
Reliability Models Applied to Mobile Applications

Sonia Meskini, Ali Bou Nassif, Luiz Fernando Capretz
Department of Electrical and Computer Engineering

University of Western Ontario
London, Ontario, N6A 5B9, Canada

{smeskini, abounas, lcapretz}@uwo.ca

Abstract—: Smartphones have become the most used
electronic devices. They carried out most of the functionalities of
desktops, allowing various useful applications that suit the users’
needs. Therefore, instead of the operator, the user has become
the number one controller of the device and its applications and
thus its reliability becomes an emergent need. We aim to
investigate and evaluate the efficacy of Software Reliability
Growth Models (SRGMs) when applied to Smartphone
application failure data and check whether they achieve the same
success as in the desktop/laptop area. We selected three of the
most used SRGMs and applied them to three different
Smartphone applications. None of the selected models were able
to account for the data satisfactorily. Their failure is traced back
to the specific features of mobile applications compared to
desktop applications. Thus, a suitable model for Smartphone
applications is still needed to improve their reliability.

Keywords—Smartphone applications; software reliability;
NHPP; Musa-Basic; Musa-Okumoto model; SRGM model.

I. INTRODUCTION
Smartphones are so important nowadays and they are

overselling PCs. The high usage and trust in these devices and
their applications make their reliability a critically important
goal to achieve. Thus, manufacturers are competing to release
the most reliable devices and they successfully achieved high
reliability in terms of hardware by applying traditional and
enhanced Hardware Reliability Growth Models (HRGM) [1].
These HRGMs have been useful for classic mobile phones.

Today’s cellular phones, called Smartphones, are almost
like pocket PCs, meaning that their functionalities far exceed
those of the classic mobile phones. This kind of change
requires Smartphone application developers to pay more
attention and spend more effort on the reliability and security
of their applications. The rapid increase in developing smart
phones relies on Software Product Lines (SPL). In SPL,
software is not re-developed from scratch where similar
products can be developed using common set of core assets
[2][3].

Software Reliability deals with “the probability that
software will not cause the failure of a system for a specified
time under a specified condition. It differs from hardware
reliability in that it reflects the design perfection, rather than
manufacturing perfection” [4]. Reliability is an important
attribute of software quality in addition to other attributes such
as performance, usability and fault prediction [5]. Software
testing techniques can impact reliability measurement [6].
Software Reliability Growth Models (SRGMs) have been

successfully applied to desktop (classic/standard) applications
to assure high reliability, as was the case with Hardware
Reliability Growth Models applicability to both
desktops/laptops and mobile phone hardware [1]. We suspect
SRGM is similarly applicable to both desktops/laptops and
Smartphones. To the best of our knowledge, there is no
published work that addressed the application of the usual
SRGMs to Smartphone applications. In the present paper, we
attempt to answer the research question “Is it possible to
successfully apply SRGMs to Smartphone applications as it is
the case for desktop applications? How accurate are they and
what are the challenges?”

The rest of the paper is organized as follows: in Section II
we stress the need for the reliability of Smartphone
applications. In Section III we provide a short roadmap of the
existing models that we will use. We devote section IV and
Section V to describe our dataset and experiments. Finally, in
Section VI, we evaluate the application of the existing models
to Smartphone application failure data. We conclude, in
Section VII, and outline our future work.

II. RELIABILITY FOR SMARTPHONE APPLICATIONS
 Smartphones have become personal devices that are used

almost anywhere, at any time and for everything; checking e-
mails, gas prices, browsing the Internet, banking and even for
health services. These high expectations and trust placed on the
mobile environment make it useful more than just a phone and
exceeds the functionalities of only sending SMS or making
voice calls. A few years ago, Smartphones use was only limited
to business. Lately, thanks to network and mobile technology
improvements and progress, those smart devices started to gain
tractions and they got a remarkable acceptance in the users
market. Since then, it has been a significant increase in the
Smartphone technology. Thus, countless Smartphone
applications have been designed and developed. In step with
this, the market has been rapidly growing, and market analysis
confirmed that it will continue growing to the point that it will
exceed the desktop/laptop growth and oversell many other
electronic devices in particular laptops [7].

