
2	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

from the editor
E d i t o r i n C h i e f : H a k a n E r d o g m u s n K a l e m u n R e s e a r c h n h a k a n . e r d o g m u s @ c o m p u t e r . o r g

Mission Statement: 	 To	be	the	best	source	of	reliable,	useful,	peer-reviewed	information	for	leading	software	practitioners—
	 the	developers	and	managers	who	want	to	keep	up	with	rapid	technology	change.

I
was scanning through notable scientific dis-
coveries of 2008 on the net (www.wired.
com/wiredscience/2009/01/top-10-scientif).
They included discovery of ice on Mars,
the Cray XT5 supercomputer that broke
the petaflop barrier, nanotube paper that

is lighter and stronger than steel, and a catalyst
that efficiently turns water into fuel. I wasn’t sur-

prised that the list didn’t include
anything that I would associate
with software engineering. But
it still struck me that even if a
recent hot trend in software en-
gineering had made it to the list,
it wouldn’t have been possible to
communicate it to the lay soft-
ware person without a lengthy,
long-winded explanation. The
reader would lose interest before

the first sentence was over.

Each of the discoveries I just mentioned qualify
as “rocket science:” they’re pretty deep. Software
engineering innovations can also be hugely com-
plex, but often you can’t package them neatly to
be as self-evident as “the catalyst that efficiently
turns water into fuel.” Modern software engineer-
ing ideas tend to be deep in a different way: they’re
subtle and intangible, they’re concept-rich, they in-
termingle, and they go through cycles in a fast and
ever-changing environment.

The Nature of the Field
The most liberal definition of software engineering
that I can think of without too much blurring of
the boundaries with related disciplines would go
something like this: software engineering is build-
ing good and sustainable software using system-
atic, sustainable, and economic means. By exten-
sion, a broad definition of software engineering
innovation would be the discovery and accep-

Hakan Erdogmus

The story of software engineering since the label came into use is thus a story of compromise among gen-
erality and specificity, heuristics and formalism, procedures and data, sequence and cycle. The practical
response was combination and accommodation—covering all bases or splitting the difference, synthesizing
complementary approaches or accommodating inescapable trade-offs. Pragmatists argued for mixed strat-
egies of testing and proving, the use of tailored reliability models and development environments, the use of
a full set of metrics, and the synthesis of life-cycle models. But while seizing the middle ground appeared to
be a practical way to cope with difficulties, it seemed unlikely to produce a revolution. If software technolo-
gists are nowadays devoting more effort to engaging in a pragmatic fashion with the complexity of their
problems, it is to their credit. That is symptomatic of maturity and of real engineering. —Stuart Shapiro,
“Splitting the Difference: The Historical Necessity of Synthesis in Software Engineering,” IEEE Annals of
the History of Computing, vol. 19, no. 1, 1997

Déjà Vu:
The Life of Software
Engineering Ideas

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:50:38 EST from IEEE Xplore. Restrictions apply.

	 January/February 2010 I E E E S O F T W A R E 	 3

tance of those means. Here I deliberately
avoid the usual, more righteous definition
that emphasizes the use of scientific and
mathematically based means. The way
we build software involves technology in
many instances, but that alone isn’t suffi-
cient. Regardless of whose definition, how
technology is applied and why it works
are deemed critical (sometimes even more
critical) in the software engineering world.
Thus such means also centrally involve te-
nets, methods, practices, and understand-
ing: in effect, the “how” and “why” part
of building software. All of this smells a
lot like process, and perhaps software
engineering is by definition a “processy”
field, softer than we’d like it to be. If that’s
true, we shouldn’t expect frequent step-
function improvements. The inherent pro-
cess focus may also be why, in his article
“Software Engineering: An Idea Whose
Time Has Come and Gone?” (IEEE Soft-
ware, July/August 2009), Tom DeMarco
appears to equate software engineering
with the process side of software engineer-
ing. In that article, DeMarco recants some
of his own legacy advice about the im-
portance of measurement and control in
software projects, but in doing so, he also
implicitly overgeneralizes his impressions
about the process aspect to an entire field.

