map-reduce framework," Proc. of the VLDB Endowment, 2(2), pp.
1626-1629, 2009.

[14] Apache Mahout, https://mahout.apache.org/.

[15] Oracle Big Data connectors, http://www.oracle.com/us/
products/database/big-data-connectors/overview/index.html.

[16] K. A. Kumar, J. Gluck, A. Deshpande and J. Lin, "Hone: Scaling
down hadoop on shared-memory systems," Proc. of the VLDB
Endowment, 6(12), pp. 1354-1357, 2013.

[17] C. Parker, "Unexpected challenges in large scale machine learning,"
Proc. of the 1st International Workshop on Big Data, Streams and
Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications, 2012.

[18] J. Lin, "Mapreduce is good enough? if all you have is a hammer,
throw away everything that's not a nail!" Big Data, 1(1), pp. 28-37,
2013.

[19] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N.
Leiser and G. Czajkowski, "Pregel: A system for large-scale graph
processing," Proc. of the 2010 ACM SIGMOD International
Conference on Management of Data, 2010.

[20] Apache Giraph, https://giraph.apache.org/.

[21] Apache Spark, https://spark.incubator.apache.org/.

[22] Y. Bu, B. Howe, M. Balazinska and M. D. Ernst, "HaLoop: Efficient
iterative data processing on large clusters," Proc.VLDB Endow., 3(1-
2), pp. 285-296, 2010.

[23] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu and G.
Fox, "Twister: A runtime for iterative MapReduce," Proc. of the 19th
ACM International Symposium on High Performance Distributed
Computing, 2010.

[24] S. B. Kotsiantis, D. Kanellopoulos and P. Pintelas, "Data
preprocessing for supervised learning," International Journal of
Computer Science, 1(2), pp. 111, 2006.

[25] J. Fan, F. Han and H. Liu, "Challenges of Big Data
analysis," National Science Review, in press, 2014.

[26] J. Fan and Y. Liao, "Endogeneity in high dimensions," The Annals of
Statistics, in press, 2014.

[27] B. Dalessandro, "Bring the noise: Embracing randomness is the key
to scaling up machine learning algorithms," Big Data, 1(2), pp. 110-
112, 2013.

[28] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B.
Saha and E. Harris, "Reining in the outliers in map-reduce clusters
using Mantri," Proc. of the 9th USENIX Conference on Operating
Systems Design and Implementation, 2010.

[29] Q. He, Q. Tan, X. Ma and Z. Shi, "The high-activity parallel
implementation of data preprocessing based on MapReduce," Proc. of
the 5th International Conference on Rough Set and Knowledge
Technology, 2010.

[30] H. Yang and S. Fong, "Countering the concept-drift problem in Big
Data using iOVFDT," IEEE International Congress on Big Data,
2013.

[31] T. Hill and P. Lewicki, STATISTICS: Methods and Applications,
Tulsa, OK: StatSoft, 2007.

[32] J. Heer and S. Kandel, "Interactive analysis of Big Data," XRDS:
Crossroads, the ACM Magazine for Students, 19(1), pp. 50-54, 2012.

[33] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar and R. Pasquin,
"Incoop: MapReduce for incremental computations," Proc. of the 2nd
ACM Symposium on Cloud Computing, 2011.

[34] Y. Chen, S. Alspaugh and R. Katz, "Interactive analytical processing
in Big Data systems: A cross-industry study of MapReduce
workloads," Proc. of the VLDB Endowment, 5(12), pp. 1802-1813,
2012.

[35] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M.
Tolton and T. Vassilakis, "Dremel: Interactive analysis of Web-scale
datasets," Proc. of the VLDB Endowment, 3(1-2), pp. 330-339, 2010.

[36] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu and M. Nunkesser,
"Processing a trillion cells per mouse click," Proc. of the VLDB
Endowment, 5(11), pp. 1436-1446, 2012.

[37] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden and I.
Stoica, "BlinkDB: Queries with bounded errors and bounded response
times on very large data," Proc. of the Eight ACM European
Conference on Computer Systems, 2013.

[38] H. T. Vo, J. Bronson, B. Summa, J. L. Comba, J. Freire, B. Howe, V.
Pascucci and C. T. Silva, "Parallel visualization on large clusters
using MapReduce," IEEE Symposium on Large Data Analysis and
Visualization, 2011.

[39] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri and A. Doan,
"Muppet: MapReduce-style processing of fast data," Proc.VLDB
Endow., 5(12), pp. 1814-1825, 2012.

[40] S. Ghemawat, H. Gobioff and S. Leung, "The Google file system,"
ACM SIGOPS Operating Systems Review, 2003.

[41] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy
and R. Sears, "MapReduce online," Proc. of the 7th USENIX
Conference on Networked Systems Design and Implementation,
2010.

[42] D. Logothetis and K. Yocum, "Ad-hoc data processing in the
cloud," Proc. of the VLDB Endowment, 1(2), pp. 1472-1475, 2008.

[43] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert and
C. Fetzer, "Scalable and low-latency data processing with stream
MapReduce," IEEE Third International Conference on Cloud
Computing Technology and Science, pp. 48-58, 2011.

[44] Storm, distributed and fault-tolerant realtime computation,
http://storm-project.net/.

[45] L. Neumeyer, B. Robbins, A. Nair and A. Kesari, "S4: Distributed
stream computing platform," Proc. of IEEE International Conference
on Data Mining Workshops, 2010.

[46] M. Zaharia, T. Das, H. Li, S. Shenker and I. Stoica, "Discretized
streams: An efficient and fault-tolerant model for stream processing
on large clusters," Proc. of the 4th USENIX Conference on Hot
Topics in Cloud Computing, 2012.

[47] Z. Xiao and Y. Xiao, "Achieving accountable MapReduce in cloud
computing," Future Generation Computer Systems, 30,pp. 1-13,
2014.

[48] W. Zeng, Y. Yang and B. Luo, "Access control for Big Data using
data content," IEEE International Conference on Big Data, 2013.

[49] The Personal Information Protection and Electronic Documents Act
(PIPEDA), http://www.priv.gc.ca/leg_c/r_o_p_e.asp.

[50] Protection of Personal Data, http://ec.europa.eu/justice/data-
protection.

[51] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov and E. Witchel, "Airavat:
Security and privacy for MapReduce." Proc. of the 7th Usenix
Symposium on Networked Systems Design and Implementation,
2010.

http://www.datastax.com/docs
https://mahout.apache.org/
http://www.oracle.com/us/products/database/big-data-connectors/overview/index.html
http://www.oracle.com/us/products/database/big-data-connectors/overview/index.html
https://giraph.apache.org/
https://spark.incubator.apache.org/
http://storm-project.net/
http://www.priv.gc.ca/leg_c/r_o_p_e.asp
http://ec.europa.eu/justice/data-protection
http://ec.europa.eu/justice/data-protection