As a result, to assure the continuing growth in this
competitive market, there are various types of customers’
needs to be satisfied because, based on previous studies, those
needs differ from one region to another and from one user to
another, thus, here is where the reliability of Smartphone
applications will play an important role to keep the trust in
one’s device.

2013 Seventh International Conference on Software Security and Reliability Companion

978-0-7695-5030-5/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE-C.2013.30

155

Nevertheless, the quality and achievement levels of
Smartphone applications are falling since countless
applications have been increasingly developed. This is a
consequence of the “time to market” strategy that Smartphone
applications development companies are adopting nowadays,
which let the developers overlook development phases
(especially the design phase which is considered as the most
important stage) of the Development Life Cycle (DLC) of the
application to meet project deadlines [8]. However, multiple
defects and bugs might be avoided during the design phase.
Hence, following this strategy could result in detecting many
problems later on that might need more effort and time to be
solved than those needed to develop the entire application.

In step with this, in order for companies to be competitive,
it is important to study the market, based on surveys and other
analysis, to understand that locations are one of the important
factors in the variety of users’ requirements. Therefore, a
competitive Smartphone application must meet these
requirements before, during and after the DLC.

However, some of those requirements might be a challenge
for developers in the design stage and their resulting failures
might be difficult to solve in the execution stage since it is
sometimes difficult to identify the cause of the failure and fix
it. The reason in that there are various factors that could result
in the unreliability of the application or its failure such as the
nature of the technology used, the platform, the version of the
OS, and many other internal or external causes [9][10].

In the following, we will provide a short roadmap on the
most famous SRGMs that have been successfully applied in
classic (standard) desktop/laptop applications and check
whether they will achieve the same success in the mobile area.

III. EXISTING RELIABILITY MODELS
In this section we will shortly present three different

SRGMs that will be used in our experiments; the Non-
Homogenous Poisson Process (NHPP) model, the Musa-Basic
model and the Musa-Okumoto model.

As a matter of fact, hundreds of models exist but those
models were chosen because according to Software Reliability
modeling survey [11][12], they are the most useful and
successful models in the computer applications domain. Hence,
one of our research goals is to check if those models will
achieve the same success when applied to Smartphone
applications failure data as it was the case for the desktop and
Hardware Growth Reliability Models [1].

The purpose behind developing models is the measurement,
estimation and prediction of Software Reliability which has
become an important major target for companies because it
was shown reliability has a significant effect in each stage of
the DLC of an application; from the design to the maintenance
[2].

An SRGM usually results in a set of mathematical
equations that fit accurately the collected failure data [12]. Any
model relies on simplifying assumptions. However, some of
these assumptions may not be useful in real situations. Table 1
from [2] presents an assessment of the most used assumptions
and their conformity to real observations.

Due to the limited space of this paper we are not going to
present all the assumptions of the different models used later
but only the basic ones that are shared by all the models. The

detailed list of the different assumptions of each model can be
found in [11].

The common assumptions are: 1) “The rate of fault
detection is proportional to the current fault content of the
software, 2) The fault detection rate remains constant over the
intervals between fault occurrence, 3) A fault is corrected
instantaneously without introducing new faults into the
software, 4) The software is operated in a similar manner as
that in which reliability predictions are to be made, 5) Every
fault has the same chance of being encountered within severity
class as any other fault in that class, 6) The failures, when the
faults are detected, are independent” [11].

A. The NHPP Model
The Non-Homogeneous Poisson Process (NHPP) model

was presented by Amrit Goel and Kazu Okumoto in 1979 [11].
In this model, the failure event is modeled by an NHPP
distribution where it is assumed that there exists a mean value
function giving the expected number of failures up to a given
time. It was successfully used as a Hardware Reliability
Growth Model. Moreover, for this model the expected number
of failure varies with time, thus, it suits the calendar and
execution time data [13].

Because of its simplicity and easy implementation, there
were several models that have been developed based on the
NHPP model. In addition to the above mentioned assumptions,
termed the standard assumptions, the added assumption is that
the probability distribution obeyed by the random variable N(t)
follows a Poisson Process, i.e. is given by :

������� 	
� 	 � ����
�

� ������ (1)

where N(t) is the cumulative number of failure by time t and
μ(t) is the mean value of N(t) or the expected cumulative
number of failure :

 μ(t) = E(N(t)) (2)

 The instantaneous failure intensity is defined as:

���������� 	 �����
�� (3)

 The NHPP model implemented in the RGA7 tool is the
NHPP-Crow model [14] where the probability density function
for the failure time is given by:

������������� 	 ����������� 	 ������������ (4)

where � > 0 ; � > 0 are the two parameters of the model.
 Finally, to implement this model, either the fault counts or
the time between failures are required [11]. A detailed study of
NHPP model can be found in [11][13].

