This course aims to introduce and to develop student skills on modern methods for simulation of chemical process unit. Differential heat balance, mass balance. Energy and material balance methods in process unit. Executive systems for overall balance methods. Physical properties, computer packages.

Students should be able to:

- Identify the principles of modular representation, various types of modules available in the Hysis package, the properties and the limitations of the modules, the strategies for tearing streams and convergence.
- Translate a process flow diagram in a process flowsheet. Develop an understanding of flowsheeting, steady state models, stream variables, degree-of-freedom analysis, simulation of several units in chemical networks, partitioning and precedence order.
- Identify the extent of reaction variables, independent chemical reactions and the degree-of-freedom analysis for chemical reactors.
- Develop an understanding of the element balance approach, the algebra of element balances, the application of element balances in the context of a unit and a chemical process.
- Perform mass and energy balances using Hysis package in a unit and in a network of units with consideration of degrees-of freedom, principles of decoupling of mass and energy balances, partitioning and precedence order.
- Identify the common factors in various simulation packages, the physical properties package capabilities, the available modules for quick design of various units.

Prerequisites
CBE 2220A/B, CBE 2221A/B, CBE 2224A/B, or GPE 2218A/B, ES1050.

Note: It is the student’s responsibility that all the Prerequisite and Corequisite conditions are met or that special permission to waive these requirements have been granted by the Faculty. It is also the student’s responsibility to ensure that they have not taken course listed as an Antirequisite. They students may be dropped from the course or not given credit for the course towards their degree if they violate the Prerequisite, Corequisite or Antirequisite conditions.
Corequisites
None

Antirequisites
Former CBE 3397

Contact Hours
2 lecture hours; 2 tutorial hours each week.

Course instructor
Dr. H. deLasa (CMLP 3331) Telephone: 519-661-2111 ext: 82144 email: hdelasa@uwo.ca

Undergraduate Assistant
(TEB 477) Telephone: 519-661-2111 ext: 82131 email: brandy.hunter@uwo.ca

Required Text
None

Course Notes
Will be available (course website)

Reference Text

Units
SI and other units will be used

General Learning Objectives

<table>
<thead>
<tr>
<th>A knowledge base for engineering</th>
<th>A</th>
<th>Individual and team work</th>
<th>A</th>
<th>Economics and project management</th>
<th>n.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem analysis</td>
<td>A</td>
<td>Communication skills</td>
<td>A</td>
<td>Life-long learning</td>
<td>A</td>
</tr>
<tr>
<td>Investigation</td>
<td>B</td>
<td>Professionalism</td>
<td>I</td>
<td>Key:</td>
<td></td>
</tr>
<tr>
<td>Design/Simulation</td>
<td>I</td>
<td>Impact of engineering on society and the environment</td>
<td>I</td>
<td>B: evaluated at introductory level</td>
<td></td>
</tr>
<tr>
<td>Use of engineering</td>
<td>A</td>
<td>Ethics and equity</td>
<td>I</td>
<td>I: evaluated at intermediate level</td>
<td></td>
</tr>
</tbody>
</table>

Key:
- B: evaluated at introductory level
- I: evaluated at intermediate level
Specific Objectives

Simulation of a Chemical Process Unit
At the end of Topic 1, students should be able to:

- understand the basic concepts involved in the simulation of a unit in a chemical process
- establish the degree-of-freedom of a unit in a chemical process
- solve this unit using the Hysis package
- be introduced to the basic commands of the Hysis package
- be introduced to the techniques of drawing flowsheets including icons.

Overall Material Balances in Chemical Processes
At the end of Topic 2, students should be able to:

- understand the basic concepts involved in the simulation of a network of units in a chemical process
- establish the degree-of-freedom for the network of a unit
- be trained with several modules available in a computer package
- establish the order of calculation in a process network
- solve a process with several units using the Hysis package
- be introduced to the basic commands of the Hysis package
- be introduced to the techniques of flowsheeting

Chemical Reactors
At the end of Topic 3, students should be able to:

