
(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

COTS-based software product
line development

Luiz Fernando Capretz
Department of Electrical and Computer Engineering,
University of Western Ontario, London, Canada

Faheem Ahmed
College of Information Technology, United Arab Emirates University,

Al-Ain, United Arab Emirates

Shereef Al-Maati
Computer Science and Information Systems, American University of Kuwait,

Safat, Kuwait, and

Zaher Al Aghbari
Department of Computer Science, University of Sharjah,

Sharjah, United Arab Emirates

Abstract

Purpose – The purpose of this paper is to provide an overview of a pragmatic approach to
components off-the-shelf (COTS)-based development. Software product line (SPL) is at the forefront
among the techniques for reducing costs, decreasing schedule time, and ensuring commonality of
features across a family of products – as COTS are reused in multiple products.

Design/methodology/approach – A disciplined process for SPL development is still needed. This
paper proposes the Y-model for COTS-based SPL development. The model put forward identifies and
elaborates the essential phases and activities of SPL development from COTS-based repository.

Findings – The Y-model provides an efficient way of integrating the approaches of SPL and
COTS-based development as a cohesive software development model.

Practical implications – The model has the potential to tremendously increase software engineers’
productivity. Thus, software architects, domain engineers and component designers should become
aware of how to use these ideas to structure their models and designs.

Originality/value – This paper describes a systematic approach for COTS-based development that
takes into account the cataloguing and retrieval of software assets permeating a process that
encompasses all stages of software development, from system product requirements engineering to
system deployment.

Keywords Systems software, Computer software, Software tools, Product development

Paper type Research paper

1. Introduction
Experience shows that a company can drastically improve its competitive advantage if
it optimizes how it develops these product lines. Using product line engineering, some
organizations have reduced the number of defects in their products and reduced costs.
However, many companies do not use a product line engineering approach when
developing their products. More often than not, they either start from a single system,
branching off new variants as the need arises and ending up with completely

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1744-0084.htm

COTS-based
software product
line development

165

Received 25 December 2007
Revised 15 February 2008

Accepted 25 March 2008

International Journal of Web
Information Systems

Vol. 4 No. 2, 2008
pp. 165-180

q Emerald Group Publishing Limited
1744-0084

DOI 10.1108/17440080810882351



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

independent code bases, or they start with the different variants as independent
projects from scratch.

A software product line (SPL) is a group of software-intensive systems sharing a
common, managed set of features that satisfies the specific needs of a particular market
segment or mission and are developed from a common set of core assets in a prescribed
way (Clement and Northrop, 2001). A SPLs usually starts with the analysis of the
common and the variable features supporting a product-line development, and then
defining a set of reusable elements that can be customized and combined into new
products. The establishment of a SPL is expected to bring dramatic change in software
engineers’ primary roles and required skills for software development.

A component-off-the-shelf (COTS) is a self-contained piece of software that provides
clear functionality, has open interfaces, and offers plug-and-play services. A product line
can be built around a set of COTS by analyzing the products to determine the common
and variable features. The product structure and implementation strategy around a set
of COTS prepares a platform for several products. A product line based on COTS has
broad implications for how software engineers develop and maintain software systems,
so this approach is here to stay.

SPL deals with the assembly of products from existing core assets commonly known
as components and there is continuous growth in the core assets as the production
proceeds (Weiss and Lai, 1999). This idea has emerged as vital in terms of software
development from component-based architecture (Griss, 2001). According to Jazayeri
et al. (2000), product family software architecture defines the concepts, structure, and
texture necessary to achieve variation in features of variant products while achieving
maximum sharing parts in the implementation. Meekel et al. (1998) identified three axes
of variability among products resulting from SPL: features variability, hardware
platform variability and performance variability.

Although SPL is gaining popularity over time due to economical impacts, as
asserted by Ahmed and Capretz (2007), Linden (2002) and Buckle et al. (2004), there has
not been a great deal of research in establishing appropriate models for developing SPL
from COTS. By having controlled variability and in satisfying the market demands,
COTS-based SPL development model has broad implications on how software
engineers develop and evolve multiple software products.