B. Musa’s basic execution tim Model
The Musa-Basic model, also termed the exponential model,

is given by the following mean value [11]:

μ (t) = ��
� ��� ������

���� (5)

where ��
� : is the expected number of failures and ��

� is the
hazard rate or in other words “the amount that each fault
contributes to the overall failure rate”.

156

This model is used especially for execution time data but it
can also be applied to calendar time data by applying a
conversion from calendar to execution time. The required data
to build this model are either the time of failure or time
between failures.

Based on the Software Reliability modeling survey from
the Handbook of SRE [11], this model is considered as one of
the most widely used models.

There are several similar models that have been developed.
Moreover, Musa mentioned that “the basic execution model
generally appears to be superior in capability and applicability
to other published models” [15].

C. Musa-Okumoto logarithmic Poisson Model
The Musa-Okumoto model, also termed the logarithmic

model, is one of the most extensively applied models [11][12].
Besides that, Musa himself confirmed that this model is more
accurate comparing to the exponential model [15].

As for the previous models, the mean value is extracted
from the model’s proper assumptions [11] and given by:

μ (t) = ��
���
�� ����

���� (6)

where ��
� is the expected number of failures and ��

� is the
hazard rate.

The required data to build this model are the same as for the
exponential model.

As one of the best predictive models, the Musa-Okumoto
model belongs to the selected models in the AIAA
Recommended Practice Standard on Software Reliability
[11][12]. Logarithmic models have been also used in software
cost estimation models with high accuracy [16][17][18][19].

Further details on the Musa-Basic and Musa-Okumoto
models can be found in [11]. Various models were proposed
and developed; however, they may give different results and
predictions for the same failure dataset. Besides that, one
model applied on two different datasets may give good results
for the first but confusing results for the second dataset. This
makes it difficult to choose the best model to fit the data [13].
Hence, none of the models can be classified as absolutely
perfect or better than the other. However, the models presented
in this section are considered to be the most accurate applied
models on a variety of software projects [12]. Thus, these three
models are selected for our study.

IV. DATASETS
We use Apple devices (iPhone, iPad, iPod Touch) crash

files as well as a Windows Phone crash file as our
“experimental” data.

These crash files are not public, therefore confidential.
Hence, we will focus more on the Apple devices crash files
since it was easier to collect them from my personal device and
through a survey that has been sent to different people from
different parts of the world. There are those who gratefully
accepted to send us their failure data whereas other didn’t.

For the Windows Phone case, we could only get the crash
file report of one application due to confidentiality policies.
Collecting the data was, and still, a challenge.

Fig. 1 presents an example of the Apple devices crash log.
We mentioned in each case:

• Name of the crashed application

• Type

• Hardware type (device an iPhone, iPad or iPod
Touch) this information is needed to check
whether the crash is of an application of the same
device or same application from a different device.

• Date/Time of the crash (which is the most
important information in the crash log for our
research work)

• The version of the OS.
The crash logs of Apple devices are transferred to a hidden

folder located/created in the PC that is used for the
synchronization of the device. It contains the crash logs of all
the applications installed on the device as well as reports about
the battery, memory and other features; however we are
interested in the crash files. Thus, we ignored the other files.

Fig. 1. Apple crash file

Besides that, the crash log is a long text file full of symbols
and information that we don’t need, however it contains useful
information that we used to create our failure dataset. To
achieve that, we developed a program in JAVA that we run
each time we synchronize the devices or receive log folders
from other users to update our dataset. The following algorithm
allows extracting only the information we need.

1) Begin
2) Open the folder that contains all the crash logs
3) Create “Concat.txt” that contains all the crash files
4) Create “Crash.txt” that contains only the information

needed extracted from “Concat.txt” :
a. Identifier
b. Date/Time
c. Crashed Thread

5) End/Close
 Fig. 2 shows an example of the output file of the JAVA
program developed for the extraction purpose, where Identifier
is the name of the application. Date/Time is the date and time
of the crash and Crashed Thread is the number of the thread
that caused the crash.