- understand the concept of extent of reaction variables
- perform calculations to establish the number of independent chemical reactions for a set of chemical reactions
- develop flowsheets involving chemical reactions and several chemical reactors
- develop Degree-of-Freedom analysis, partitioning and precedence order in processes with chemical reactors
- be able to perform mass balance calculations using Hysis in chemical processes involving chemical reactors
- be able to perform mass balance calculations using Hysis in chemical processes involving chemical reactors

Element Balances
At the end of Topic 4, students should be able to:
• understand the significance of the element balance approach. The advantages and limitations
• develop calculations to establish number of independent element balances
• develop Degree-of-Freedom analysis. Be able to establish partitioning and precedence order
• be able to perform mass balance calculations using Hysis in chemical processes involving chemical reactors

Mass and Energy Balances in a Chemical Process
At the end of Topic 5, students should be able to:

• understand the complexities and strategies for combined mass and energy balances in a unit and in a network of units
• develop Degree-of-Freedom
• be able to perform combined mass and energy calculations using the Hysis package. Be able to establish partitioning an precedence order
• be able to propose strategies for mass and energy balances decoupling
• apply combined mass and energy balances in the context of chemical process with and without chemical reaction

Flowsheeting and Modular Representation
At the end of Topic 6, students should be able to:

• use Hysis package for effective modular representation of a process
• be able to use various types of modules available in Hysis and the available icons
• be aware of module properties and their limitations
• be able to translate a process flow diagram in a process flowsheet
• perform calculations considering strategies for tearing streams and convergence

Executive systems for Overall Mass and Energy Balances
At the end of Topic 7, students should be able to:

• identify the common factors in various executive computer softwares for process simulation
• be aware of the various physical properties packages available in Hysis
• use quick design modules for various units
• be aware of short cut methods and detailed designs for separation units.

Special Process Design and Simulation Project

Students will develop throughout the term an individual special assignment. This assignment will consider specific application of the knowledge acquired on "Flowsheeting and Modular Representation".
Evaluation

Evaluation is on the basis of assignments and final examination. The final mark will be calculated as follows:

- Problems/Computer Assignments: 30%
- Special Assignment: 15%
- Final Examination: 55%

Examinations will be limited open book, as programmable calculators are permitted during the final examination. Be advised that the course instructor will be clearing all information stored. Otherwise, only non-programmable calculators will be permitted.

Note: 1) **Students must pass the final examination to pass the course.** Students who fail the final examination will be assigned 48% if the aggregate mark is higher than 50%, or the aggregate mark.

2) **Assignments are to be handed in the CBE 312 locker (#66) on the specified due date provided by the Instructor.**

Repeating All Components of the Course

In accordance with Senate and Faculty Policy, students who have failed an Engineering course (i.e. <50%) must repeat all components of the course. No special permissions will be granted enabling a student to retain laboratory, assignment or test marks from previous years. Previously completed assignments and laboratories cannot be resubmitted for grading by the student in subsequent years.

Use of English

In accordance with Senate and Faculty Policy, students may be penalized up to 10% of the marks on all assignments, tests, and examinations for the improper use of English. Additionally, poorly written work with the exception of the final examination may be returned without grading. If resubmission of the work is permitted, it may be graded with marks deducted for poor English and/or late submission.

Attendance

Attendance in lectures, tutorials and laboratories is mandatory. Any student who, in the opinion of the instructor, is absent too frequently from class or laboratory periods in any course, will be reported to the Dean (after due warning has been given). On the recommendation of the Department concerned, and with the permission of the Dean, the student will be debarred from taking the regular examination in the course.

Cheating

University policy states that cheating is a scholastic offence. The commission of a scholastic offence is attended by academic penalties, which might include expulsion from the program. If you are caught cheating, there will be no second warning (see Scholastic Offence Policy in the Western Academic Calendar).
Plagiarism
Students must write their essays and assignments in their own words. Whenever students take an idea, or a passage from another author, they must acknowledge their debt both by using quotation marks where appropriate and by proper referencing such as footnotes or citations. Plagiarism is a major academic offence (see Scholastic Offence Policy in the Western Academic Calendar).

The University of Western Ontario has software for plagiarism checking. Students may be required to submit their work in electronic form for plagiarism checking.