2. The Y-model for component-based software development
Independent work carried out in software reusability, object-orientation, and software
architecture has reached a point at which many activities can be integrated to yield a new
coherent approach to product-line integration. Traditional software life-cycle models do
not encourage reusability within their phases. Hence, a software life-cycle model that
emphasizes the importance of incorporating COTSs during software development for
the production of multiple products is in demand. The Y-model as shown in Figure 1 has
been proposed as a feasible solution. Our approach focuses on a collection of components
within a particular application domain, and encourages reuse of components from
reusable libraries within that application domain (Capretz, 2005).

Component reuse involves both “development with reuse” and “development for
reuse”. Our approach addresses the mechanisms used when components are retrieved
from and catalogued into a reusable library of core assets. Initially, the software engineer
identifies potentially reusable components from existing reusable libraries of core assets.

IJWIS
4,2

166



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

The components are then selected, adapted and reused through composition,
generalization and specialization mechanisms. At the end of software development,
there may be many new reusable components need to be validated, classified and stored as
core assets.

Based on available experience, the use of the Y-model appears to cover the likely
phases of large software development and enforces software reuse. This model supports
“development with reuse” through component assembly, as well as “development for
reuse” through component cataloguing, so that in the future, such components can be
reused in other systems in the same software family.

2.1 Domain engineering phase of Y-model
The domain engineering phase of Y-model shown in Figure 2 establishes an
infrastructure for SPL and constructs a COTS repository for product development.
During the domain engineering phase, we initiate product line infrastructure view and
COTS archive view. The iterations in the activities of product line infrastructure view
and COTS archive view provide feedback to one another. The aim is to generate a
COTS repository, which fulfills the product line requirements and meets the production
constraints.

2.1.1 Product line infrastructure view. Product line infrastructure view involves the
activities related to conceptualization and initiation of SPL within an organization. This
view performs activities that establish an infrastructure for SPL. The product line
infrastructure view constantly provides feedback to COTS archive view for effective
search, identification, evaluation, selection and catalogue/storage. The various activities
performed during this view are as following:

. Product line scope definition. SPL scope identifies the characteristics of the product
line and the products that comprise the product line. SPL scope definition activity
provides iterative feedback to COTS search and identification activity in COTS
archive view. This way it ensures that all the searched COTSs are consistent with

Figure 1.
Overview of the Y-model
for COTS-based software

development

Product
Requirements
Engineering

Evaluation

Archive

Design

Views

Construction

Deployment &
Maintenance

Testing &
Validation

Assembly

Catalogue/
Storage

Selection/
Adaptation

Application
Engineering

Domain
Engineering

COTS-based
software product
line development

167



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

the scope of product line. The aim is to develop a COTS repository within the scope
of the product line, one that can be utilized to develop products.

. Product line requirement engineering. A well-established requirement
management activity for the SPL assists in understanding the scope and
boundaries of the products to be developed. Product line requirements deal with
features or functionalities common to all the products belonging to that family.
The requirement engineering for product line gives feedback to COTS selection
activity in the COTS archive view to generate a candidate list of COTSs that
meets the product line requirements.

. Business case engineering. The goals of the SPL are explained by the business
cases identified, and they promote the product line. Each product released from the
SPL is a valid business case for the organization, and this helps an organization to
achieve its financial goal along with the justification of the product line. The
identification of business cases helps in evaluating identified COTSs in COTS
archive view in order to meet the production criteria and product requirements.

2.1.2 COTS archive view. COTS archive view is responsible for building up a COTS
repository for the COTS-based SPL. It communicates with product line infrastructure view

Figure 2.
Domain engineering phase
of the Y-model

Domain Engineering

Search & Identification
of COTS

Evaluation & Selection
of COTS

Catalog &
Storage of

COTS

Update COTs
Repository

Search new
COTs

COTs Repository

Business
Case

Engineering

Product Line Requirement
Engineering

Product Line Scope
Defintion

IJWIS
4,2

168



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

to generate a COTS repository, which fulfills the product line requirements and meets the
production constraints. Initially the COTS archive engineer identifies potential COTSs
from existing reusable libraries and open markets based on the SPL requirements and
scope. The components are evaluated and selected. The selected COTS is catalogued and
stored so that they are readily available for assembly of products to capture market
segments. The various activities performed during COTS archive view are as following:

(1) Search and identification of COTS. The process of searching and identifying
potential COTSs for SPL development starts when we conceptualize the product
line by defining the product line scope. The selection of COTSs for SPL involves
four steps:
. Index the COTS by the information that uniquely identifies them.

