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Abstract—In recent years, advances in sensor technologies and 

expansion of smart meters have resulted in massive growth of 

energy data sets. These Big Data have created new opportunities 

for energy prediction, but at the same time, they impose new 

challenges for traditional technologies. On the other hand, new 

approaches for handling and processing these Big Data have 

emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. 

This paper explores how findings from machine learning with 

Big Data can benefit energy consumption prediction. An 

approach based on local learning with support vector regression 

(SVR) is presented. Although local learning itself is not a novel 

concept, it has great potential in the Big Data domain because it 

reduces computational complexity. The local SVR approach 

presented here is compared to traditional SVR and to deep 

neural networks with an H2O machine learning platform for 

Big Data. Local SVR outperformed both SVR and H2O deep 

learning in terms of prediction accuracy and computation time. 

Especially significant was the reduction in training time; local 

SVR training was an order of magnitude faster than SVR or 

H2O deep learning. 

Keywords: consumption prediction; Big Data; local learning; 

local SVR; deep learning, deep neural networks, Oxdata H2O. 

I.  INTRODUCTION 

Modeling and forecasting electrical energy consumption 
has been an active research area for more than a decade. In the 
United States, retail sales of electricity exceed $3,760 billion 
[1], and the electricity sector generates the largest share of 
greenhouse gas emissions (31%) [2]. Today, with climate 
change and the focus on environment, it is even more 
important to model and forecast electricity consumption 
accurately in pursuit of conservation opportunities.  

The importance of measuring and collecting electricity 
data, together with recent advances in sensor technology, have 
led to the proliferation of smart meters that measure and 
communicate electricity consumption. These smart meters 
measure electricity at intervals of an hour or less, whereas 
some sensor devices can measure consumption in real time. 
These Big Data have created opportunities to develop new 
ways of analyzing energy consumption, identifying potential 
savings, and measuring energy efficiency. 

Sensor-based approaches to energy forecasting rely on 
readings from sensors or smart meters and contextual 
information such as meteorological information or work 
schedules to infer future energy behaviour. Typically, 

historical data such as temperature, day of the week, time of 
day, and energy consumption are fed into a machine learning 
model that learns from them and consequently can forecast 
future energy consumption. The accuracy of these sensor-
based approaches is comparable or superior to traditional 
approaches based on modeling in depth the properties of a 
building [3].  

A typical assumption of Big Data is that more data can 
lead to deeper insights and higher business value. This is 
especially true in machine learning, where algorithms can 
learn better from bigger data sets. However, massive data sets 
can be challenging to process [4, 5]. Many machine learning 
algorithms were designed with the assumption that the whole 
dataset fits into the memory [4]. Often these algorithms are of 
high algorithmic complexity and require large amounts of 
memory [6]. This gave rise to distributed processing 
approaches, such as MapReduce, which are suitable for 
algorithms that can be parallelized to a degree sufficient to 
take advantage of available nodes. Apache Mahout [7] is an 
example of a platform for machine learning based on the 
MapReduce paradigm. Another recent development is 
Apache Spark [8], which is a cluster computing framework 
based on distributed data sets and in-memory processing. 
Although Mahout and Spark offer machine learning 
capabilities with a constantly increasing number of 
algorithms, algorithms such as support vector regression 
(SVR) and neural networks (NN), which are the dominant 
approaches to electricity consumption prediction [9], are only 
available in a limited context.  

Local learning has also been suggested as a suitable 
approach for Big Data [6]. This approach reduces computation 
time by dividing the training set into clusters of similar 
samples and building a separate model for each cluster. 
However, it is not clear if and how the use of Big Data 
approaches affects energy prediction accuracy or computation 
time. 

In previous work, the authors have used traditional SVR 
and NN to predict the consumption of an event venue [9]. 
With readings at 15-min intervals and one year of training 
data, SVR parameter optimization using cross validation and 
SVR model training exceeded 24 hours. Therefore, it is 
important to seek other solutions to reduce training time. 