Conduct
Students are expected to arrive at lectures on time, and to conduct themselves during class in a professional and respectful manner that is not disruptive to others.

Sickness and Other Problems
Students should immediately consult with the instructor or Department Chair if they have any problems that could affect their performance in the course. Where appropriate, the problems should be documented. The student should seek advice from the Instructor or Department Chair regarding how best to deal with the problem. Failure to notify the Instructor or Department Chair immediately (or as soon as possible thereafter) will have a negative effect on any appeal.

Please contact the course instructor if you require material in an alternate format or if any other arrangements can make this course more accessible to you. You may also wish to contact Services for Students with Disabilities (SSD) at (519) 661-2111 x82147 for any specific question regarding an accommodation.

Notices
Students are responsible for regularly checking their Western email and notices posted on Instructors’ doors.

Consultation
Students are encouraged to discuss problems with their teaching assistant and/or instructors in tutorial sessions. Office hours will be arranged for the students to see the instructor and teaching assistants. Other individual consultations can be arranged by appointment with the appropriate instructor.

Accreditation Breakdown

<table>
<thead>
<tr>
<th>Course</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Science</td>
<td>50%</td>
</tr>
<tr>
<td>Engineering Design</td>
<td>50%</td>
</tr>
<tr>
<td>Total AU’s (38.2)</td>
<td>100%</td>
</tr>
</tbody>
</table>
INSTRUCTIONS FOR STUDENTS UNABLE TO WRITE TESTS OR EXAMINATIONS OR SUBMIT ASSIGNMENTS AS SCHEDULED

If, on medical or compassionate grounds, you are unable to write term tests or final examinations or complete course work by the due date, you should follow the instructions listed below. You should understand that academic accommodation will not be granted automatically on request. You must demonstrate to your department (or the Undergraduate Services office if you are in first year) that there are compelling medical or compassionate grounds that can be documented before academic accommodation will be considered. Different regulations apply to term tests, final examinations and late assignments. Read the instructions carefully. (see the 2016 Western Academic Calendar).

A. GENERAL REGULATIONS & PROCEDURES

1. Check the course outline to see if the instructor has a policy for missed tests, examinations, late assignments or attendance.

2. Bring your request for academic accommodation to the attention of the Chair of the department (or the Undergraduate Services office if you are in first year) prior to the scheduled time of the test or final examination or due date of the assignment. If you are unable to contact the relevant person, leave a message with the appropriate department (or Undergraduate Services office, if you are in first year). The addresses, telephone and fax numbers are given at the end of these instructions. Documentation must be provided as soon as possible.

3. If you decide to write a test or an examination you should be prepared to accept the mark you earn. Rewriting tests or examinations or having the value of a test or exam reweighted on a retroactive basis is not permitted.

B. TERM TESTS

1. If you are unable to write a term test, inform your instructor and the Chair of your Department (or the Undergraduate Services Office if you are in first year) prior to the scheduled date of the test. If the instructor is not available, leave a message for him/her at the department office and inform the Chair of the Department (or the Undergraduate Services Office if you are in first year).

2. Be prepared to provide supporting documentation to the Chair and the Undergraduate Services Office (see next page for information on documentation).

3. Discuss with the instructor if and when the test can be rescheduled. N.B. The approval of the Chair (or the Undergraduate Services Office if you are in first year) is required when rescheduling term tests.

C. FINAL EXAMINATIONS

1. If you are unable to write a final examination, contact the Undergraduate Services Office PRIOR TO THE SCHEDULED EXAMINATION TIME to request permission to write a Special Final Examination. If no one is available in the Undergraduate Services Office, leave a message clearly stating your name & student number (please spell your full name).

2. Be prepared to provide the Undergraduate Services Office with supporting documentation (see next page for information on documentation) the next day, or as soon as possible (in cases where students are hospitalized). The following circumstances are not considered grounds for missing a final examination or requesting special examinations: common cold, sleeping in, misreading timetable and travel arrangements.

3. In order to receive permission to write a special examination, you must obtain the approval of the Chair of the Department and the Associate Dean and in order to apply you must sign a "Recommendation for a Special Examination Form" available in the Undergraduate Services Office. The Undergraduate Services Office will then notify the course instructor(s) and reschedule the examination on your behalf.