A multi-dimensional index structure, such as R-tree, could be used for this
purpose. The R-tree index will narrow the search space and thus reduce the
search toO(logmn), wheren is the total number of COTSs andm is the minimum
number of items stored in an R-tree node.

. Search the index structure for the required (target) COTS, which are within
the scope of the SPL.

. Understand the functionalities provided by the searched COTS.

. Evaluate COTS adaptation trade-off (specialization, generalization,
composition or adjustment).

(2) Evaluation and selection of COTS. The search and identification process yields
a number of potential COTSs that can be used in the development of various
products in a SPL. Those COTSs need to be evaluated at the individual
component level as well as at the product line level before they are selected for
use in a SPL development:
. COTS level evaluation. It involves evaluating possible quality attributes of a

COTS such as reliability, portability, efficiency, etc.
. Product line level evaluation. It involves evaluating a COTS with respect to

integration into the common architecture of the resultant products, its
interoperability and its standard compliance to product line and product
requirements.

(3) Catalogue/storage of COTS. The selected COTS is catalogued and stored in the
COTS repository with enough information so that they can be easily traced and
retrieved as and when required for assembly. One way to express the association
between COTSs involves organizing them through a set of pre-defined
categories. Such categories allow COTSs to be classified and correlated with each
other in order to be reused. Categories are used to represent information about
COTS, and this information can help in solving the problem of discordance of
terminology among professionals. When the archive of COTSs is huge, manual
categorization of COTSs will be tedious and time consuming; thus, an automatic
categorization can be used. A machine learning-technique, such as neural
networks, may be used. First, we prepare a training dataset of COTSs whose
categories are known a priori and train the neural network using this training
dataset. After training the neural network, the archive of COTSs is fed into the
neural network, which will automatically categorize them.

COTS-based
software product
line development

169



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

2.2 Application engineering phase of Y-model
In the application engineering phase of the Y-model shown in Figure 3, actual products
are developed from COTSs present in the COTS repository. In this phase, activities of the
product line application view interact with the activities of the COTS utilization view to
produce required products.

2.2.1 Product line application view. Product line application view interacts with
product line infrastructure view to identify potential business cases to capture market
segment. The product line application view generates the product requirements of the
potential business case and provides feedback to COTS utilization view to find out
which candidate COTS is to be used in product development. The various activities
performed during product line application view are as following:

. Product requirement engineering. Product requirements are composed of a
constant and a variable part. The constant part comes from product line
requirements in the product line infrastructure view and deals with features
common to all the products belonging to the family. The variable part represents
those functionalities that can be changed to differentiate one product from
another. This activity defines the variable part of the product requirement.

Figure 3.
Application engineering
phase of the Y-model

Application Engineering

Business
Case

Product
Requirement
Engineering

Assembly

Product

Product Line COTS BridgeQuery

COTS Repository

Update COTS
Repository

Search new
COTS

Domain Engineering Phase

IJWIS
4,2

170



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

. Assembly. The assembly activity involves the development of product. The
product requirements guide the assembly process to get feedback from the query
activity of COTS utilization view to find out those potential COTSs suitable to be
assembled in order to produce the product. If it is required then assembly activity
performs specialization, generalization, or adjustment of the COTS.

. Product testing and validation. In product testing and validation, products
developed from SPL are tested to analyze whether they meet the product line
testing and evaluation criteria or not. Specific testing and validation about
integration of a COTS ensures that adaptability has no consequences.