This study explores Big Data approaches, specifically 
local learning and deep learning, in the context of electricity 
consumption prediction; it looks at how those approaches 



compare to traditional SVR with respect to prediction 
accuracy and computation time. An approach to electricity 
consumption prediction based on local learning with support 
vector regression is presented. This local SVR approach is 
compared to traditional SVR and Oxdata H2O deep neural 
networks [10]. Although the data set used in the case study is 
not very large, it demonstrates how Big Data approaches can 
benefit energy prediction. Moreover, the advantage of the 
presented approach will be even larger with bigger data sets. 

The rest of this paper is organized as follows: Section II 
introduces local SVR and Oxdata H2O, and Section III 
reviews related work. The methodology, including the data 
set, energy prediction with local SVR, and performance 
metrics, is described in Section IV. An evaluation is presented 
in Section V, and Section VI concludes the paper.  

II. BACKGROUND 

This section introduces local SVR and Oxdata H2O. 

A. Local SVR 

Support vector machines (SVM) [11] are supervised 
learning algorithms characterized by a high degree of 
generalization, which indicates the model’s ability to perform 
accurately on new, previously unseen data. A form of SVM 
known as support vector regression (SVR) is used for 

regression tasks. From a training data set {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑖=𝑁, where 

X is a vector of input variables and Y is a vector of output 
variables, SVR approximates the relationship between input 
and output variables as:  

 𝑌 = 𝑊 ∙ 𝛷(𝑋) + 𝑏, 

where 𝛷(𝑋) is a kernel function that non-linearly maps from 
the input space X to the high-dimensional feature space. 
Coefficients W and b are determined by minimizing the 
objective function:  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
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subject to the following constraints: 

 𝑌𝑖 − 𝑊 ∙ 𝛷(𝑋𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖 , 
 𝑊 ∙ 𝛷(𝑋𝑖) + 𝑏 − 𝑌𝑖 ≤ 𝜀 + 𝜉𝑖

∗, 
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A weight vector W should be as flat as possible to achieve 
good generalization. The terms 𝜉𝑖    and 𝜉𝑖

∗   capture residuals 
beyond the prescribed tolerance 𝜀, and cost C is the penalty 
for errors greater than 𝜀.  

A common choice of kernel is the radial basis kernel, 
which is efficient to compute and has only one parameter 𝛾 
(influence of each data point ) that needs to be determined; 
hence, this work also uses the radial basis kernel.  

Local SVR uses a local learning principle with SVR as a 
local predictor. Local learning is based on the assumption that 
training samples in the neighbourhood of the test sample are 
the best indicators of the response variable. This is not a new 

concept; in 1992, Bottou and Vapnik [12] presented local 
learning as a way of dealing with training data that are 
unevenly distributed in the input space. Their work examines 
two approaches: the simple approach selects k training 
samples in the vicinity of the test sample, trains the prediction 
model using only these k samples, and applies this model to 
the test sample. In the second approach, the structure of the 
learning model ensures that only neighbouring samples affect 
the response variable.  

Although the idea of local learning is old, in recent years 
it has emerged as a feasible approach in the context of Big 
Data [6]. Specifically, the solutions based on the following 
idea are promising:  

 Training: partition the training set into clusters, build 
prediction model for each cluster;  

 Testing/prediction: for the test sample, determine the 
cluster membership and apply that cluster model to 
determine the response/prediction value. 

The reasoning behind the local learning concept in Big 
Data is that for computationally intensive algorithms, it is 
faster to find solutions for k problems of size m/k than to find 
the solution for one problem of size m. For example, standard 
SVM training has O(m3) time and O(m2) space complexity, 
where m is the size of the training set [13]. For large data sets, 
this is computationally infeasible. By splitting the set into k 
clusters and training each cluster separately, the overall 
training time should be significantly reduced.  