We should finally resolve that the dis-
covery of new software engineering ideas
is, by now, naturally incremental and evo-
lutionary. This insight is not novel at all.
Fred Brooks famously told us so over 20
years ago (“No Silver Bullet—Essence
and Accidents of Software Engineering,”
Computer, April 1987) when he identi-
fied complexity, conformity (arbitrariness
of that complexity), changeability, and in-
visibility as software’s four essential dif-
ficulties. Stuart Shapiro later referred to
the incremental nature of software engi-
neering discoveries in his excellent his-
torical account “Splitting the Difference.”
Lawrence Peters and Leonard Tripp de-
scribed designing software as a “wicked
problem,” a changeling that doesn’t lend
itself to a clean, stable solution (“Is Soft-
ware Design Wicked?” Datamation, May
1976, p. 127). The key ideas—among
them, abstraction, modularity and infor-
mation hiding, reuse, better communica-
tion, and attention to human aspects—for
dealing with essential difficulties have
been around quite a while.

The Intertwined
Lives of Ideas
Suppose we’ve dampened our expectations
of step-function improvements and moved

FROM THE EDITOR EDITOR IN CHIEF

Hakan Erdogmus
hakan.erdogmus@computer.org

EDITOR IN CHIEF EMERITUS:
Warren Harrison, Portland State University

ASSOCIATE EDITORS IN CHIEF

Computing Now: Maurizio Morisio,
Politecnico di Torino; maurizio.morisio@polito.it

Design/Architecture: Uwe Zdun, Vienna Univ.
of Technology; zdun@infosys.tuwien.ac.at

Development Infrastructures: Martin Robillard,
McGill University; martin@cs.mcgill.ca
Distributed and Enterprise Software:
John Grundy, University of Auckland;

john-g@cs.auckland.ac.nz
Empirical Results: Forrest Shull, Fraunhofer

Center for Experimental Software Engineering,
Maryland; fshull@fc-md.umd.edu

Human and Social Aspects: Helen Sharp,
The Open University, London;

h.c.sharp@open.ac.uk
Management: John Favaro,
INTECS; john@favaro.net

Processes and Practices: Frank Maurer, Univer-
sity of Calgary; maurer@cpsc.ucalgary.ca

Programming Languages and Paradigms:
Laurence Tratt, Bournemouth University;

laurie@tratt.net
Quality: Annie Combelles, DNV/Q-Labs;

annie.combelles@dnv.com
Requirements: Neil Maiden, City University

London; cc559@soi.city.ac.uk
Ann Hickey, University of Colorado at Colorado

Springs; ahickey@uccs.edu

DEPARTMENT EDITORS

Bookshelf: Art Sedighi, SoftModule
Career Development: Philippe Kruchten,

University of British Columbia
Impact: Michiel van Genuchten,

Eindhoven University of Technology
Les Hatton, Kingston University

On Architecture: Grady Booch, IBM
Pragmatic Architect: Frank Buschmann,

Siemens
Requirements: Neil Maiden,

City University London
Software Technology: Christof Ebert, Vector
Tools of the Trade: Diomidis Spinellis, Athens

Univ. of Economics and Business
Voice of Evidence: Forrest Shull, Fraunhofer

Center for Experimental Software Engineering

ADVISORY BOARD

Frances Paulisch, Siemens (Chair)
Pekka Abrahamsson, Univ. of Helsinki

Jennitta Andrea, ClearStream Consulting
Elisa Baniassad, Chinese Univ. of Hong Kong

Ayse Basar Bener, Bogazici Univ.
Robert L. Glass, Computing Trends

Kaoru Hayashi, SRA
Gregor Hohpe, Google

Steve McConnell, Construx Software
Grigori Melnik, Microsoft
Linda Rising, consultant