157

Fig. 2. Output of the JAVA program

V. EXPERIMENTS
The reliability demonstration of Smartphone applications is

carried out through the traditional testing, failure data
collection, and the application of the most used SRGMs for
standard applications to observe and check the adequacy of
these models, in the mobile area for Smartphone applications.

For this purpose we used two applications for iOS and one
for Windows mobile phone to test the models with different
platforms. We couldn’t collect enough data from Android
phones but we are still collecting to have enough data to test
the models on Android applications. The first iPhone
application is one of the most popular applications in
communication, Skype, which has been tested and used for a
year (from 01 Nov. 2011 to 11 Nov. 2012). Hence, the data
have been collected during a year with some missing values
due to the non-use of the application occasionally. Therefore,
we were able to collect 46 data points. The second application
is Vtok (an application for Google talk). This application has
been continuously used during two months (from 19 Sep. 2012
to 25 Nov. 2012). Hence, we were able to collect failures every
day (80 data points). Each of the above mentioned SRGM
models was applied to Skype and Vtok failure data which
represent two different situations: Skype used during a year but
with some missing values, and Vtok application used for two
months every day with the possibility of collecting more than
one failure per day. This is an instance of testing the efficiency
and goodness of the models in different situations with
different types of data. On the other hand, the Windows phone
application, for finding bicycle stations, was continuously used
and tested for six months (from March 2012 to August 2012).
The crash count of the application is illustrated by Fig. 3.

Fig. 3. Windows phone crash count

It is evident to note that June, July and August are the
months with the highest crash rate. Since this application is
developed for the purpose of locating bicycle stations, it is used
during the summer period more than in winter, which explains
the high crash rate during the hot season. This reflects the fact
that the type of an application and its usage play an important
role in its reliability. From this graph we extracted the failure
data during six months (177 data points).

We used two Software Reliability tools for this application
to check the results. The first tool is the RGA 7 from ReliaSoft
and the second one is SMERFs (Statistical Modeling and
Estimation of Reliability Functions for Software). We
configured our tools as follows: “1” for the severity level of all
failures and the unit selected is hour. As the time scales of the
three applications are very different, we choose to normalize
our data between � [0,1] using the following equations:

! = value of the raw target variable Y for the training
case � = standardized value corresponding to Y

Range = upper bound of Y – lower bound of Y (7)

"# 	 � $#�%&'���(&)
��&��$

�*
+� (8)

As the RGA tool doesn’t accept the zero value as a time to
event, we entered 0.001 instead of 0 as the first value to be able
to have results. For the severity, 1 was selected because the
applications used are not going to cause harmful consequences
if they fail. But it is not the case with other applications. When
working with applications such as online banking and health,
the severity of the failure has to be taken into consideration.

VI. EVALUATION
Smartphone applications reliability is a challenge. Thus, it

is a necessity for reliability methods being applied elsewhere to
be evaluated and to assess their validity in the mobile area. One
of the main goals of this work is to check if the most accurate
and used SRGMs for desktop applications have the same
accuracy when applied to Smartphone applications.

Fig. 4, 5 and 6, present respectively the cumulative number
of failures per time, the failure intensity per time and the Mean
Time Between Failure (MTBF) per time, for the Skype
application when applying the NHPP model. The RGA tool
indicates an evident failure.

Fig. 4. Cumulative number of failures per time (Skype)

158

Fig. 5. Failure intensity per time (Skype)

Fig. 6. MTBF per time (Skype)

.
Fig. 7. Cumulative number of failures per time (Vtok)

Fig. 8. Failure intensity per time (Vtok)

Fig. 9. MTBF per time (Vtok)

Fig. 7, 8 and 9, represent respectively the cumulative
number of failures per time, the failure intensity per time and
the MTBF per time of Vtok. Again the NHPP model failed to
fit the data. As mentioned before, we used Skype for a year and
collected the failure data that contains some missing values,
and Vtok was used for two months and collected the failure
data with more than one failure per day. However the NHPP
still fails to fit these two different types of data. One reason is
that the failure data is a dynamic process for mobile
applications which means that the occurring number of failures
is unpredictable, sometimes decreasing and sometimes
increasing, (for example in Fig. 7 from t = 0.20 until t = 0.309
the application didn’t experience a failure and from t = 0.309
until t = 0.348 an important number of failures occurred).