B. Oxdata H2O 

Oxdata H2O is a scalable, open source machine learning 
platform for Big Data analytics [10]. Its in-memory 
distributed parallel processing enables massively scalable data 
analysis and therefore allows H2O to harness Big Data for 
business benefit. H2O can be run stand-alone or on top of the 
Big Data platforms like Hadoop and Spark when H2O brings 
in-memory machine learning to these Big Data platforms. 
Presently, H2O includes a number of common machine 
learning algorithms such as generalized linear models (linear 
regression, logistic regression, etc.), decision trees, gradient 
boosting, k-means, deep learning, and Naïve Bayes. For 
energy prediction, this work uses H2O deep learning. 

The term deep learning refers to a family of algorithms 
that model data using multiple layers, with each one 
performing a non-linear transformation. Examples of such 
algorithms include deep neural networks, deep belief 
networks, and convolutional and recurrent deep NN.  

H2O’s deep learning follows the model of multi-layer, 
feedforward neural networks with entirely supervised 
training. Its in-memory processing, columnar compression, 
MapReduce capability, multi-threaded computation, and 
distributed computation provide efficient processing. 
Distributed computation uses the MapReduce approach: in the 
map phase, each node trains with local data with 
asynchronous threads, whereas in the reduce phase, model 
averaging is performed. In contrast to a Hadoop MapReduce 
task, an H2O MapReduce tasks is performed in memory. 
Repeated training produces different results because the 
Hogwild! approach [14] used for parallelization. In contrast to 
other parallelization techniques that require performance 



degrading memory locking, the Hogwild! approach 
implements stochastic gradient descent without any locking.  
This lock free implementation is achieved by allowing threads 
to access shared memory, with the possibility of overwriting 
each other’s results. By allowing these race conditions, H2O 
improves performance. 

H2O deep learning is very flexible; it supports manual and 
adaptive learning rates with a number of tuning parameters, 
different regularization techniques such as dropout, L1 
(Lasso), and L2 (Ridge), early stopping, and others. This 
makes it possible to fine-tune the prediction model, but 
determining the optimal parameters becomes challenging and 
time consuming. 

III. RELATED WORK 

This section reviews related work in machine learning 
with Big Data, and in electricity consumption prediction. 

A. Machine Learning with Big Data 

Machine learning (ML) has been attracting renewed 
attention with the emergence of Big Data as it has been seen 
as a way of extracting value from data. ML platforms for Big 
Data started with disk-based approaches such as Apache 
Mahout [7] which inherits disk orientation from the 
underlying Hadoop architecture. Because disk access is slow, 
new memory-based approaches have been developed. Apache 
Spark and Oxdata H2O are examples of memory-based 
platforms, and even Mahout machine learning algorithms are 
transitioning to these platforms. Zhang et al. [15] reviewed in-
memory Big Data management and processing. They 
distinguished two types of in-memory systems: batch-oriented 
systems such as Spark and H2O, and real time or stream 
processing systems such as Storm. The systems relevant to 
energy consumption prediction primarily belong to the batch 
category. 

Al-Jarrah et al. [6] reviewed energy efficient machine 
learning approaches and new approaches with reduced 
memory requirements. They saw local learning as one of the 
key mechanisms for machine learning with Big Data because 
of its ability to reduce computation cost. They also considered 
deep learning to be an important technique as it promises to 
provide representation learning for complex problems. 
Although deep learning is not a new concept, it is 
experiencing a rebirth with recent developments in distributed 
processing. H2O deep learning is an example of recent deep 
learning approaches for Big Data. 

The publications of Chen and Lin [16] and Najafabadi et 
al. [17] examined deep learning with Big Data and discussed 
the associated challenges. Both studies highlighted the role of 
dimensionality reduction, parallel processing, and distributed 
processing in deep network training. Our work takes 
advantage of parallel and distributed processing and performs 
dimensionality reduction, but only after the training data have 
been partitioned into clusters. 