Wolfgang Strigel, consultant
Dave Thomas, Bedarra Research Labs

Douglas R. Vogel, City Univ. of Hong Kong
Markus Völter, consultant

New Column: Impact
In	this	issue,	Michiel	van	Genuchten	and	Les	Hatton	inaugurate	a	new	depart-
ment	on	software’s	impact.	Michiel,	Les,	and	their	guest	contributors	embark	
on	the	ambitious	task	of	demonstrating	the	ubiquitous	presence	of	software	in	
diverse	industries.	Their	arsenal:	experience	and	data	from	the	trenches.	Their	
message	to	those	who	think	software	is	just	another	invisible,	annoying	over-
head:	software	is	under	every	stone,	software	grows	beyond	your	imagination,	
software	may	be	unsustainably	expensive,	and	yes,	software	is	critical	to	your	
business.	Enjoy!

Erratum
In	the	November/December	2009	edition	of	this	column	(“A	Process	That	Is	Not”),	
the	sentence	at	the	end	of	the	first	paragraph	“Yet	Tiki	works,	despite	the	software	
and	antiprocess	used	in	developing	it”	on	page	4	should	have	read	“Yet	Tiki	
works,	despite	the	antiprocess	used	in	developing	it.”	I	apologize	for	the	mistake.	

Kudos
Columnist	Grady	Booch	was	elected	an	IEEE	Fellow	for	his	contributions	to	
software	engineering	and	the	development	of	the	Unified	Modeling	Language.	
Congratulations	on	this	important	recognition.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:50:38 EST from IEEE Xplore. Restrictions apply.

on. What about ideas that have merit but
lead to incremental improvements? Are
they readily recognized, accepted, and ul-
timately adopted? The short answer is,
no. If payoffs aren’t obvious and certain,
then acceptance, naturally, is also elusive.
Fortunately, some factors that contribute
to this elusiveness are partially within the
reach of our control. We can start look-
ing for them in the iterative and inter-
leaved cycle in which ideas are repeatedly
visited, bundled, branded, spun off, and
moved across each other’s pipelines. Once
the stages and states of that life cycle are
better understood, underlying acceptance
and adoption levers can be identified. Alas,
there’s the obvious caveat: if modern soft-
ware engineering is inherently incremental,
we shouldn’t have too high expectations of
those levers either.

Figure 1 illustrates the life cycle of a typ-
ical software engineering idea in the post
“Silver Bullet” era.

Dormancy to Reincarnation
An original idea is conceived in an ini-
tial context at time T. The context is the
general environment in which the idea is
positioned. It includes the problems being
addressed, related ideas, counter-ideas,
accelerators and decelerators, target au-
dience (receptors and users), surrounding
technologies (both established and emerg-
ing), and centrally, the relevant technical,
social, cultural, and economic conditions.

The idea often is not disseminated by
itself but is part of a larger package, or
bundle. Think of the bundle as the im-

mediate context that the idea’s advocates
deem necessary to make the idea opera-
tionally viable and allow it to be applied
in practice. The bundle is the collection of
vital complementary and synergistic con-
cepts, approaches, practices, technolo-
gies, and norms—in short, all the things
that the proponents think will make the
idea work.

After its initial exposure, the idea may
stay dormant for a while: in this state, it’s
effectively flatlined. It doesn’t get much
attention: it’s inconspicuously used by a
small number of people, usually by the in-
ventors. Flatlining might happen for vari-
ous reasons. The idea might still be ahead
of its time: the general mindset necessary
for the idea to take off might be lacking.
It might not have a name and sufficient
surrounding vocabulary, resulting in poor
awareness and understanding. The idea
might be perceived as straightforward and
thus unimportant. Or a key supporting
technology might be missing.

