

Structural Behavior of Modular Steel Buildings Dr. Maged A. Youssef, P.Eng. Associate Professor, Associate Chair (Undergraduate) Joussef@uwo.ca

Western S Engineering

Civil and Environmental Engineering

Outline:

- 1. Background and Objectives.
- 2. Behavior Of MSB Floor Grid Structure.
- 3. Experimental Study of Seismic Performance Of MSB.
- 4. Inelastic Behavior & Characteristics Of MSB Braced Frames.
- 5. Seismic Demands & Capacities Of MSB Braced Frames.
- 6. Significant Research Contributions.
- 7. Recommendations & Acknowledgements.

Western S Engineering

Objectives:

- 1. To document detailing requirements of MSBs.
- To understand the effect of direct welding on 2. behavior and design of MSB floor grid structure.
- To investigate, experimentally, seismic behavior of 3. braced frames of MSBs.
- To develop and validate an analytical model to 4. predict seismic behavior of MSBs.
- To analytically study and evaluate inelastic behavior 5. and response characteristics of MSB braced frames.
- To analytically assess seismic inelastic demands 6. and capacities.

Western **S** Engineering

Structural Behavior of MSBs

Parameters:							
	t_w^b / t_w^s	d_{b}/d_{s}	L_s / d_s	L_w/d_s			
	1.16	1.5	17.7	0.4			
	2.32	2.3	35.4	0.8			
	3.48	3.0	53.2	1.0			
	b: Floo s: Floo t _w : web	r Beam r Stringe thickne	c er L ess L	1: depth _: Lengt _{-w} : weld	h length		
	W						

MSB Floor Grid Structure

Results (Stringers):							
Configuration Considered			FLOOR ST	RINGERS			
$d_b/d_s = 1.5$ $t_w^b/t_w^s = 1.16$ $L_s/d_s = 17.7$ $L_w/d_s = 0.8$	SB1	SB2	SB3	SB4	SB5	SB6	
Mid-Span Moment (Design) M _d , (kNm)	22.28	22.03	22.03	22.03	30.8	18.26	
Mid-Span Moment (FE) M _{FE} , (kNm)	20.2	20.09	20.14	20.05	27.75	16.54	
M_{FE} as a percentage of M_d (%)	90.66	91.19	91.42	91	90.1	90.58	
Hogging Moment at end of span (Design) M_h , (kNm)	0	0	0	0	0	0	
Hogging Moment at end of span (FE) M_n , (kNm)	2.08	1.94	1.89	1.98	3.05	1.72	
M_n as a percentage of M_d (%)	9.34	8.81	8.58	9	9.9	9.42	
Axial Force (Design) N _d , (kN)	0	0	0	0	0	0	
Axial Tensile Force (FE) N _{FE} , (kN)	15.16	18.55	19.08	18.14	21.79	13.84	
Total Load on Beams excl. self wt. W (kN)	48.74	48.2	48.2	48.2	67.68	39.82	
N_{FE} as a percentage of W (%)	31.1	38.49	39.59	37.63	32.2	34.76	
Western S Engineering			N	ISB Floor	Grid Stru	icture	

Results (Floor Beam):						
Configuration Considered	Sections of	Main Beam, me	asured from poi	nt A (mm)		
$d_b/d_s = 1.5 t_w^o/t_w^o = 1.16 L_s/d_s = 1.1/ L_w/d_s = 0.8$	900 (K1)	3550 (K2)	6100 (K3)	8100 (K4)		
Bending Moment at section (Design) M _d , (kNm)	44.83	91.57	-21.93	71		
Bending Moment at section (FE) M _a , (kNm)	44.44	91.34	-21.34	69.22		
M_a as a percentage of $M_d(\%)$	99.13	99.75	97.3	97.49		
		•				
Western SEngineering		М	SB Floor Gric	Structure		

Outline:

- Selection & design of braced frames of a typical MSB.
- Modeling and analysis of MSB braced frames.
- Inelastic behavior of MSB braced frames.
- Inelastic characteristics of MSB braced frames.

Western S Engineering

CHARACTERISTICS OF MSB BRACED FRAMES

CHARACTERISTICS OF MSB BRACED FRAMES

Глата			Ductility Design (column	Ductility Design
Frame	Story / Floor #	Strength Design	design by SRSS	(column design by
wember			approach)	DS approach)
(0	4	HS 76X76X5	HS 76X76X6	HS 76X76X6
ce	3	HS 76X76X5	HS 76X76X6	HS 76X76X6
8 ra	2	HS 89X89X6	HS 89X89X6	HS 89X89X6
ш	1	HS 89X89X6	HS 89X89X6	HS 89X89X6
s	4	HS 76X76X5	HS 102X102X6	HS 102X102X6
с Е	3	HS 178X178X5	HS 178X178X6	HS 178X178X6
n	2	HS 178X178X5	HS 203X203X6	HS 203X203X10
Ū	1	HS 178X178X6	HS 203X203X8	HS 254X254X10
	Roof	W100X19	W100X19	W100X19
	Floor 4	W100X19	W100X19	W100X19
E S	Floor 3	W100X19	W100X19	W100X19
еа	Floor 2	W100X19	W100X19	W100X19
В	Floor 1	W100X19	W100X19	W100X19
	Ceiling	W100X19	W100X19	W100X19

Г

Overstrength and Ductility:

	Overstrength	Factor, R ₀	Structural Ductility, µ		
Number of Stories	SRSS Approach	DS Approach	SRSS Approach	DS Approach	
6	1.91	1.91	1.84	1.89	
4	2.20	2.20	3.30	3.48	
2	2.49		4.62		

Western S Engineering

CHARACTERISTICS OF MSB BRACED FRAMES

Discussion:

- The use of SRSS approach in the determination of brace induced column actions in capacity design of braced frames may not be conservative for MSB braced frames due to the system's unique detailing requirements.
- Beams in unbraced bays may govern capacity design of beams and care must be taken when assigning such beams with sections obtained from the design of beams in brace bays.