B. Electricity Consumption Prediction 

In recent years, with the proliferation of smart meters, 
prediction efforts have shifted from annual to daily, hourly, 
and even 10- or 15-min consumption prediction. Approaches 

with such granularity are typically sensor-based; they rely on 
historical energy readings and meteorological information 
without the need for a deep understanding of the physical 
building structure. For example, Jain et al. [18] and Grolinger 
et al. [9] considered daily, hourly, and 10- or 15-min intervals 
and explored the prediction accuracy achieved with different 
data granularities. 

Sensor-based approaches to electricity forecasting are 
diverse; a few examples are support vector regression (SVR), 
neural networks (NN), autoregressive integrated moving 
average (ARIMA) models, and gray prediction [19]. Suganthi 
and Samuel [19] reviewed models for electricity demand 
prediction and noted that NN have been used extensively. 
Ahmad et al. [20] also reviewed energy prediction, but they 
focussed strictly on the use of NN and SVR. 

Variants of the SVR approach have also been proposed: 
Jung et al. [21] added a genetic algorithm to the least-squares 
support vector machine (LSSVM), whereas Elattar et al. [22] 
used locally weighted support vector regression. Our local 
SVR and the approach proposed by Elattar et al. are both 
based on the assumption that the neighbours are the best 
indicators of the response variable. However, while Elattar et 
al. modify the SVR risk function to accommodate a distance 
measure, our approach classifies training data and builds an 
SVR model for each cluster.  

Jovanović et al. [23] examined an ensemble of various 
neural networks to predict heating energy consumption. The 
impact of various climatic variables on prediction has also 
been studied [24].  

Whereas the studies discussed above focus on prediction 
accuracy and application of a prediction approach in a specific 
context, the present work explores if and how recent 
developments from the Big Data domain can benefit 
electricity consumption prediction. Frincu et al. [25] and 
Anjos et al. [26] have been concerned with Big Data in the 
energy sector. Frincu et al. proposed an approach for selecting 
the prediction model, whereas Anjos et al. took a streaming 
approach to energy management. In contrast, the work 
reported here looks at adapting Big Data machine learning to 
energy prediction. Kejela et al. [27] used H2O for energy 
prediction: whereas they used a gradient boosting machine, 
the present study used deep learning. Moreover, H2O is just 
one approach considered in the present work. 

IV. METHODOLOGY 

This section first introduces the data set. Next, a local SVR 
approach is described and performance metrics presented. 

A. Data Set 

The Green Button initiative [28] is an effort to provide 
utility consumers with automated access to their energy usage 
and the ability to securely share these data with third parties. 
Through this initiative, data from smart meters are provided 
in a standardized Green Button format. Presently, over 60 
million consumers have access to their energy use in this 
format [28]. Consequently, this study uses past energy 
consumption available through Green Button. 

The specific scenario considered is electricity 
consumption prediction for event venues such as sports 



arenas, theatres, and conference centres. In this scenario, 
consumption patterns are not as strongly related to hours of 
the day and days of the week, as is the case with office 
buildings, but are driven by event schedules and event 
attributes such as event type (basketball, hockey, …) and 
seating capacity. In addition to electricity readings, the 
following attributes are considered:  

 Day of the year: 1 to 365 

 Day of the week: 1 to 7 

 Hour of the day: 1 to 24 

 Event day: indicates whether there was an event on 
the day of the reading 

 Event type: category of events, such as basketball and 
hockey. Three input features are used, one for each of 
basketball, hockey, and other. 

 Seating configuration: captures seating capacity for 
an event.  

The data consist of one sample for each electricity reading, 
and the event schedule is captured through date/time attributes 
(day of the year, day of the week, hour of the day) and the 
event type. Samples corresponding to non-event periods have 
0 for the event type, whereas those corresponding to time 
periods during events have an event type describing the 
category of event, such as basketball or hockey. 

B. Local SVR for Energy Prediction 

The objective of this paper is to evaluate various suggested 
approaches for Big Data processing with respect to accuracy 
and time, not necessarily to create a completely new approach. 
Hence, prediction with local SVR as described in this section 
relies mostly on already available components, but it 
combines them in a way that enables efficient energy 
prediction. 