If the idea has merit, it doesn’t stay
dormant forever. The context eventually
evolves and the idea ripens with it. Soon
after, the idea is revisited, sometimes by
the original founders but more often by
others. Reincarnation occurs in one of
three ways: the idea may be revived in its
original form, independently rediscovered
close to its original form, or deliberately
redressed for the new context. The new
context at time T′ likely includes a com-
plement (a supporting concept that in the
re-inventers’ eyes makes the idea whole)
or an accelerator (a synergistic concept

that facilitates the idea’s application). The
original bundle is unraveled, and the idea
is rebundled with its new complements
and accelerators in the new context. The
resulting whole is branded, using repre-
sentative vocabulary that is aligned with
the new context and giving the idea a
fresh spin. At this point, books are writ-
ten about and around the idea.

Ascent and Descent
Bundling and branding injects the idea
with new life, triggering its growth-and-
decline phase. This phase roughly corre-
sponds to Geoffrey A. Moore’s technology
adoption life cycle (Crossing the Chasm:
Marketing and Selling High-Tech Prod-
ucts to Mainstream Customers, Harp-
erCollins, 1999). The main difference is
that the end result of this cycle might be
weaker than mainstream adoption. If in-
cremental improvements are the norm, we
should expect mainstream adoption to be
rare. Rather, the outcome may more mod-
estly be general acceptance by a target au-
dience coupled with adoption in a specific
context. Reversion to a previous state is
possible during the growth-and-decline
phase.

Once the idea is branded inside a
new bundle, its real ascension begins.
Its advocates hype the idea. It enjoys
rapid spread and rise in popularity as it’s
picked up by the target audience. More
and more people start paying attention,
including vendors looking for concepts
to leverage in new products and services.
The idea becomes available for sandbox-
ing in various forms, and eager early
adopters start using, and effectively test-
ing, it. As its usage increases, more scal-
able forms become available, and efforts
to make it work intensify. Sometimes it’s
applied outside the intended context and
in unexpected ways. Users discover and
publicize the idea’s limitations and new
contexts, and modify it along the way.
During the testing stage, the idea goes
through a natural selection process.

Sobering to Stability
As its limitations become widely known,
the idea mellows by stripping off its non-
essential and dysfunctional aspects. The
hype gradually dies down but the essence,
the modified core that deserves genuine
merit, remains. That core is subsequently

4	 I E E E S O F T W A R E

FROM THE EDITOR

Context @T ´́Context @T ´

A A
B

. . .

. . .

Flatlined Branded

Bundled

Complement
or accelerator

Hyped
Tested

Context @T

Conceived

Rediscovered
Revived

Redressed Re
vi

si
te

d

Extracted

Streamed

B B

C
C

B

B

Mellowed
A

Figure 1. The life cycle of modern software engineering ideas.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:50:38 EST from IEEE Xplore. Restrictions apply.

	 January/February 2010 I E E E S O F T W A R E 	 5

FROM THE EDITOR

extracted from the bundle. Ultimately,
the part that catches on is the extraction:
typically, the target audience accepts the
idea’s distilled form and adopts it in prac-
tice, independent of its former bundles.
I refer to this post-extraction state as
streamed. In the streamed state, the idea
enjoys a stable existence and need not be
actively promoted.

The weaker form “streamed” instead
of “mainstreamed” communicates the
subtlety that “main” is relative. Accep-
tance and adoption are situational in most
cases: one size almost never fits all.

I have clumped acceptance and adop-
tion together as if they’re the same thing.
They need not be. An idea is accepted
when it’s widely recognized as a viable
solution to a problem in a given context.
An accepted idea has a name and an as-
sociated vocabulary, though the name
may eventually fade into the background.
If complex enough, an accepted idea sup-
ports a stable community of experts.
Adoption happens when an idea is estab-
lished enough to the point that it’s fre-
quently applied in that context to solve the
underlying problem. Adoption is a natu-
ral progression of acceptance. If adoption
is preempted, a streamed idea ultimately
suffers reversion.