. Business case evaluation. Business case evaluation identifies the success and
failure story of the products developed and deployed. It compares the proposed
business case strategy with the outcome of the development and deployment
process of products. It studies the market and analyzes the impact of the
product in terms of cost to benefit ratio. The study re-establishes the business
case identification, keeping in view the market demands and product
evaluation.

2.2.2 COTS utilization view. COTS utilization view is responsible for providing
required COTSs from COTS repository to develop products. COTS utilization view
interacts with product line application view to receive product requirements and then
communicates with COTS archive view to search and retrieve the required COTSs
from COTS repository, as developed and maintained by COTS archive view. The
various activities performed during COTS utilization view are as following:

(1) Query. In the query activity of the COTS utilization view, COTSs are searched
from the COTS repository in order to develop the product. A well-cataloged
COTS repository established by COTS archive view reduces the efforts to trace
the suitable COTS for assembly. The product requirements serve as parameter
for query activity, and continuously traversing the COTS repository
yields the required COTS, either exactly matched, partially matched, or not
matched:
. Exact match. An exact match between an available COTS in repository and

product requirements is reached. In this scenario the COTS is retrieved from
the repository and placed for product assembly.

. Partial match. Some closely matching COTSs are available and requires
adaptations in order to match the product requirement. In this scenario,
necessary specialization, generalization, or adjustment of the COTS to the
requirements is performed before the COTS is ready for product
assembly.

. No match. COTS repository is searched thoroughly, but neither an exact
match nor a partial match COTS is available to satisfy the product
requirement. In this scenario, a request for a search of new a COTS is passed
to the domain engineering activity, and this stimulates archive view and
product line infrastructure view to find the potential COTSs from the open
markets and update the COTS repository, respectively.

(2) Version management of COTS. The COTS, after adaptation, generates
versions, which are documented in this activity. A comprehensive version

COTS-based
software product
line development

171



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

management and dependency link strategy for components and products in
SPL provides us with vital information about components and products having
a relationship of composition and utilization.

(3) Update COTS repository. The SPL develops an initial COTS repository in the
domain engineering phase. As we maintain the software, products resulting
from the product line tend to develop new versions of COTS, which must be
added to the COTS repository so that they can be reused in later products. The
COTS repository is dynamic and continues increasing its size with the addition
of a new COTS when required.

3. Component cataloguing
So far, most of the work that has been done in the reusability arena involves storing and
recovering components from reusable libraries, but there are still many problems related
to reusing such components. For instance, as a software system becomes mature, the
reusable libraries may grow as domain-specific libraries and reusable components can
be added over time. It does not take long for such libraries to expand to enormous
proportions and often with multiple versions of a component, which makes it difficult for
software engineers to look for components that might meet their needs. Reusable
libraries are usually large and their organisation makes it problematic to find potentially
reusable components.

Additionally, one of the great difficulties in identifying a reusable component lies in the
fact that there is discordance in terminology among professionals, such that a component
someone is looking for might be described in unfamiliar or unexpected terminology.
Google (2007) code search engine and Koders (2006) have been tackling this problem and
have given us some hope. They are both primarily used by software engineers in
searching of related samples from the available open source project on the web.

Ideally, the potential re-user of software components must be able to find a connection
between what is needed and what is available. One way to express relationships between
components of a reusable library involves organizing them through a set of pre-defined
relations. Such relations allow components to be classified, and correlated to others that
could also be reused. In addition, relations can be used to express a link between different
components, facilitating the understanding of the components. Relations used to
represent information between two reusable components can help solve the problem
of discordance of terminology among professionals because the relations can
establish some fixed semantic concepts between components. Four different relations
to link components and to express relationships among components have been
proposed:

(1) Compose (,component-1. , , list-of-components. ). This relation represents
,component-1. as a composition of components in a , list-of-components.
(has-a relationship). Complex software system behaviour can be achieved with
compositions that combine the simple behaviour of several types of components.

(2) Inherit (,component-1. , ,component-2. ). This relation indicates that
,component-1. is a generalization of ,component-2. or the other way
round that ,component-2. is a specialization of ,component-1. (is-a
relationship).