Fig. 1 describes the training and testing process for energy 
prediction using local SVR. First, in step 1, the data set is 
divided into a training and a testing set. Because energy 
prediction is a time series problem in which older data are 
used to predict newer data, a portion of the data at the end of 
the time series is reserved solely for testing. The remainder of 
the set is used for training and parameter optimization.  

1) Training 
The training phase, as typical in machine learning, starts 

with normalization (step A.2), which adjusts variables to a 
common scale, in this case zero to one, to avoid dominance of 
high-valued features.  

Next, step A.3 performs feature weighting to capture the 
different relevance of predictor variables and to improve 
unsupervised clustering in step A.4. Feature weights represent 
the degree of influence of individual variables on the predicted 
value. The feature weighting is performed on the scaled data 
obtained from step A.2. Specifically, correlations are used for 
feature weighting. The correlation between each 
input/independent variable x and the output/dependent 
variable y, in this case energy consumption, is calculated as 
follows:  

 𝑐𝑜𝑟𝑟(𝑥, 𝑦) =  
∑ (𝑥𝑖−�̅�𝑛

𝑖=1 )(𝑦𝑖−�̅�)

𝑛𝑥𝑦
, 

where n is the number of samples in the training data set, �̅� 
and �̅� are the means of x and y, and 𝑥  and 𝑦 are the standard 

deviations of x and y.  
Each value for each input feature is weighted according to 

the correlation coefficient calculated for that specific feature. 
Here, correlation is used to weight the features, but other more 
sophisticated approaches could also be used, such as those 
based on mutual information criteria [29].  

Next, the training data set is partitioned using k-means 
clustering (step A.4). Empirical methods exist for determining 
the number of clusters, such as those based on distortion, 
which measures the distance between each observation and its 
closest cluster center [30]. However, this study is not 
concerned with cohesion within or between clusters, but rather 
with selecting the value of k that results in the highest 
prediction accuracy. Therefore, k is selected by repeating the 
training process with different k values and choosing the value 
of k that achieves the highest prediction accuracy.  

Clustering is followed by feature reduction, step A.5. 
Feature reduction is carried out separately for each cluster; 
hence, models corresponding to different clusters may have 
different parameters. In the case study, because of the small 
number of input features, a simple approach was used: 
features that had the same value for all data points in a 
particular cluster were removed. For machine learning with a 
large number of features, it is better to use other 
dimensionality reduction techniques such as principal 
component analysis (PCA). PCA transforms a set of possibly 
correlated variables into a set of linearly uncorrelated 
variables, referred to as principal components, using 
orthogonal transformation. Then dimensionality can be  

 

Figure 1.  Local SVR process. 



reduced by choosing only the first p principal components. 
This dimensionality reduction is especially important for 

wide Big Data sets because it can reduce computational 
complexity. Nevertheless, in the presented case study, even a 
simple removal of features with a single value within a cluster 
resulted in a greatly reduced feature space and improved 
performance.  

The process continues by building a separate SVR model 
for each cluster (step A.6). This includes selecting model 
parameters and training the model. For SVR, the two main 
parameters to be selected are 𝜀, which defines which residuals 
are not penalized and the cost C, which determines the penalty 
for errors greater than 𝜀. In addition, for the radial basis kernel 
used in this study, the width 𝛾 of the radial basis kernel must 
be selected. 

For each cluster, parameter selection is performed using 
grid search with k-fold cross validation. Parameter 
combinations form a grid, and k-fold cross validation is 
repeated for each grid element to assess prediction error. The 
parameter combination with the smallest error is selected. 
Next, for each cluster, the SVR model is built using all data 
from that cluster. Note that parameter optimization and SVM 
model training are performed separately for each cluster and 
using only the training data set. 

After step A.6, clusters and their corresponding SVR 
models are ready for use in prediction. 