In order to confirm our results we used a second tool,
SMERFs, and we applied the NHPP model on the same data
points. The result was the same which is the failure of the
model each time (see Fig. 10).

Fig. 10. NHPP model applied to Skype Time Between Failure (TBF) data

Fig. 11, 12 and 13 show the results of the same data from
Skype and Vtok application respectively when applying the
Musa-Basic and Musa-Okumoto models. Each time the models
fail to fit the data. The models failed completely to fit the Vtok
failure (Fig. 13). Fig. 14, 15 and 16 represent the results of the
application of the NHPP model to the Windows phone failure
data. Once again the RGA tool indicates the failure of the
model

159

Fig. 11. Skype failure data and failure of the Mu

Fig. 12. Skype failure data and failure of the Musa

Fig. 13. Vtok failure data and failure of the three

Fig. 14. Cumulative number of failure per time (Win

usa-basic model

a-Okumoto model

selected models

ndows phone data)

One explanation of the failures
of-fit tests that failed for each
were used; the Cramer-Von M
test. For both tests, the statistic
the critical value in order to ha
is a failure as it is the cas
confirmed in Fig. 7, by perfor
model failed because the stati
critical value (0.173) same in F
Square test; the statistic (1282
value (180.094) thus the model

Fig. 15. Failure intensity per

Fig. 16. MTBF per tim

Thus, the most successful r
data and to predict the relia
Smartphone applications. This
main differences between desk
the mobile application failure
application dependent in the s
non-homogenously spread in
unpredictable, sometimes dec
One possible explanation is tha
application is used (Fig. 3),
usage may differ from one user
another, from one condition a
explains the uncertainty of u
execution and release time, all
role in the reliability of the appl

s of the models is the Goodness-
h model application. Two tests
ises (CVM) and the Chi-Square
c (test value) has to be less than
ave a successful fit otherwise it
e in our experiments (this is
rming the CVM test where the
istic (0.358) is greater than the
Fig.14 when performing the Chi-
2.005) is higher than the critical
l didn’t fit the data) [14].

r time (Windows phone data)

e (Windows phone data)

reliability models failed to fit all
ability in the mobile area for
failure can be traced back to the
ktop and Smartphones. One of
characteristics is that they are

ense that they are dynamic and
n time. Moreover, they are
rease and sometimes increase.

at reliability depends on how the
where and when. Because the

r to another, from one country to
and time to another, etc. which
usage of the application in the

these factors play an important
lications.

160

Another reason is that the DLC of a mobile application is
short and the programmer aims to develop the application as
quickly to satisfy the time to market constraint which leads to
skip phases from the DLC such as the design phase which is
the most important phase in the DLC of the application. Thus,
it would be difficult to identify the causes of errors, during the
execution time, and find a convenient solution to fix them.
Besides that, the failure or unreliability of the application may
be caused by the technology used during the development
process. Also, the skills of the developer and the tester play a
huge role in the reliability of the application. Moreover, the
device itself and its hardware characteristics such as the size of
the screen, the performance, the keyboard, etc. can have a
direct effect on the reliability of the application. For example to
adjust the map size to a certain zoom level, a zoom in/out
function is needed. However, to assure a perfect usage of this
function the performance of the device has to be taken into
consideration [9].

Other reasons that may explain this dynamic aspect of the
Smartphone applications are summarized in Table 1 that gives
an idea about the different causes, external and internal, of the
unreliability of the application. Due to the space limitation of
the paper, a complete list of the causes and their description
and examples can be found in [20].

TABLE I. CAUSES OF APPLICATIONS CRASH

Cause of Failure Description

Code

Failures arise when not taking into consideration
the limited resources of the device such as power
and memory

Interfaces WAP Gateway fails when converting WTP
request to HTTP request

Hardware
Various models of devices: developers should
take into consideration the specific platform and
performance of each device

Non-executable files Failure to open the help, demonstration or
samples files of an application

Interaction

Thanks to the SOA, many application interfaces
are located on a server. Thus, mobile applications
have to connect to the server to accomplish data
transfer and carry out tasks. Failure in the server
may cause the crash of the application

Data input
The application has to be developed in a manner
that the data input has to be optimized to ensure
maximum efficiency for the user.