IJWIS
4,2

172



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

(3) Use (,component-1. , , list-of-components. ). This relation indicates that
,component-1. interacts with components in a , list-of-components. (uses-a
relationship). It means that any operation of ,component-1. uses any service
provided by any component in a , list-of-components. .

(4) Context (, component-1. , , context-1. ). This relation associates a
,component-1. with a ,context-1. defined by the software engineer
(is-part-of relationship). The ,context-1. can be a framework or application
domain.

These relationships are vital for data mining – the automated extraction of hidden
predictive information from large data sets, such as reusable library of software assets.
In this way re-users will have a functionality which may read something like: “Software
engineers who used these components also used . . . ” to help the software engineers
while browsing the assets. This is just like the Amazon feature that lists other books that
were related to the same purchase, and reads “Customers who bought this book also
bought . . . ”

4. Component assembly
The decisions involving the reuse of a component are very important in that the
software engineer must select the component that requires the least effort to adapt,
with an exact match between what is needed and what is available being the goal.
Basically, the selection of a component from a reusable library involves four steps:

(1) identifying the required (target) component;

(2) selecting potentially reusable components;

(3) understanding the components; and

(4) adapting (specializing, generalizing, composing or adjusting) the components to
satisfy the needs of the developing software system.

The search for a component in a reusable library can lead to one of the following
possible results:

. an identical match between the target and an available component is reached;

. some closely matching components are collected, then adaptations are necessary;

. the requirements are changed in order to fit available components; and

. no reusable component can be found, so the target should be created from
scratch.

Following a procedure which helps select potentially reusable components is vital to
the reuse process. The procedure described in Figure 4 shows a typical attempt to reuse
a component from a reusable library. The procedure describes only the selection and
adaptation of reusable components.

While searching for components it is also necessary to address the similarity
between the required (target) component and any near matching components. The best
component selected for reuse may also require specialization, generalization or
adjustment to the requirements of the new software system in which it will be reused.
Sometimes, it is preferable to change the requirements in order to reuse the available
components. The adaptability of the components depends on the difference between

COTS-based
software product
line development

173



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

the requirements and the features offered by the existing components, as well as the
skill and experience of the software engineer. The process of adapting components is
the least likely to become automated in the software reuse process.

5. The COTS life cycle
As COTS-based software is produced essentially out of interrelated collections of
independently developed components, it is important to understand the stages that
such components go through. The stages reflect the activities involving the design,
implementation, verification, classification, storage, selection, retrieval, and adaptation
of the component. Figure 5 shows the lifetime of a reusable component.

Reusability not only involves reusing existing components in a new software
system but also producing components that are meant for reuse. When a software
system has been developed, the software engineer may realise that some components
can be generalized for potential reuse in future projects. A component must be easily

Figure 4.
A procedure for
component reuse

Figure 5.
Lifetime of a reusable
component Storage with

relations

Software
Product

Line

Reusable
Assets

Selection/RetrievalAdaptation
Design

Implementation

Classification

Verification

IJWIS
4,2

174



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

adaptable for different uses, either in original or in modified form. Therefore,
developing reusable components is considerable more difficult and involves much
greater expense then producing ordinary components, although it may still be worth
the investment over the longer term.

If a newly implemented component does not exist in the reusable library, then a
decision has to be made as to whether the new component should be classified as a
reusable component, and to be frozen and validated, then put in a reusable library. The
validation is applied only to that component, not to the whole software system and
should include treatment of exceptional conditions.

Classification of components depends on the experience of the software engineer,
and storage issues are straightforward. By properly storing a component using the
relations proposed previously, the chances of finding potentially reusable components
are increased. The effort required to get a suitable component is reduced because the
classification scheme based on relations guides the software engineer through the
various relations quickly and efficiently.

Storing a component also involves classifying it, taking it from the SPL, relating it
to other components and putting it into the reusable assets library. Selection involves
browsing to find a component, retrieving it, and transferring it from the reusable assets
library to the SPL.

A software system is not merely produced out of reusable components. On the
contrary, usually, components selected and derived from reusable libraries are
combined with newly-written components, and all of them have to be bound together in
the final software. It is natural that with some of the components, the software designer
will face the decision of whether to reuse them straightforwardly, adapt them then
reuse, or write them from scratch. The break-even point of reusing versus redoing is
where the cost of search plus adaptation exceeds the cost of producing the respective
component.