2) Testing 
The steps of the testing or prediction phase correspond to 

the training steps. Test data are normalized in step B.2 using 
statistics from training step A.2. Next, the weights calculated 
during training in step A.3 using the correlation approach are 
applied to test data. Each value for each input feature in the 
testing set is weighted using the correlation coefficient 
calculated according to Eq. (6) for that feature. 

Next, cluster membership (step B.4) is determined by 
finding the nearest cluster mean in terms of Euclidean 
distance. The distance of the data point x to cluster s is: 

 𝐷𝑖𝑠𝑡𝑠 = √∑ (𝑥𝑖 − 
𝑖
)2𝑀

𝑖=1  

where M is the number of independent variables and  is the 
mean of cluster s.  

The SVR model for the nearest cluster might not be using 
all features, and therefore features not used in that cluster SVR 
are removed. Note that feature removal depends only on what 
was determined during the training stage and is not affected 
by the feature values of the test data. 

Finally, the SVR model corresponding to the identified 
cluster is used for prediction (step B.6). 

C. Performance Metrics 

The two metrics often used in electricity prediction studies 
are the mean absolute percentage of error (MAPE) and the 
coefficient of variance (CV) [3, 9, 18]; hence, this work also 
uses these metrics. 

The MAPE metric expresses average absolute error and is 
calculated as follows: 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖−�̂�𝑖|

𝑦𝑖

𝑁
𝑖=1 × 100, 8

where 𝑦𝑖  is the actual consumption, �̂�𝑖  is the predicted 
consumption, and N is the number of observations. 

The CV metric expresses error variation with respect to 
the mean and is calculated as follows: 

 𝐶𝑉 =
√

1

𝑁−1
∑ (𝑦𝑖−�̂�𝑖)2𝑁

𝑖−1

�̅�
× 100 

where 𝑦𝑖 , �̂�𝑖, and N represent the same elements as in MAPE 
and �̅� is the average actual consumption. 

V. EVALUATION 

This section first introduces the data set. Next, results are 
presented and discussed and threats to validity described. 

A. Implementation 

The evaluation was carried out on data from Budweiser 
Gardens, an event venue with a capacity of over 10,000 seats 
located in London, Ontario, Canada. This venue hosts 
professional sport events, including basketball and hockey, 
and a variety of other entertainment shows such as concerts 
and theatre productions.  

Electricity consumption data were obtained through Green 
Button (GB) Connect My Data. London Hydro, the local 
electricity utility, has developed the first cloud-based Green 
Button Connect My Data environment to provide data access 
to academic partners with the customer’s consent. The data 
consisted of 15-minute electricity consumption readings from 
revenue grade utility meters from January 1, 2013 to March 
31, 2014. 

This period generated a total of 43,680 data points. 
Although this is not a very large data set in a Big Data context, 
it can result in significant computation requirements, 
especially when parameter selection is involved. For example, 
in previous work by the authors [9], traditional SVR for the 
same data set with five-fold cross validation for parameter 
selection took over 24 hours. This was for only 10 values for 
each of two prediction model parameters and on a two node 
cluster, with each node having 24 cores and 96 GB memory. 
Consequently, even for a data set of this size, computation 
time needs to be reduced.  

In addition to energy consumption, the data set included 
event-related data as described in Section IV.A. 80% of the 
data were used for parameter selection and training, and 20% 
were used for testing. The training set contained readings for 
all of 2013, thus accounting for all seasons. The testing set 
included data for the first 3 months of 2014. 

Three prediction approaches were implemented: SVR, 
local SVR as presented in Section IV.B, and H2O deep 
learning. Each implementation uses the grid search approach 
with five-fold cross validation for the parameter selection:  

 SVR: Implemented in R language [31] using the “e1071” 
package. Two parameters were tuned: 10 values for the 
cost C from 1e-6 to 1e+3 with exponential increments and 



10 values for the radial basis parameter 𝛾 from 1e-8 to 
1e+1. This makes for a total of 100 configurations.  