Western S Engineering

CHARACTERISTICS OF MSB BRACED FRAMES

SEISMIC DEMANDS & CAPACITIES OF MSB BRACED FRAMES

Western S Engineering

	No	Event	Voor	Record station	ф ¹	M* ²	D* ³ (km)	PGA (a)
S	110.	Lvent	Ieai		Ψ	IVI	r (kiii)	TOA (g)
0	1	Imperial Valley	1979	Plaster City	45	6.5	31.7	0.042
	2	Imperial Valley	1979	Plaster City	135	6.5	31.7	0.057
0	3	Imperial Valley	1979	Westmoreland Fire Sta.	90	6.5	15.1	0.074
X	4	Imperial Valley	1979	Westmoreland Fire Sta.	180	6.5	15.1	0.11
S	5	Imperial Valley	1979	El Centro Array #13	140	6.5	21.9	0.117
Ð	6	Imperial Valley	1979	El Centro Array #13	230	6.5	21.9	0.139
C	7	Loma Prieta	1989	Agnews State Hospital	90	6.9	28.2	0.159
	8	Loma Prieta	1989	Coyote Lake Dam	285	6.5	22.3	0.179
Ð	9	Superstition Hill	1987	Wildlife Liquefaction Array	90	6.7	24.4	0.18
~	10	Superstition Hill	1987	Wildlife Liquefaction Array	360	6.7	24.4	0.2
0	11	Loma Prieta	1989	Sunnyvale Colton Ave	270	6.9	28.8	0.207
-	12	Loma Prieta	1989	Sunnyvale Colton Ave	360	6.9	28.8	0.209
-	13	Loma Prieta	1989	Anderson Dam	270	6.9	21.4	0.244
0	14	Imperial Valley	1979	Chihuahua	282	6.5	28.7	0.254
2	15	Loma Prieta	1989	Hollister Diff. Array	165	6.9	25.8	0.269
<u></u>	16	Loma Prieta	1989	Hollister Diff. Array	255	6.9	25.8	0.279
	17	Imperial Valley	1979	Cucapah	85	6.9	23.6	0.309
10	18	Loma Prieta	1989	WAHO	0	6.9	16.9	0.37
ш	19	Loma Prieta	1989	Holister South & Pine	0	6.9	28.8	0.371
	20	Loma Prieta	1989	WAHO	90	6.9	16.9	0.638
	¹ Component, ² Moment Magnitudes, ³ Closest Distances to Fault Rupture Source: PEER Strong Motion Database, http://peer.berkeley.edu/svbin							
Western Transformering Seismic Vulnerability Assessment of MSBs								

Dynamic characteristics of selected MSB braced frames:

Dynamic characteristics		MSB Braced frame			
,		2-storey	4-storey	6-storey	
	NBCC design	0.21	0.35	0.48	
Period (sec)	1st mode	0.20	0.42	0.61	
	2nd mode	0.08	0.16	0.21	
Mass	1st mode	94	81	77	
factor (%)	2nd mode	5	15	17	

Western S Engineering

Seismic Vulnerability Assessment of MSBs

Drift fractile capacities

Fractile capacities in terms of intensity measure, $S_a(T_1,5\%)$								
Design lev MSB frame intensity,		Fractile S _a capacity (g) based on collapse prevention level			Standard Dev. of	S _a capacity (g) based on NBCC drif		
	Sa(T ₁) in g	16%	50%	84%	песіап сарасну	limit		
2-storey	0.96	2.50	5.50	10.00	0.61	4.00		
4-storey	0.85	1.80	3.30	5.25	0.53	1.75		
6-storey	0.75	1.60	2.45	3.75	0.44	1.25		

Fractile capacities in terms of maximum drift, θ_{max}

MSB frame	Fractil	Standard Dev. of		
	16%	50%	84%	 capacities
2-storey	1.2	4.0	6.9	0.76
4-storey	4.4	6.7	10.0	0.63
6-storey	3.2	6.7	9.8	0.43

Western S Engineering

Seismic Vulnerability Assessment of MSBs

Du	ctility	capacities				
	MSB frame	Ductility capacity based on NBCC drift limit median capacity in Sa	Ductility capacity based on collapse prevention level median capacity in Sa			
	2-storey	2.80	4.80			
	4-storey	2.40	4.50			
	6-storey	1.80	3.90			
Wes	Western Seismic Vulnerability Assessment of MSB					

Journal Papers	
Experimental evaluation of the seismic perf steel-braced frames Engineering Structures 31 (7), 1435-1446	ormance of modular
Seismic overstrength in braced frames of M Buildings Journal of Earthquake Engineering 13 (1), Effect of directly welded stringer-to-beam c	odular Steel , 1-21, 2009 onnections on the
analysis and design of modular steel build Advances in Structural Engineering 12 (3) Seismic Vulnerability Assessment of Modula	ding floors , 373-383, 2009 ar Steel Buildings
Journal of Earthquake Engineering 13 (8),	, 1065-1088, 2009
Western S Engineering	Structural Behavior of MSBs