Third-party software
failures

Smartphone application architecture uses third-
party software applications (for example as
Facebook and Adobe Photoshop Express to be
able to modify and upload pictures). A
crash/problem in the third-party application may
cause the failure of the other application.

Wireless Network
The sudden loss of connection or failure in
configuration may cause the failure of the
application.

Mobile Database Failure to connect to the database due to an error
occurred in the database server.

OS version

Some Smartphone applications may not be
compatible with upgraded OS version (for
example Gas Prices Canada application is no
longer available for iOS 6)

Software upgrades

Upgrading from a version to another may fix
problems but cause others as it was the case with
Skype 4.2.2601 and Skype 4.2.2604, the updated
version crashes more often than the previous
version when making calls

Based on different surveys and studies, reliability was
identified as the most important quality attribute of the
application software. Thus, the reliability of Smartphone
applications needs to be assured since everyone is using their
own Smartphones for daily life activities and tasks more than
PCs. Our study confirms that a reliability growth model
adapted to Smartphone applications is needed since the
traditional reliability models turned out to be inefficient.

VII. CONCLUSIONS AND FUTURE WORK
Our work is a step toward the application and evaluation of

traditional Software Reliability models in the mobile area. We
selected three of the most used models that are known for their
efficiency in the desktop area: the NHPP, Musa-Basic, Musa-
Okumoto models. We used two iPhone applications, Skype and
Vtok that were used and tested differently to evaluate the
models under different conditions, and one Windows phone
application that we didn’t mention the name because of the
company’s confidential policies. It turned out that none of the
selected SRGMs was able to account for the failure data
satisfactorily.

Our study also highlighted the causes of the failure of the
models and the need for a meticulous Software Reliability
Growth Model for Smartphone applications; this is because the
existing Software Reliability approaches are developed for
traditional desktop software applications that are static and
stable during their execution which it is not the case for
Smartphone applications which have unknown operational
profile, highly dynamic configuration and changing execution
conditions. On a continuous background, the smartphone
failures come in relatively short bursts from time to time which
explain the abrupt changes in the observed cumulative failure
number curves. This particular feature cannot be
accommodated by the used SRGMs. Thus, in order to evaluate
the reliability of Smartphone applications, new models,
principles and tools are needed to incorporate the underlying
uncertainties of such applications [21].

Our investigation of Smartphone application reliability
through the use of well-known available growth models, suited
primarily to desktop applications, is twofold: (i) highlight the
versatile nature of mobile applications, their dynamic
configuration, unknown operational profile and varying
execution conditions in contrast to the static and stable desktop
ones, (ii) stress the need for the design of new reliability
models suited for mobile applications which take into account
the inherent versatility of such applications.

As is well known, reliability is one of the most important
features of an application and great efforts have been devoted
to tailor and predict it through the study of recorded failure
data. A non-reliable application means dissatisfied customers,
loss of market share and significant costs to the supplier. For
critical applications, such as banking or health monitoring,
non-reliability can lead to great damage. Therefore, it is of
great necessity to insure early detection and resolution of
reliability issues in desktop applications as well as, now
increasingly, in mobile applications.

Our future work will focus on analyzing more in depth
these selected SRGMs and try to modify the closest one to the
data and adapt in to Smartphone applications. Moreover, we
will check if we need to have for each type of applications a

161

specific model or one model is applicable to all the categories
of Smartphone applications taking into consideration the
severity of the failure.

Another future purpose is to evaluate the possibility of
applying more than one model on the same failure data such as
the Windows phone crash count by dividing the data into two
or more categories and applying the convenient model to each
category to predict the reliability of the application. Further
investigations of Android failure data are also underway.

REFERENCES
[1] U.D. Perera, “Reliability of Mobile Phones”, Annual Reliability and

Maintainability Symposium, Washington, DC, USA, pp. 33-38, 1995.
[2] F. Ahmed and L.F. Capretz, “Managing the Business of Software

Product Line: An Empirical Investigation of Key Business Factors”,
Information and Software Technology, Vol. 49, pp. 194-208, 2007.