 Local SVR: Implemented in R language [31] using the 
“stats” package for k-means clustering and the “e1071” 
package for SVR. The SVR model for each cluster was 
tuned using the same approach as in standalone SVR; 10 
values for the cost C and 10 values for the parameter 𝛾. 
In addition, ten values of the number of clusters k (from 
20 to 110 by increments of 10) were considered. 

 H2O deep learning: An H2O implementation of 
distributed deep neural networks was used. It was 
accessed from R through the “h2o” package. H2O deep 
learning has a large number of parameters, including 
number of hidden layers, number of neurons in each 
layer, adaptive learning rate ε, adaptive learning rate time 
decay ρ, and regularization parameters l1 and l2. To keep 
the grid search size reasonable, only the number of layers, 
number of neurons, ε, and ρ were considered, as 
presented in Table I. For other parameters default values 
were used. This made for 81 considered configurations, 
which was fewer than in SVR or local SVR, but was kept 
low to keep training time reasonable. 

Experiments were carried out on a two node cluster 
(Gigabit Ethernet); each node had 24 cores (Intel Xeon CPUs) 
and 96 GB RAM. For SVR and local SVR, the code was 
parallelized to run different configurations on different cores 
and nodes. H2O itself performs distributed computations, and 
hence no additional parallelization was implemented. 

B. Results and Discussion 

The prediction approaches (SVR, local SVR, and H2O 
deep learning) were evaluated with hourly and with 15-min 
readings. Two aspects of the prediction were evaluated: 
accuracy and training time. In the case of machine learning 
with Big Data, a small drop in accuracy can be warranted by 
a large reduction in training time.  

MAPE and CV consumption prediction errors obtained 
with each approach on testing data are presented in Table II. 
The same data are displayed in Fig. 2. For hourly readings, 
local SVR achieved slightly lower error rates in terms of both 
MAPE and CV errors than traditional SVR, with MAPE errors 
of 16.806 and 17.860 and CV errors of 19.612 and 20.428 for 
local SVR and SVR respectively. H2O accuracy was lower, 
with an MAPE error of 20.261 and a CV error of 22.703.  

With 15-min data, traditional SVR and local SVR also 
outperformed H2O, with the lowest error rates obtained with 
local SVR (MAPE error of 19.407 and CV error of 21.517).  

For all three approaches, accuracy with 15-min readings 
was lower than accuracy with hourly readings. This can be 
explained by the models inability to capture random 
consumption variations between 15-min intervals. 

TABLE I.  H2O DEEP LEARNING PARAMETERS  

Parameters Considered values 

Hidden 

layer sizes 

1-layer (16), (32), (64) 

2-layer (16,16), (32,32), (64,64) 

3-layer (16,16,16), (32,32,32), (64,64,64) 

ρ 0.95, 0.99, 0.999 

ε 1e-10, 1e-8, 1e-6 

As already mentioned, it is crucial to consider training 
time in addition to prediction accuracy. For both hourly and 
15-min intervals, the same time periods were considered; 
therefore, the 15-min data set was four times the size of the 
hourly data set. Fig. 3 compares the training times for the three 
approaches for hourly and 15-min readings. The training time 
included parameter optimization using grid search with five-
fold cross validation. For SVR, two parameters with 10 values 
each were considered (as described in Section V.A), which 
made for a total of 100 configurations. For local SVR, exactly 
the same configurations were considered, with the difference 
that optimization was performed at the cluster level. 
Moreover, 10 values for the number of clusters were 
considered (from 20 to 110 by increments of 10). Finally, for 
H2O, 81 configurations were considered (as described in 
section V.A) to keep the training time reasonable. This grid 
parameter optimization with five-fold cross validation was a 
large contributing factor to overall training time. 