6. Following the Y-model: a case study
One day while Luiz, Faheem, Shereef, and Zaher were busy in discussions about how they
could evaluate the Y-model, somebody knocked at the office door. The man at the door was
Luiz’s friend Lucas who works for a software development company at the managerial
level. He seemed to be upset. When Luiz asked what the problem was, he said:

My boss wants to establish a product line from COTS and I don’t have any ideas about what
to do. He gave me a very short time frame and I think I’m in trouble. You guys have to help
me either to establish a product line or to find a new job.

Luiz glanced at Shereef and Faheem and all came to the same conclusion that here was
the test bed for the Y-model.

Shereef said, “Don’t worry Lucas, we have developed a model for COTS-based
Software Product Line Development that might help you to meet your target.”

Lucas said “I have no other choice; I came here with very high hopes so tell me what
I have to do.”

Luiz asked Faheem to open the Y-model diagram.
Shereef said, “First we had to work on the Domain Engineering Phase.”
Lucas asked, “What is this phase and why do we need to do this?”

COTS-based
software product
line development

175



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

Luiz explained to Lucas that first we have to develop an infrastructure for the
product line and an initial COTS repository. The domain engineering phase will carry
out certain activities in the product line infrastructure view and COTS archive view to
do that job.

Shereef said, “Let’s get started.”
Luiz asked Lucas if he could explain, “What was the scope of his product line.”
Lucas asked, “What do you mean by scope of the product line?”
Shereef replied, “Okay forget about the terminology. Tell me what kind of products

you want to produce from this product line.”
Lucas said, “My boss wants to establish a production facility to create products to

carry out commercial activities like selling and purchasing electronically, particularly
via open networks like the Internet.”

Luiz said, “Here is your scope, now we can move ahead.”
Faheem looked at the diagram of the Y-model and asked Lucas, “Is there anyone in

your office who is good at searching and browsing the Internet for COTS, because, if
there is, that person starts searching and identifying the COTS.”

Lucas replied, “Yes, Zaher always does this for us whenever we want to have
COTS.”

Shereef called Zaher, and explained to him what kind of COTS he had to search and
asked him to prepare a list of components.

Luiz was more curious about the product line requirements because he thought that
if we could prepare them by the time Zaher had searched the COTS we would be able to
figure out what exactly we needed.

Luiz asked Lucas, “Okay tell me your product line requirements?”
Again Lucas complained, “Don’t use this terminology. It confuses me. Explain to me

what you want to know.”
Faheem elaborated, “What kind of functions should all the products be able to

perform?”
Lucas quickly answered, “The resulting E-Commerce products must provide

traditional commercial and specific online activities, for example it must provide
product information, conduct online retail in virtual malls, and publish digital
information.”

Shereef asked Lucas, “Could you categorize the activities?”
Lucas said, “Okay, well there should be a Business Website comprised of a Payment

Processing System, a Store Management System and a Shopping Cart.”
The phone rang. It was Zaher and he was anxious to tell us what he had found.
Luiz asked him if he had found things like “Business Website Templates,

a Payment Processing System, a Store Management System and a Shopping Cart” in
his list.

Zaher was delighted to tell us he had a huge list of these things.
Shereef was not eager to move ahead with the Y-model until all the COTS that Zaher

had searched were evaluated.
Faheem pointed out that before we could evaluate the COTS we must do the

business case engineering, because it would help in evaluating the COTS.
Lucas said, “What is this, I’m not a businessman.”
Luiz explained, “It is very important to know what the business cases are for which

you are establishing this product line.”

IJWIS
4,2

176



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

Lucas said, “There may be products like an Online Pharmacy, E-Book Shop, Online
Auto Part Shop, Online Car Rental and Online Air Line Ticket Sale, etc.”

Luiz said to Faheem:

Faheem, I’m going for lunch with Lucas and Shereef. In the meantime, please coordinate with
Zaher and evaluate the COTS to ensure that they are fulfilling our product line requirements
and make different categories of them.