[3] F. Ahmed, L.F. Capretz and J. Samarabandu, “Fuzzy Inference System
for Software Product Family Process Evaluation”, Information Sciences,
Vol. 178, pp. 2780-2793, 2008.

[4] J. Pam, “Software Reliability”, http://www.ece.cmu.edu/~koopman
/des_s99/sw_reliability/, 1999.

[5] J. Xu, D.Ho and L.F Capretz, “An Empirical Validation of Object-
Oriented Design Metrics for Fault Prediction,” Journal of Computer
Science, Vol. 4, No. 7, pp. 571-577, ANSInet, 2008.

[6] H.F. El Yamany, M.A.M. Capretz and L.F. Capretz, “A Multi-Agent
Framework for Testing Distributed Systems”, 30th IEEE International
Computer Software and Applications Conference (COMPSAC),
Chicago, MI, USA, Vol. II, pp. 151-156, 2006.

[7] Mharmer, “Modern Mobile Apps”,
http://blog.modernmobileapps.com/category/chips.aspx, 2011.

[8] L.F. Capretz and P.A. Lee, "Reusability and Life Cycle Issues within an
Object-Oriented Methodology", Proceedings of the Eight International
Conference on Technology of Object-Oriented Languages and Systems,
Prentice-Hall, Santa Barbara, CA, USA, pp. 139-150, 1992.

[9] S. Jang and E. Lee, “Reliable Mobile Application Modeling Based on
Open API”, Proceedings of International Conference on Advanced

Software Engineering and its Applications, Jeju Island, Korea, pp. 168-
175, 2009.

[10] A. Wasserman, “Software Engineering Issues for Mobile Application
Development,” Worshop on the Future of Software Engineering
Reasearh (FoSER), Santa Fe, NM, USA, ACM Press, 2010.

[11] M. R. Lyu, “Handbook of Software Reliability Engineering”, Chapter 3,
McGraw-Hill, 1996.

[12] Y. K. Malaiya and J. Denton, “What do the Software Reliability Growth
Model Parameters Represent?”, 8th IEEE International Symposium on
Software Reliability Engineering, Albuquerque, NM, USA, pp. 124-135,
1997.

[13] R. Lai and M. Garg, “A Detailed Study of NHPP Software Reliability
Models”, Journal of Software, Vol. 7, No. 6, pp. 1296-1306, 2012.

[14] ReliaSoft, “Reliability Growth & Repairable System Data Analysis
Reference”, http://rga.reliasoft.com/, 2010.

[15] J.D. Musa, A.Iannino and K. Okumoto, “Software Reliability –
Measurement, Prediction, Applications”, McGraw-Hill, 1987.

[16] W. Xia, L.F. Capretz and D. Ho, “A Neuro-Fuzzy Model for Function
Point Calibration”, WSEAS Transactions on Information Science and
Applications, Vol. 5, pp. 22-30, 2008.

[17] A.B. Nassif, D. Ho and L. F. Capretz. "Towards an Early Software
Estimation Using Log-Linear Regression and a Multilayer Perceptron
Model", Journal of Systems and Software, Vol. 86, pp. 144-160, 2013.

[18] A.B. Nassif, L. F. Capretz and D. Ho, "Software Estimation in the Early
Stages of the Software Life Cycle", International Conference on
Emerging Trends in Computer Science, Communication and
Information Technology, Nanded, India, pp.5-13, 2010.

[19] A.B. Nassif, L. F. Capretz and D. Ho, "Estimating Software Effort
Based on Use Case Point Model Using Sugeno Fuzzy Inference
System”, 23rd IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Boca Raton, FL, USA, pp. 393-398, 2011.

[20] A.K. Jha, “A Risk Catalog for Mobile Applications”, Chapter 5, Florida
Institute of Technology, Melbourne, FL, USA, 2007.

[21] S. Malek, R. Roshandel, D. Kilgore and I. Elhag, “Improving the
Reliability of Mobile Software Systems through Continuous Analysis
and Proactive Reconfiguration”, 31st IEEE International Conference on
Software Engineering, Vancouver, BC, Canada, Vol. ICSE-Companion,
pp. 275-278, 2009.

162