N.B. It is the student's responsibility to check the date, time and location of the special examination.

D. LATE ASSIGNMENTS

1. Advise the instructor if you are having problems completing the assignment on time (prior to the due date of the assignment).

2. Be prepared to provide documentation if requested by the instructor (see reverse side for information on documentation).

3. If you are granted an extension, establish a due date. The approval of the Chair of your Department (or the Associate Dean if you are in first year) is not required if assignments will be completed prior to the last day of classes.

4. i) Extensions beyond the end of classes must have the consent of the instructor, the department Chair and the Associate Dean. Documentation is mandatory.

 ii) A Recommendation of Incomplete Form must be filled out indicating the work to be completed and the date by which it is due. This form must be signed by the student, the instructor, the department Chair and the Associate Dean.
SHORT ABSENCES

If you miss a class due to a minor illness or other problems, check your course outlines for information regarding attendance requirements and make sure you are not missing a test or assignment. Cover any readings and arrange to borrow notes from a classmate.

EXTENDED ABSENCES

If you are absent more than one week or if you get too far behind to catch up, you should consider reducing your workload by dropping one or more courses. (Note drop deadlines listed below). You may want to seek advice from the academic counsellor in your Department or the counsellors in the Undergraduate Services Office if you are in first year.

DOCUMENTATION

If you consulted an off-campus doctor or Student Health Services regarding your illness or personal problem, you must provide the doctor with a Student Medical Certificate to complete at the time of your visit and then bring it to the Department (or the Undergraduate Services Office if you are in first year). This note must contain the following information: severity of illness, effect on academic studies and duration of absence.

In Case of Serious Illness of a Family Member: Provide a Student Medical Certificate to your family member's physician to complete and bring it to the Department (or the Undergraduate Services Office if you are in first year).

In Case of a Death: Obtain a copy of the death certificate or the notice provided by the funeral director's office. You must include your relationship to the deceased and bring it to the Department (or the Undergraduate Services Office if you are in first year).

For Other Extenuating Circumstances: If you are not sure what documentation to provide, ask the Departmental Office (or the Undergraduate Services Office if you are in first year) for direction.

Note: Forged notes and certificates will be dealt with severely. To submit a forged document is a scholastic offence (see below).

ACADEMIC CONCERNS

You need to know if your instructors have a policy on late penalties, missed tests, etc. This information may be included on the course outlines. If not, ask your instructor(s).

You should also be aware of attendance requirements in some courses. You can be debarred from writing the final examination if your attendance is not satisfactory.

If you are in academic difficulty, check out the minimum requirements for progression in the calendar. If in doubt, see your academic counsellor.

Calendar References: Check these regulations in your 2016 Western Academic Calendar available at www.westerncalendar.uwo.ca.

Absences Due to Illness - page 117
Academic Accommodations for Students with Disabilities - page 118
Academic Accommodations for Religious Holidays - page 119
Incomplete Standing - page 104
Scheduling of Term Assignments – page 97
Scholastic Offences - page 113
Special Examinations - page 132

Note: These instructions apply to all students registered in the Faculty of Engineering regardless of whether the courses are offered by the Faculty of Engineering or other faculties in the University.

Drop Deadlines: First term half course (i.e. “A” or “F”): November 5, 2016
Full courses and full-year half courses (i.e. “E”, “Y” or no suffix): November 30, 2016
Second term half or second term full course (i.e. “B” or “G”): March 7, 2017

Undergraduate Services Office: SEB 2097 telephone: (519) 661-2130 fax: (519) 661-3757
Dept. of Chemical and Biochemical Engineering: TEB 477 telephone: (519) 661-2131 fax: (519) 661-3498
Dept. of Civil and Environmental Engineering: SEB 3005 telephone: (519) 661-2139 fax: (519) 661-3779
Dept. of Electrical and Computer Engineering, Software Engineering Mechatronics Engineering TEB 279 telephone: (519) 661-3758 fax: (519) 850-2436
Dept. of Mechanical and Materials Engineering: SEB 3002 telephone: (519) 661-4122 fax: (519) 661-3020

Revision 29-Sep-16