Faheem said, “So, you want me to finish up with the Product Line infrastructure View
and COTS Archive View.”

Lucas asked Faheem meant about the “Views” and what the outcome was of the
activities we have done so far?

Shereef said, “Don’t worry Lucas, when we come back from lunch Faheem will have
established a COTS repository and an infrastructure for your product line.”

When Luiz, Shereef and Lucas came back from lunch, Faheem was eager to
show them Table I that illustrates the initial COTS repository, which he and Zaher
prepared.

Luiz said, “Okay Lucas, now you have the COTS repository and an infrastructure of
the product line. Which product do you want to develop first?”

Faheem pointed out that now we are moving into the application engineering phase
of the Y-model.

Lucas asked, “What is this Application Engineering Phase?”
Shereef explained to Lucas:

The Application Engineering phase of the Y-model deals with the development of products
from COTS present in the COTS repository. In this phase, we will perform activities of the
Product Line Application View and COTS Utilization View to produce the required products.

COTS
category COTS name Vendor

COTS
assigned
code Description of selected COTS

Business
web site

ASP-Template
HTML-Template
PHP-Template

HyperTemplates
Boxed Art
Webmasters Plaza

BW-1
BW-2
BW-3

ASP business web site template
HTML business web site template
PHP business web site template

Payment
processing

PayPal
WorldPay

eBay
WorldPay

PP-1
PP-2

Payment processing COTS for
online secure transactions
Payment processing COTS for
online secure transactions

Store
management

UStore
ASPVendor

Superfreaker Studios
CJW Soft

SM-1
SM-2

ASP-based Microsoft Access
content management system
ASP-based Microsoft SQL Server
product management system

Shopping
cart

CactuShop
SquirrelCart

CactuSoft
Lighthouse
Development

SC-1
SC-2

ASP-based shopping cart tool to
support shopping and order
processing
PHP-based shopping cart tool to
support shopping and order
processing

Table I.
Selected COTS for

e-commerce SPL

COTS-based
software product
line development

177



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

Lucas asked, “Please explain what these views will do?”
Faheem said:

The Product Line Application View generates the product requirements of the potential
business case and provides feedback to the COTS Utilization View, so the user can find out
which COTS is to be used in the product assembly.

Lucas said, “Okay, my boss was asking for an online pharmacy.”
Shereef was interested in doing the product requirement engineering; he asked Lucas,
“Is there any specific requirement for that?”

Lucas said, “Yes, he wants an ASP-based website, an online transaction system
from Pay Pal, and a MS Access based database.”

Shereef said to Faheem, “Be careful now. We are going to start assembly and query
activities.”

Faheem queried Zaher, “Could you please find COTS from the COTS repository that
matches these requirements?”

He replied, “Yes, Here you go!” and gave us BW-1, PP-1, SC-1 and SM-1.
Lucas asked, “Can we assemble the product right away?”
Luiz said, “If the COTS are exactly match then yes, otherwise, no, because you need

to perform adaptation so that you can fulfill the individual product requirements.”
Shereef highlighted the changes to be performed in the COTS in order to assemble

the Online Pharmacy, the one Lucas’s boss wants.
Faheem emphasized to Zaher the need to update the information of new versions of

COTS in the COTS repository.
Zaher said, “I know that BW-1 has version BW-11 whereas PP-1 has version PP-11.”
Luiz asked Faheem to look at the Y-model diagram and to tell them what else should

be done now.
Faheem said, “We need to test this Online Pharmacy that we have developed. That’s

what the Y-model says. And we need to evaluate the business case.”
Lucas said, “Don’t worry. I will ask my boss to look at it and evaluate this business

case.”
Lucas inquired, “What happens when we don’t have any matched or partially

matched COTS in our repository?”
Faheem told him “You have to go through the Domain Engineering phase to search

again for new COTS in order to update your COTS repository.”
Luiz explained to Lucas:

This is the way you establish a COTS-base software product line. We did a quick exercise to
explain to you the various steps of the Y-model. Now you have to go through carefully all
these steps in your office and understand the various views of the Y-model. You will need to
establish a team and let them understand the collaboration protocols. We have shown you
that the Y-model works to establish a COTS-based Software Product Line.