As seen from Fig. 3, the time to train the local SVR was 
several times shorter than to train the SVR or H2O models. 
The difference between training time for local SVR and the  

TABLE II.  ERRORS : SVR, LOCAL SVR, AND H2O DEEP LEARNING 

 Hourly readings 15-min readings 

 MAPE CV MAPE CV 

SVR 17.860 20.428 19.973 21.964 

Local SVR 16.806 19.612 19.407 21.517 

H2O deep learning 20.261 22.703 21.329 22.151 

 
Figure 2.  Prediction accuracy: SVR, local SVR, and H2O deep learning 

 

Figure 3.  Training times: SVR, local SVR, and H2O deep learning 
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other two models remained significant for 15-min readings. 
Local SVR training time was reduced compared to SVR 
because instead of training one model with a large data set, 
several cluster models were trained with smaller data sets.  

Fig. 4 and 5 show training time, MAPE errors, and CV 
errors versus the number of clusters, for hourly and 15-min 
readings respectively. For parameter optimization, 10 values 
of the number of clusters were considered, but here the value 
domain was extended to consider larger numbers of clusters. 
For both hourly and 15-min readings, training time decreased 
sharply when the number of clusters was increased from 20 to 
60. When the number of clusters was increased beyond 120, 
no significant further change in training time occurred. In 
contrast, as the number of clusters increased, the MAPE and 
CV errors gradually increased. 50 clusters gave error rates 
close to minimums with reasonably short training time.  

Another reason for short training time with local SVR is 
feature reduction; therefore, the relation between training time 
and number of removed features was explored. Fig. 6 and 7 
show the average number of removed features per cluster and 
the training error for hourly and 15-min readings respectively. 
With an increasing number of clusters, the average number of 
removed features increases, and the training time decreases. 
Considering that there were only eight input features in this 
case study, on average, more than half features were removed. 

 
Figure 4.  Local SVR, hourly data: errors and training time 

 

Figure 5.  Local SVR, 15-min data: errors and training time 

C. Threats to validity 

H2O deep learning has a large number of parameters that 
can be tuned in an attempt to increase accuracy. The authors 
believe that by including other parameters, especially 
regularizations l1 and l2, accuracy could be improved. 
However, further parameters were not considered in an 
attempt to keep the grid search at a similar size to the other 
two models and the training time reasonably short. 

Similarly, deep learning in general is successful with 
complex problems, and for energy prediction, its power might 
be excessive. In these experiments, the accuracy among 
different H2O runs varied greatly, which can be explained by 
getting stuck in local minima and by the use of the Hogwild! 
approach. 

Nevertheless, the experiments performed in this research 
still demonstrate that the local SVR approach presented in this 
paper outperforms traditional SVR in terms of accuracy and 
training time. Moreover, local SVR is easier and less resource 
intensive to tune than H2O deep learning. 

I. CONCLUSIONS  

In recent years, development and proliferation of sensors 
and metering devices have enabled collection of fine-grained  

 

Figure 6.  Local SVR, hourly readings: training time and average number 

of removed features 

 
Figure 7.  Local SVR, 15-min readings: training time and average number 

of removed features 
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energy consumption data. These sensor Big Data have the 
potential to improve energy prediction greatly, but they also 
pose major challenges. 

This paper explores the ability of recently developed Big 
Data approaches with respect to energy consumption 
prediction. The focus is on evaluating if and how findings 
from machine learning with Big Data can benefit consumption 
prediction. An approach based on local learning with support 
vector regression is presented. The approach takes advantage 
of parameter reduction to increase training speed. The 
presented case study compares traditional SVR, local SVR, 
and H2O deep learning in terms of accuracy and training time. 
Local SVR outperformed H2O in both accuracy and training 
time. The presented local SVR was evaluated on the energy 
consumption prediction for event venues, but it could be 
applied for other energy consumption prediction scenarios. 

Future work will evaluate the same approaches on much 
larger data sets to determine their performance on truly Big 
Data. Comparison with other distributed Big Data algorithms 
such as those supported by Spark will be performed. To 
partition the data, locality-sensitive hashing (LSH) will be 
evaluated as a potential replacement for k-means. 
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