Reversion and Threading
The feedback loops in Figure 1 convey the
possibility of reversion. Reversion may
happen at any point during the growth-
and-decline phase or after the idea has
been streamed. It results from the intro-
duction of an alternative idea that dis-

rupts the cycle, a change in contexts that
invalidates the preconditions for accep-
tance, or unfavorable anecdotes from the
trenches. These triggers cause the idea to
regress rapidly and ultimately be flatlined.
A regressed idea can be revisited in a new
context to regain consciousness. While re-
version makes the maturation process it-
erative, the effect is not necessarily a pro-
ductive one.

During the lifespan of one idea, an-
other related idea starts a parallel cycle of
its own. Figure 1 depicts an instance of
this phenomenon for two ideas, A and B.
The complement or accelerator B, which
was pulled into A’s bundle from A’s con-
text at time T′, becomes more prominent
during A’s growth-and-decline phase. It
flatlines outside A’s context from T′ to T′′.
By T′′, B has gained enough prominence,
and in the new context of its own, it be-
comes ready to be bundled and branded
with a third idea C. The result of such in-
teraction is a complex network of paral-
lel pipelines, with ideas moving back and
forth across different tracks. I refer to this
property of the idea life cycle as threaded.

In a Nutshell
The progression of software engineering
ideas appears to follow an incremental,
reversive, and threaded process. I cap-
tured these characteristics in a life-cycle
model. The model itself is an attempt to
provide a singular perspective on a com-
plex phenomenon. Therefore, we must
take it at face value. Different ideas go
through the maturation process in dif-
ferent ways. Some may crawl through it,

lingering in certain states. Others may zip
through it, bypassing entire stages. When
I described the model in a recent talk, col-
league Tim Lethbridge rightly mentioned
modern program control structures (over
the demoded go-to statement) as an ex-
ample of the latter kind, an obviously
good and applicable idea with swift and
permanent acceptance.

M y goal was to implant the thought
of pursuing progress within the
distinct possibility that incremen-

tality, reversion, and threading are natu-
ral in software engineering innovation.
Taking advantage of whatever levers we
can find underneath these characteristics
may be the best we can do for streaming
a good idea without surrendering to re-
version. My space is up, so those levers,
and several examples, will be the topic of
future columns. Stay tuned.

Acknowledgments
Participants in the November meeting of
the Consortium for Software Engineering
Research provided me with ample feedback
on this column’s topic. Luiz Capretz of the
University of Western Ontario pointed me to
Stuart Shapiro’s well researched and highly
relevant article.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: Three Park Ave., 17th Floor,
New York, NY 10016-5997. IEEE Computer Society Publications Of-
fice: 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-
1314; +1 714 821 8380; fax +1 714 821 4010. IEEE Computer Society
headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscrip-
tion rates: IEEE Computer Society members get the lowest rate of US$52
per year, which includes printed issues plus online access to all issues
published since 1988. Go to www.computer.org/subscribe to order and
for more information on other subscription prices. Back issues: $20 for
members, $163 for nonmembers (plus shipping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Soft-
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes
Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid at New
York, NY, and at additional mailing offices. Canadian GST #125634188.
Canada Post Publications Mail Agreement Number 40013885. Return
undeliverable Canadian addresses to PO Box 122, Niagara Falls, ON
L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of

this material is permitted without fee, provided such use: 1) is not made
for profit; 2) includes this notice and a full citation to the original work
on the first page of the copy; and 3) does not imply IEEE endorsement of
any third-party products or services. Authors and their companies are
permitted to post their IEEE-copyrighted material on their own Web
servers without permission, provided that the IEEE copyright notice
and a full citation to the original work appear on the first screen of the
posted copy.

Permission to reprint/republish this material for commercial, advertis-
ing, or promotional purposes or for creating new collective works for
resale or redistribution must be obtained from IEEE by writing to the
IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscataway,
NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2010 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee indicated in the code at the bottom of the first
page is paid through the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:50:38 EST from IEEE Xplore. Restrictions apply.