Lucas left with high hopes and after few days conveyed to us that he has established a
COTS-based SPL in his office and has produced four e-commerce applications so far
and is in the process of producing more.

7. Final remarks
This paper has provided an overview of a pragmatic approach to COTS-based
development. Starting from the set of common and variable features needed to support

IJWIS
4,2

178



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

a SPL, we can systematically develop and assemble the reusable elements needed to
produce the customized components and component infrastructures needed to
implement the family members of the product line.

There is still a need for tools to support the management of software families, which
are specific to particular application domains. A software family comprises a group of
software systems that expresses a general solution for a family of related applications
in that application domain. Therefore, a component will not be as generally useful
outside the application domain because it contains domain-dependent components.
However, it is sometimes beneficial to adapt the developing software so that it fits into
a software family, resulting in a tremendous gain in productivity.

The Y-model for COTS-based SPL development highlights various activities of SPL
and COTS-based development. The model integrates the concept of SPL with COTS to
come up with a prescribed way of establishing COTS-based SPL capable of producing
multiple products within an application domain. The interdependence of various
activities of SPL and COTS shows a strong relationship within a common framework
of product development. In order to validate the model, we conducted a case study
based on e-commerce application, which revealed that productivity, in terms of cost,
time and quality, increased when we followed the Y-model for COTS-based SPL.

Finally, the use of SPLs as a platform for larger systems is becoming increasingly
commonplace. The shift from custom development to software family is occurring in
both new development and maintenance activities. Shrinking budgets, accelerating
rates of COTS enhancements, and expanding systems requirements are all increasing
the need for SPLs. If done properly, this shift can help establish a sustainable practice.
We believe that SPLs and COTS-based development encompass the best practices of
software engineering and hold the promise of improving the quality of software as well
as the productivity of software engineers.

References

Ahmed, F. and Capretz, L.F. (2007), “Managing the business of software product line: an empirical
investigation of key business factors”, Information and Software Technology, No. 49,
pp. 194-208.

Buckle, G., Clements, P., McGregor, J.D., Muthig, D. and Schmid, K. (2004), “Calculating ROI for
software product lines”, IEEE Software, Vol. 21 No. 3, pp. 23-31.

Capretz, L.F. (2005), “Y: a new component-based software life cycle model”, Journal of Computer
Science, Vol. 1 No. 1, pp. 76-82.

Clement, P. and Northrop, L. (2001), Software Product Lines: Practices and Pattern,
Addison-Wesley, New York, NY.

Google (2007), Google Code Search Engine, available at: www.google.com/codesearch

Griss, M.L. (2001), “Product-line architectures”, in Heineman, G.T. and Councill, W.L. (Eds),
Component-Based Software Engineering, Addison-Wesley, New York, NY, pp. 405-19.

Jazayeri, M., Ran, A. and van der Linden, F. (2000), Software Architecture for Product Families:
Principles and Practice, Addison-Wesley, New York, NY.

Koders (2006), Koders Source Code Search Engine, available at: www.koders.com

Linden, F. (2002), “Software product families in Europe: the Esaps & Café projects”, IEEE
Software, Vol. 19 No. 4, pp. 41-9.

COTS-based
software product
line development

179



(C
) E

mera
ld 

Grou
p P

ub
lis

hin
g L

im
ite

d

Meekel, J., Horton, T. and Mellone, C. (1998), “Architecting for domain variability”, 2nd
International ESPRIT ARES Workshop on Development and Evolution of Software
Architectures for Product Families, Lecture Notes in Computer Science, Vol. 1429,
pp. 205-13.

Weiss, D.M. and Lai, C.T. (1999), Software Product-line Engineering: A Family-based Software
Development Approach, Addison-Wesley, New York, NY.

Corresponding author
Luiz Fernando Capretz can be contacted at: lcapretz@uwo.ca

IJWIS
4,2

180

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints




